
IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008)

Regular Paper

A Synthesis Method of General Floating-Point

Arithmetic Units by Aligned Partition�1

Liangwei Ge,†1 Song Chen,†1 Yuichi Nakamura†2

and Takeshi Yoshimura†1

Since many embedded applications involve intensive mathematic operations,
floating-point arithmetic units (FPU) have paramount importance in embed-
ded systems. However, previous implementations of FPU either require much
manual work or only support special functions (e.g. reciprocal, square root,
logarithm, etc.). In this paper, we present an automatic method to synthe-
size general FPU by aligned partition. Based on the novel partition algorithm
and the concept of grouping floating-point numbers into zones, our method
supports general functions of wide, irreducible domain. The synthesized FPU
achieves smaller area, higher frequency, and greater accuracy. Experimental
results show that our method achieves 1) on average 90% smaller and 50%
faster indexer than the conventional automatic method; 2) on the hyperbolic
functions, 20 k times smaller error rate and 50% use of LUTs and flip-flops than
the conventional manual design.

1. Introduction

Many embedded applications require intensive calculation of floating-point
arithmetic. The traditional software emulation, like FdLibM 1), is significantly
slow and consumes lots of the CPU/DSP computing power. As the scaling tech-
nology continuously increases the integration density and reduces the transistor
cost, there is a growing demand to evaluate arithmetic functions by floating-point
unit (FPU). However, the use of FPU in the embedded system has not been very
successful either because of the implementation effort involved or the unsatisfac-
tory FPU quality (larger than the fixed-point unit, low throughput, the limited

†1 Graduate School of Information, Production and System, Waseda University
†2 NEC Central Research Lab.
�1 This work was partly supported by a grant of Knowledge Cluster Initiative implemented

by Ministry of Education, Culture, Sports, Science and Technology (MEXT).

function types supported, etc.).
Function evaluation can be roughly classified into two groups: iterative and

non-iterative. The iterative method CORDIC 2),3), widely used in coprocessors,
requires many iterations to get an accurate result, which usually has poor per-
formance. Meanwhile, CORDIC is more suitable for fixed-point rather than
floating-point designs. The non-iterative methods 4)–12) have low delay and high
throughput but only support special functions with reducible domain 13), like re-
ciprocal, square root, and logarithm. For more general functions (e.g. tanh(x)
and sigmoid(x)), existing methods are either slow 2),3) or require lots of manual
work 14).

In this paper, we present an automatic method to synthesize FPU of general
functions based on aligned partition. The contributions of our works are as
follows:
• An automatic FPU synthesis method for general functions of wide input

domain, which guarantees compact, fast, and pipelined implementation;
• The proposal of zones that facilitate the grouping of floating-point numbers;
• The aligned domain partition algorithm that handles excessive floating-point

segment boundaries at high speed and low hardware cost;
• The FPU optimization techniques, like the automatic exploration of hardware

architecture in the design space, the reduction of register usage, etc.;
The rest of the paper is organized as follows: Section 2 summarizes previous

works. Section 3 shows the overview of our synthesis framework. Section 4
explains the proposed method in detail. Section 5 presents some optimization
techniques. Section 6 gives the experimental results. And Section 7 draws the
conclusion.

2. Summary of Previous Works

Currently, FPGA manufacturers start to provide IP cores to synthesize
pipelined/serial arithmetic units using CORDIC algorithm 15). However, these
IP cores only support fixed-point units of limited function types. For floating-
point units or ASIC designs, a lot of manual work is required.

Piecewise polynomial approximation 16),17) based synthesis methods have simple
architecture, which ensures fast, pipelined designs 4)–12). It works as follows:

67 c© 2008 Information Processing Society of Japan

68 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Fig. 1 Architecture of piecewise polynomial approximation.

assume the domain X of function f(x) is partitioned into k segments and f(x)
is approximated by an mth-order polynomial in each segment:

Pj(x) =
m∑

i=0

c[j][i] × xi, 0 ≤ j ≤ k − 1 (1)

Then, f(x) can be evaluated as Fig. 1 shows: 1) for any x ∈ X, the indexer de-
cides the segment j that x falls in; 2) retrieve the (m + 1) polynomial coefficients
of segment j from memory; 3) evaluate P (x) by adders and multipliers according
to Eq. (1).

The challenge in piecewise polynomial approximation is designing a compact,
pipelined indexer that compares given x with excessive segment boundaries at
high speed. Previous methods 4)–12) assume the boundaries to be fixed-point
numbers and use fixed-point adders and multipliers to implement P (x), which
have very limited dynamic. Therefore, they only support functions of narrow,
reducible domain as Table 1 shows. These functions can have the mantissa and
exponent calculated separately (a brief introduction of the IEEE 754 floating-
point number is given in Section 4.2). Therefore, domain X is generally reduced
to the mantissa 1.M that has a range of [1, 2). In Refs. 9) and 11), Sasao further
improved the indexer implementation by using less wires but more memory for
the FPGA platform.

In this paper, we extended the piecewise polynomial approximation 4)–12) by
supporting functions with wide, irreducible domain, like tanh(x), sigmoid(x), etc.
We for the first time systematically analyzed the placement of segment boundaries
and its impact on the implementation. The proposed aligned partition is capable
of handling excessive (2,000) floating-point boundaries at high speed (50% faster)

Table 1 Example of special functions with reducible domain.

Table 2 Rating of different implementations of arithmetic unit.

and low hardware cost (90% smaller). Moreover, our FPU synthesis tool provides
a friendly interface, through which users can easily specify the functions to be
implemented.

Table 2 compares the popular arithmetic unit synthesis methods with ours on
different aspects. For aspects that can be numerically rated, 9 means best and 1
means worst.

3. Overview of Proposed FPU Synthesis Method

Figure 2 shows the flow of the proposed synthesis tool. The 1st step is function
profiling, in which user gives C descriptions of the function f(x) to be synthesized.
Meanwhile, the domain X of f(x) as well as the acceptable absolute error e(x)
defined over X is provided. Then, in the 2nd step, X is partitioned into segments.
Different from previous partition methods, ours first groups the floating-point
numbers of X to zones ; then, performs zone-based, aligned partition (details
are explained in Section 4). The novel partition method greatly simplifies the
indexing of excessive segments, making the synthesis of functions of wide domain
possible. In the 3rd step, FPU is synthesized. Multipliers and adders of different

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

69 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Fig. 2 Flow of proposed FPU synthesis method by aligned partition.

versions in the RTL design library are tried and various optimization techniques
are applied to further refine the FPU. The 4th step evaluates the synthesized
FPU (described in Verilog) by a logic synthesizer in terms of area, frequency,
and delay. Non-dominated FPUs (FPU that is superior to any previous FPU on
at least one aspect) are preserved in a cache, where users can choose the desired
one. In the 5th step, the polynomial order is changed in order to explore different
hardware architecture.

4. Zone-Based Aligned Partition

Partition of domain X into segments is critical in piecewise polynomial ap-
proximation. Two aspects need to be considered: 1) the approximation error; 2)
hardware implementation. Traditional partitions 4)–8) generate segments of fixed
width (uniform partition), which are simple but produce unnecessary segments.
The recent non-uniform partitions 9)–12) support variable segment-width and re-
duce unnecessary segments in different ways. Fewer segments mean a smaller
coefficient table. However, over-reducing segments will greatly complicate the
hardware. In this study we for the first time systematically analyzed the domain
partition and its impact on implementation. The resultant zone-based, aligned
partition guarantees a high-speed, fully pipelined implementation that handles
excessive floating-point segment boundaries at low hardware cost.

4.1 Segment Boundary Placement and Its Impact on Hardware
Definition 4.1 (partition). The partition of domain X = [xmin, xmax] is a

Fig. 3 RTL implementation of the segment indexer.

set of segments: PT = {[x0, x0’], [x1, x1’], ..., [xk−1, xk−1’]}, where x0 = xmin,
xk−1’ = xmax, and xj ≤ xj’ for 0 ≤ j < k. For segment [xj, xj’], denoted by sgj,
we have xj−1’ < xj, where xj and xj−1’ are two adjacent numbers in X.

Definition 4.2 (segment indexer). The indexer is an integer function of
the input x ∈ X and the partition PT = {[x0, x0’], [x1, x1’], ..., [xk−1, xk−1’]}.
indexer(x, PT) =

k−1∑
j=0

j · Tj(x), where Tj(x) is a Boolean function that decides

whether x falls in sgj . If x ∈ [xj, xj’], Tj(x) = 1; else Tj(x) = 0.
As Definition 4.2 shows, the indexer strongly depends on partition PT. Hence,

for any domain partition method, the impact of segment boundary placement
on the indexer should be analyzed, which however has not been studied in any
paper.

An indexer of k segments can be implemented by the Verilog code of Fig. 3
in pure combinational circuit, where t = �log2 k� is the bit-width of the segment
index. To meet the requirement of pipelined processing, Fig. 3 adopts a fast, fully
paralleled architecture that calculates index j for given x within one clock cycle.
The implementation cost can be roughly estimated by Eq. (2).

size(indexer) <
k−1∑
j=0

[size(Tj(x)) + wired signal of j]

+ (k · log2 k) OR gates + (k · log2 k)AND gates (2)

Usually, the segment number k is not extremely large (within 2 k as the ex-
periment shows). The size of the indexer is mainly decided by Tj(x). Thus,
optimizing Tj(x) is more effective than minimizing k to simplify the indexer.

Definition 4.3 (L-bit aligned segment). A segment sgj is L-bit aligned
when (1) sgj contains 2L consecutive numbers; (2) for the 2L numbers, the least

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

70 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Fig. 4 Example of aligned segments. (a) sgj is 29-bit aligned, sga and sgb are 28-bit
aligned; (b) corresponding Tj(x), Ta(x), and Tb(x).

significant L bits change from 00...0 (L-bit wide) to 11...1 (L-bit wide) and the
higher bits remain constant.

Theorem 4.1: For any segment sgj that contains 2L numbers, the correspond-
ing Tj(x) has the simplest implementation when sgj is L-bit aligned.

Proof : The Boolean function Tj(x), as defined in Definition 4.2, is virtually a
truth table 19). Every x ∈ sgj , with each bit regarded as a Boolean variable, is a
minterm 19) for which Tj(x) = 1. If sgj is L-bit aligned, the least significant L bits
of all the minterms in the truth table will be eliminated after logic optimization.
Thus, Tj(x) becomes a single product term 19), which can be implemented by just
a few AND gates. If sgj is not L-bits aligned, the least significant L bits cannot
be completely eliminated. Hence, Tj(x) contains at least two longer product
terms, which have more complex implementation.

Generally, two comparators and one AND gate are needed to decide whether
a given x falls in a segment sgj = [xj , xj ’]: Tj(x) = (xj ≤ x) AND (x ≤ xj ’).
Theorem 4.1 shows how to simplify Tj(x). By making sgj aligned, Tj(x) becomes
independent of the least significant L bits of x.

In Fig. 4, the most significant 3 bits, b31b30b29, of all the 229 numbers in seg-
ment sgj are constantly “010”. Thus, Tj(x) is simplified to product term ‘̄b31

AND b30 AND b̄29’, which requires only two AND gates without any comparator.
Theorem 4.2: Assume an L-bit aligned segment sgj is partitioned into two

segments {sga, sgb}. Ta(x) and Tb(x) have minimum hardware cost when sga

and sgb are two (L-1)-bit aligned segments.
Figure 4 (a) shows a 29-bit aligned segment sgj partitioned into two 28-bit

Fig. 5 Grouping floating-point numbers into zones.

aligned segments: sga and sgb. Either Ta(x) or Tb(x) can be implemented by
three AND gates. Any other partition of sgj will greatly complicate both Ta(x)
and Tb(x).

4.2 Grouping Floating-Point Numbers to Zones
The IEEE 754 single-precision floating-point number 18) has 32 bits: b31b30...b0,

where S = b31 is the sign, E = b30...b23 the exponent, and M = b22...b0 the man-
tissa, which is a 23-bit fixed-point number with the point placed before b22. For
discussion convenience, we assume normalized floating-point numbers 18) (there
is always a default ‘1’ before the point). Thus, number x has a dynamic range of
(2−126 ≤ |x| < 2128) with its value given by:

x = (−1)S × (1. M) × 2E−127

Definition 4.4 (zone). A zone, denoted by Z(S, E), is a set of 223 consec-
utive floating-point numbers, which have the same sign (b31 = S) and the same
exponent (b30...b23 = E).

Figure 5 shows the grouping of all positive floating-point numbers into 254
zones. Each horizontal line represents a zone. The dots within a zone stand for
floating-point numbers with the same exponent. Z(0, E) contains 223 consecutive
numbers:

Note that the 223 floating-point numbers in a zone are virtually 223 evenly
spaced, fixed-point numbers, since their points are aligned at the same digit.
Therefore, the zone is a kind of bridge between floating-point and fixed-point
numbers. Zones around zero have smaller rounding error (up to 2E−127−24). As
E grows, Z(0, E) becomes wider and the numbers become sparser. Precision is
thus sacrificed for range.

Apparently, Z(S, E) is a 23-bit aligned segment. This means Tj(x) of Z(S, E)

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

71 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

depends only on the sign and exponent, which can be implemented by just eight
AND gates without any 32-bit floating-point comparator.

4.3 Zone-Based, Aligned Non-Uniform Partition
As Fig. 5 shows, positive single-precision floating-point numbers can be grouped

into 254 zones. Similarly, the entire X-axis, (−2128, 2128), can be divided into 508
zones. Since each zone is 23-bit aligned, the partition of domain X into segments
can be done by merging and partitioning these aligned zones.

We classify the segments into two types: 1) integral segment that spans integer
number of zones; 2) fractional segment that is a fraction of a zone. If P (x)
well approximates f(x) over some zones, these zones are merged into an integral
segment. Since the corresponding Tj(x) is independent of the mantissa, it has
compact implementation. If P (x) cannot well approximate f(x) over a single
zone, the zone is partitioned into fractional segments according to Theorem 4.2.

Algorithm 1 shows the zone-based, aligned partition algorithm. The approxi-
mating polynomial P (x) is obtained by the Chebyshev interpolation 16),17). Func-

Algorithm 1: Aligned non-uniform partition

tion zone(x) returns the zone that x falls in. right(z)/left(z) returns the adjacent
zone on the right/left side of zone z along the X-axis.

5. FPU Optimizations

Extending the traditional piecewise polynomial approximation to functions of
wide, irreducible domain is challenging. Efforts at all levels are required to deal
with a potentially large number of segments. This section presents some of the
efforts other than the aligned partition presented in Section 4.

5.1 Optimization of Evaluating Polynomial
The polynomial P (x) of Fig. 1 plays an important role in the final FPU. Raising

the order of P (x) greatly reduces the segment number, which in turn decreases
memory usage. However, higher order prolongs the evaluation delay and requires
more multipliers, adders, and registers. Hence, a proper tradeoff should be made.
In the proposed FPU synthesis method, the polynomial order is automatically
modified, so that different hardware architectures can be explored in the design
space, as Fig. 2 shows.

To minimize the delay of the polynomial evaluation and maximize the FPU
throughput, we exploit the parallelism in P (x) by optimizing the scheduling of
multiplications and additions. Two techniques are proposed to optimize the
pipelined scheduling:
(1) prioritizing multiplications involving x;
(2) registering segment index j instead of polynomial coefficients;
For explanation convenience, the following discussion is based on the 2nd-order
approximation: P (x) = c0 + c1x + c2x

2. However, the techniques can be used to
polynomials of other order.

Figure 6 shows the pipelined scheduling of the 2nd-order polynomial. For
a given x, the indexer decides the segment j that x falls in. Then, j is used
as memory address to retrieve the polynomial coefficients. Terms of x2 and
c1x are calculated first. Giving multiplications that involve x a higher priority
saves registers. For term c2x

2, if the order is changed to (c2x)x, additional shift
registers are needed to preserve the value of x for later multiplication. Thus,
Fig. 6 saves (32-bit × MUL delay) D registers, where MUL delay is the delay of
the multiplier (typically 6 clock cycles).

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

72 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Fig. 6 Scheduling of 2nd-order P (x) with x2 and c1x prioritized.

The pipeline schedule of Fig. 6 eliminates registers to preserve x, however, at
the cost of delaying operations involving c0 and c2. 64-bit wide shift registers are
therefore needed to preserve c0 and c2. This problem can be solved by preserving
index j instead of c0 and c2, as Fig. 7 shows. The index j has a bit-width of
t = �log2 k�, where k is the segment number. Since k is usually no more than
2000, t is typically within 6 ∼ 11. Consequently, another (64 - t) × MUL delay
D registers can be saved.

5.2 Optimization of Segment Indexer
The term, {t{T0(x)}} & t’d0 |, in the Verilog code of Fig. 3 can be eliminated,

because (y & 0) is always 0 for any Boolean variable y. This means T0(x) of
segment 0 need not be implemented by hardware. Consequently, the indexer can
be optimized by finding the segment sgj that has the most complex Tj(x) among

Fig. 7 Registering segment index j instead of c0 and c2.

the k segments and assigning its index to 0. The optimization details are given
in Algorithm 2, which has time complexity of O(k).

Algorithm 2: Simplification of the indexer

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

73 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

6. Experiment

For implementation convenience, we carried out the experiment on the FPGA
platform. The automatically synthesized FPUs (in Verilog) are evaluated by
Xilinx ISE 9.1i 15) on a Spartan 3 xc3s4000 device. The default optimization
settings, “optimization goal = speed” and “optimization effort = normal”, are
used.

6.1 Aligned Partition vs. Least-Segment Partition
Experiment 1 compares the proposed aligned partition with Sasao’s least-

segment partition 12). Table 3 lists the functions to be examined. The ‘Reduced
domain X’ is the actual domain to be partitioned. Apparently, tanh(x), sech(x),
and sigmoid(x) that cannot have their original domain reduced to a narrow
range cannot be implemented by the traditional piecewise polynomial approx-
imation 4)–12). Both partition methods are based on the 2nd-order Chebyshev
approximation 16),17). Absolute error ea is set at 2−22 over X.

As expected, the least-segment partition 12) generates slightly fewer segments,
because it does not consider the alignment constraint. The aligned partition re-
quires 20% more memory bits on average. For ASIC design, these 20% extra
memory bits (about 1.1 kb) are not a serious problem for the modern manufac-
turing technology. On the FPGA platform, both methods virtually use the same
amount of memories, since the memory depth is 2�log2 k� not the segment number
k. Therefore, all the FPUs require three block RAMs to respectively store the

Table 3 Memory usage under two partition methods (ea ≤ 2−22).

0th, 1st, and 2nd order coefficients of c0, c1, and c2. Table 3 verifies that the
aligned partition is almost as good as the least-segment partition on minimizing
memory usage. The constraint imposed on the placement of segment boundaries
is weak, which produces acceptable number of segments of nearly arbitrary width.

Table 4 compares the indexers under the two partition methods. On aver-
age, the aligned partition achieves 50% faster and 90% smaller (by 4.4 k gates)
indexers. These indexers are generally faster than the final FPUs, as Table 6
shows. Therefore they are not on the critical path. The least-segment partition,
on the other hand, generates some indexers as slow as around 50 MHz, which
become the system bottleneck and seriously deteriorate the FPU performance.
This result confirms the importance of aligning segment boundaries during the
domain partitioning, which makes Tj(x) independent of the least significant bits
of x. The result is a simpler and faster indexer.

For the evaluating polynomial, as Fig. 1 shows, both methods use identical
P (x). Thus, the total gate count increase of the proposed method can be roughly
estimated as (1.1 k bits × 6 gates/bit - 4.4 k gates) = 2.2 k gates, which is well
justified by the 50% speedup of the indexer. These 2.2 k extra gates are actually
insignificant, compared with the evaluating polynomial P (x) that dominates the
total FPU size. Any floating-point adder (about 10 k gates) or multiplier (about
20 k gates) in P (x) is much larger. Based on these data, we conclude that the
aligned partition outperforms the least-segment partition.

Table 4 Indexers under two partition methods (ea ≤ 2−22).

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

74 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

6.2 Comparison with Manual Design on sigmoid(x)
Hyperbolic functions, like tanh(x) and sigmoid(x), have important application

in neural networks. However, due to the wide, irreducible domain, they cannot
be implemented by the traditional piecewise polynomial approximation 4)–12). In
Ref. 14), Savich et al. manually implemented sigmoid(x) in various number for-
mats on FPGA. Hence, Ref. 14) serves as a reliable example of the latest manual
implementation. Experiment 2 compares our automatic synthesis with the man-
ual design 14).

sigmoid(x) ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x ≤ −8
(8 − |x|)/64, if − 8 < x ≤ −1.6
x/4 + 0.5, if |x| < 1.6
1 − (8 − |x|)/64, if 1.6 ≤ x < 8
1, if x ≥ 8

(3)

Reference 14) uses five-segment linear approximation, as Eq. (3) shows. The
coefficients of the 1st-order terms are restricted to powers of two (1/64 and 1/4),
thus multiplication is ‘simplified ’ to bit shift (in fixed-point) or exponent ad-
dition (in floating-point). Such a method is representative in RTL designing:
first find the approximating function experimentally; then apply some ‘optimiza-
tions ’. Implementation like this has three problems: 1) high hardware cost. The
segment boundaries (± 1.6) are not aligned. Expensive comparators are needed
to implement the indexer; 2) low accuracy. The restriction on the 1st-order co-
efficients increases the error, making the approximation useless to high precision
applications; 3) poor systematic tradeoff. Eliminating the multiplier seems to
simplify the design. Actually, any segment that has a different 1st-order coeffi-
cient will need specific bit shift or exponent addition, making the hardware cost
proportional to the segment number.

In Table 5, FXD and FLT denotes the fixed and floating point implementation
of sigmoid(x) in Ref. 14). ‘a0 8/a1 18 ’ stands for the floating-point implementa-
tion based on the ‘0th/1st’-order aligned partition with the acceptable absolute
error e(x) set at ‘2−8/2−18’.

‘a0 8 ’ shows the correct way of eliminating the multiplier. It only consists of
an indexer and the 0th-order coefficient table. ‘a0 8 ’ has an absolute error no

Table 5 Different implementations of sigmoid(x).

more than 0.0039. That is about 1/20 of FXD/FLT. Moreover, it needs no flip-
flop and requires even less LUTs than the fixed-point implementation FXD. The
ability to handle excessive (168) segments enables ‘a0 8 ’, which is a simple look-
up table (0th-order approx.), to outperform the linear (1st-order) approximation
of Ref. 14).

‘a1 18 ’ is based on linear approximation. Though one adder and one multiplier
are required, they are shared by all the 473 segments. Hence, ‘a1 18 ’ uses flip-
flops and LUTs about half of FLT. Moreover, ‘a1 18 ’ has a maximum error of
0.000004, which is about 20 k times smaller than that of FLT.

Experiment 2 proved the ability of the aligned partition algorithm to handle
excessive segments at low cost and high speed. The support of excessive segments
greatly expands the domain X. Consequently, the proposed synthesis method is
able to support more general functions with wide, irreducible domain.

It should be emphasized that our FPU synthesis tool is highly automatic. FPUs
are generated and verified in minutes. The implementations of Ref. 14), neverthe-
less, require lots of manual work. In this experiment, FXD and FLT are designed
and verified by an experienced RTL designer in 5 hours and 3 hours respectively.

A slight defect of piecewise polynomial approximation is the memory require-
ment to store polynomial coefficients. The memory can be easily implemented
by register, ROM, RAM, combinational circuit, etc., which is not a problem in
modern integration technology. Since Spartan3 xc3s4000 provides abundant (96)
block RAMs, we store the coefficients in block RAMs.

Figure 8 compares the approximation error of the five-segment method 14) with
‘a1 18 ’. Obviously, ‘a1 18 ’ is far more accurate and uses only half the flip-flops
and LUTs.

6.3 Comparison with Commercial Tools
As Fig. 1 shows, the synthesized FPU has fixed architecture: indexer, coefficient

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

75 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Fig. 8 Absolute error of different sigmoid(x) implementations.

table, and the evaluating polynomial P (x). Since the aligned partition greatly
simplifies the indexer, the FPU size is mainly decided by P (x). To cope with a
wide domain X, floating-point adders and multipliers are used in this study to
evaluate P (x). It should be emphasized that though the floating-point multipliers
and adders are larger than their fixed-point counterparts, they are not a problem
in modern integration technology. Moreover, these units are efficiently utilized,
as they are shared by all the segments. The number of multipliers and adders can
be greatly reduced by lowering P (x) order. However, lower order will increase
segments (memory usage). Thus, it is the user who selects the most suitable
FPU from the automatically synthesized ones.

Table 6 shows the FPUs synthesized by the proposed method under the 1st and
2nd order approximation. Some FPUs have nearly 2,000 segments (all segment
boundaries are floating-point, not fixed-point as in previous methods 4)–12)) but
still achieve high speed. Also, FPUs under the same order use similar resources.
These observations mean that the aligned partition effectively handles excessive
segments. The optimized indexer is fast and small, so that the multipliers and
adders of P (x) dominate the FPU size. It should be emphasized that all the
synthesized units are pipelined (process a new x every clock cycle) and none use
more than 8% of the FPGA resources. Thus, a single FPGA chip can include
multiple independent FPUs that perform pipelined calculation in parallel, which
can accelerate the computation-intensive embedded applications greatly.

Table 7 shows the arithmetic units synthesized by Xilinx Core Generator 15)

using CORDIC algorithm. As is shown, non-pipelined units are compact but very

Table 6 FPUs synthesized by proposed method (ea ≤ 2−22).

Table 7 Arithmetic units synthesized by Xilinx Core Generator.

slow. Pipelined units, though being fixed-point, are much larger and use even
more LUTs and flip-flops than our floating-point implementations in Table 6.

7. Conclusion

Floating-point arithmetic units (FPUs) are important to accelerate
computation-intensive embedded applications. In this paper, we present an au-
tomatic method to synthesize general FPUs by aligned partition. Based on the
novel domain partition, our method is able to synthesize functions of wide, irre-

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

76 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

ducible domain that previous automatic methods cannot. The synthesized FPU
features compact size, high frequency, and low error. Experimental results show
that our method achieves an indexer on average 90% smaller and 50% faster than
the conventional automatic method. On synthesizing functions of wide domain,
like sigmoid(x), our method achieves 20K times smaller error rate and 50% use
of LUTs and flop-flops than the manual design. Future works will focus on the
rounding of polynomial coefficients and the reduction of memory usage.

References

1) FdLibM: C math library for machines that support IEEE 754 floating-point, Avail-
able: http://www.netlib.org/fdlibm/

2) Andraka, R.: A survey of CORDIC algorithms for FPGA based computers, Int.
Symp. on FPGA, pp.191–200 (1998).

3) Hu, X., Harber, R.G. and Bass, S.C.: Expanding the range of convergence of the
CORDIC algorithm, IEEE Trans. on Computers, Vol.40, No.1, pp.13–21 (1991).

4) Pineiro, J.A., Oberman, S.F., Muller, J.M. and Bruguera, J.D.: High-speed func-
tion approximation using minimax quadratic interpolator, IEEE Trans. Computers,
Vol.54, No.3, pp.304–318 (2005).

5) Pineiro, J.A., Bruguera, J.D. and Muller, J.M.: Faithful powering computation us-
ing table look-up and a fused accumulation tree, IEEE Symp. on Computer Arith-
metic, pp.40–47 (2001).

6) Jain, V.K. and Lin, L.: High-speed double precision computation of nonlinear
functions, IEEE Symp. on Computer Arithmetic, pp.107–114 (1995).

7) Schulte, M.J. and Stine, J.E.: Symmetric bipartite tables for accurate function
approximation, IEEE Symp. on Computer Arithmetic, pp.175–183 (1997).

8) Wong, W.F. and Goto, E.: Fast evaluation of the elementary functions in single
precision, IEEE Trans. Computers, Vol.44, No.3, pp.453–457 (1995).

9) Sasao, T., Nagayama, S. and Butler, J.T.: Numerical function generators using
LUT cascades, IEEE Trans. Computers, Vol.56, No.6, pp.826–838 (2007).

10) Lee, D., Luk, W., Villasenor, J. and Cheung, P.Y.K.: Non-uniform segmentation
for hardware function evaluation, Int. Conf. on Field Programmable Logic and Ap-
plications, pp.796–807 (2003).

11) Nagayama, S., Sasao, T. and Butler, J.T.: Numerical function generators using
edge-valued binary decision diagrams, Asia and South Pacific Design Automation
Conference, pp.535–540 (2007).

12) Nagayama, S., Sasao, T. and Butler, J.T.: Programmable numerical function gen-
erators based on quadratic approximation: architecture and synthesis method, Asia
and South Pacific Design Automation Conference, pp.378–383 (2006).

13) Brisebarre, N., Defour, D., Kornerup, P., Muller, J.M. and Revol, N.: A new range-

reduction algorithm, IEEE Trans. Computers, Vol.54, No.3, pp.331–339 (2005).
14) Savich, A.W., Moussa, M. and Areibi, S.: The impact of arithmetic representation

on implementing MLP-BP on FPGAs: A study, IEEE Trans. Neural Networks,
Vol.18, No.1, pp.240–252 (2007).

15) Core Generator of Xilinx ISE 9.1i, Xilinx corp., Available: http://www.xilinx.com/
16) Li, R.: Near optimality of Chebyshev interpolation for elementary function com-

putations, IEEE Trans. Computers, Vol.53, No.6, pp.678–687 (2004).
17) Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.: Numerical

recipes in C++ the art of scientific computing. 2nd ed., Cambridge University Press,
2002, ch. 3 and ch. 5.

18) Wikipedia, IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754),
Available: http://en.wikipedia.org/wiki/IEEE 754

19) Holdsworth, B. and Woods, C.: Digital logic design. 4th ed., Newnes, 2002, ch. 2.

(Received December 25, 2007)
(Revised March 24, 2008)

(Accepted May 1, 2008)
(Released August 27, 2008)

(Recommended by Associate Editor: Tsuyoshi Isshiki)

Liangwei Ge received his B.E. from Xi’an Jiaotong Univer-
sity, China, in 2000 and M.E. from Tsinghua University, China, in
2003. He is currently a Ph.D. candidate in the Graduate School of
Information, Production and System, Waseda University, Japan.
His research interests include high-level synthesis, computer arith-
metic, and VLSI design automation.

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

77 A Synthesis Method of General Floating-Point Arithmetic Units by Aligned Partition

Song Chen received the B.S. degree in computer science from
Xi’an Jiaotong University, China, in 2000 and Ph.D. in computer
science from Tsinghua University, Peking, China, in 2005. From
August 2005, he has been a post-doctor in the Graduate School of
Information, Production and System, Waseda University, Japan.
His research interests include high-level/physical synthesis of VLSI
circuits, especially floorplanning/placement for 2D/3D ICs, inte-

gration of high-level synthesis and physical synthesis, etc.

Yuichi Nakamura received B.E. in information engineering
and a M.E. in electrical engineering from Tokyo Institute of Tech-
nology in 1986 and 1988. He received Dr. Eng. degree from Grad-
uate School of Information, Production, and Systems, Waseda
University. In 1988, he joined NEC Corporation, where he is cur-
rently a principal researcher of the System IP Core Research Lab-
oratories. His research interests include the design and verification

of high-speed and complex VLSIs.

Takeshi Yoshimura received B.E., M.E., and Dr. Eng. de-
grees from Osaka University, Osaka, Japan, in 1972, 1974, and
1997. He joined the NEC Corporation, Kawasaki, Japan, in 1974,
where he has been engaged in research and development efforts
devoted to computer application systems for communication net-
work design, hydraulic network design, and VLSI CAD. From
1979 to 1980 he was on leave at the Electronics Research Labo-

ratory, University of California, Berkeley, where he worked on very large scale
integration computer-aided design layout. He received Best Paper Awards from
the Institute of Electronics, Information and Communication Engineers of Japan
(IEICE) and the IEEE CAS Society. Dr. Yoshimura is a Member of the IEICE,
IPSJ (the Information Processing Society of Japan), and IEEE.

IPSJ Transactions on System LSI Design Methodology Vol. 1 67–77 (Aug. 2008) c© 2008 Information Processing Society of Japan

