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Towards Self-Optimizing Network: Applying Deep
Learning to Network Traffic Categorization and

Identification in the Context of Application-Aware Network
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Abstract: The application-aware routing is a network routing technology optimized for a network with an inconsis-
tent link performance, a problem which is common for a multi-institution research and academic network. Using the
application-aware routing, an application-aware network routes each flow independently via the optimal path corre-
sponding to the identified application characteristic. This technology enables the creation of a self-optimizing network.
However, an automatic network flow categorization and identification system is required. In the scope of this work,
network flow categorization is defined as the process of generating a meaningful classification whereas network flow
identification is defined as identifying which class a network flow belongs to. These are challenging problems with var-
ious applicabilities. We present a deep learning approach to network flow categorization and identification problems.
Deep learning provides several advantages over existing solutions in the context of the application-aware network.
According to our experiments, a 3-layer stacked denoising autoencoder trained with CAIDA Internet traffic dataset
produces the most meaningful classification and a useful class identifier (classifier). This deep neural network (DNN)
model generates three-classes classification: a bandwidth-bound pattern, a latency-bound pattern, and an irregular pat-
tern. A design of a highly scalable implementation of a self-optimizing network using a DNN model is also presented
with justification for each design decision. Our findings suggest that a deep learning approach to network flow catego-
rization and identification problems in the context of the application-aware network and the self-optimizing network
are promising.

1. Introduction
The application-aware routing is a novel network routing

method optimized for a network with a highly inconsistent link
performance [1]. The link performance inconsistency is very
common problem in a geographically separated wide-area net-
work connecting multiple research or academic institutions. In
our previous work, we have implemented the mechanism of
application-aware routing using OpenFlow technologies [2] and
developed an application-aware network by applying the mecha-
nism. The application-aware network was evaluated on an inter-
national OpenFlow network testbed, PRAGMA-ENT [3], which
is composed of multiple research and education networks includ-
ing the United States, Japanese, Taiwanese and Thai resources,
and we found that the performance of data-intensive applications
can be improved by the application-aware routing.

The application-aware routing prioritizes paths with properties
corresponding to application’s characteristics. Using a predeter-
mined network flow classification and flow optimization rules,
an application-aware network identifies the class each individ-
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Fig. 1: An example routing with application-aware network

ual network flow belongs to. Each flow is then routed via the
most optimal path given its class and the current condition of
all links in the network. For example, let there be two network
applications, a VoIP application and a video streaming applica-
tion. The performance of a VoIP application could be defined as
latency-bound (performs better under low latency) whereas the
performance of a video streaming application could be defined as
bandwidth-bound (performs better with higher bandwidth). Even
if these two applications are sending data from the same source
to the same destination (and vice versa), the optimal path for the
flows of each application could be different. Figure 1 illustrates
the concept of application-aware network.

An automatic network flow categorization and identification
is essential for realizing a self-optimizing network with an
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Fig. 2: The concept of a self-optimizing network

application-aware network. Network traffic categorization and
identification, in general, is also useful for network monitoring,
quality of service (QoS) control, network security, as well as data
mining. Deploying an application-aware network involves con-
figuring a predetermined flow classification and flow optimization
rules for network flows corresponding to each application using
the network. An automated method to create (and update) flow
classification and flow optimization rules using communication
data from the network would complete a cycle and create an au-
tomatic self-optimizing network. Figure 2 illustrates the concept
of a self-optimizing network.

Generating a meaningful classification of network flows to-
gether with a corresponding class identifier (classifier) is chal-
lenging problem. A class of a network flow is defined as a non-
linear representation of the network flow. The classifier model
creation process is formulated as an unsupervised clustering of a
raw network traffic capture. A raw network traffic capture is com-
monly available as a large unlabeled lightly-preprocessed dataset.
While there are many clustering techniques, a deep-learning-
based approach was chosen as it is a technique suitable for this
kind of dataset.

The rest of the paper is organized as followed. Section 2 de-
fines the problems, describes existing approaches, and describes
the proposed deep learning approach. Section 3 describes the
classification and the classifier creation process. Section 4 de-
scribes the model training process and the resulting model includ-
ing the interpretation of the classification. Section 5 proposes the
design of a self-optimizing network using the created classifier.
Section 6 presents the conclusion and outlines the future work.

2. Background
In the scope of this work, network flows categorization and

identification are defined as follow. Network flow categorization
is a process of generating a meaningful network flow classifica-
tion. The classification also has to be useful to the application-
aware network meaning that the classification should be based on
network properties that could be optimized with network routing.
Network flow identification is to identify which class a network
flow belongs to, corresponding to the classification.

2.1 Existing Approach
There were issues with the previous approaches to automati-

cally categorize and/or identify network flows from network traf-
fic data. Most of the existing works use an application-level clas-
sification which is too specific for route optimization with the

application-aware network [4], [5], [6], [7], [8], [9], [10], [11].
In the work by X. Wang, a decision tree with the limited number
of predetermined features and thresholds were used [12]. While
their work is applicable to the application-aware network, they
used a predetermined bandwidth-bound and latency-bound clas-
sification with the assumption that the classification is appropriate
for any network traffic without providing proper justification. A
single-model-fit-all approach also limits the applicability of the
model.

2.2 Deep Learning based Approach
A deep learning technique refers to a machine learning tech-

nique using deep neural network (DNN) model. While the neural
network is not a new technology, a recent breakthrough in paral-
lel computation allowed for a training of a much more complex
network within a reasonable time. Multiple types of deep neu-
ral network are developed for various applications ranging from
(unsupervised) clustering fix-sized input vectors to (supervised)
classification of sequential time series data.

Using deep learning for network flows categorization and iden-
tification has several advantages. Deep learning is a technique
that is highly suitable for capturing a non-linear representation
from a large unlabeled lightly-preprocessed dataset. Since the
classification of a network flow is a non-linear representation of
the flow and a large unlabeled lightly-preprocessed network traf-
fic data set is also readily available, deep learning is a natural
choice for this task.

While there are some existing neural-network-based ap-
proaches, they do not work very well for creating a self-
optimizing network with the application-aware network. Specif-
ically, most of the approaches classify a network flow into a pre-
determined application-level classification [6], [11] which is too
specific for application-aware network and does not guarantee to
reflect a natural classification of the dataset. Some works also
require labeled input [11] which is not readily available.

In this work, a deep neural network clustering is selected as it
is a suitable deep-learning-based approach to network flows cate-
gorization and identification (for the application-aware network)
with the following characteristics. The approach is unsupervised
thus allowing the model to capture natural classification of the
dataset without requiring prior knowledge which could bias the
results. The resulting classification represents application’s com-
munication characteristic and is useful for route optimization.

3. Model Creation Process
This section describes training samples preparation and the

deep neural network clustering method to generating a network
flow classification and a classifier.

3.1 Training Samples Preparation
Raw network traffic capture is transformed into training sam-

ples format suitable for clustering with a deep neural network
model. Since the objective is to create an online network flow
classifier for an application-aware network, the input format have
to be highly scalable to be able to process the large amount of net-
work flows in a near-real-time manner. A fixed-size input vector
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is chosen as the input format as it allows for parallel inferencing
with multiple instances of the classifier. Protocol (TCP or UDP),
source TCP/UDP port, and destination TCP/UDP port are also
added to the input vector as these are common features that are
known to be related to network application performance charac-
teristic.

The training samples preparation process is divided into three
steps as followed.
( 1 ) Raw network traffic is grouped by flows. Each flow is iden-

tified by a unique combination of source IP address, destina-
tion IP address, protocol (TCP or UDP), source TCP/UDP
port, and destination TCP/UDP port.

( 2 ) A flow is sliced into multiple intermediate samples with a
1-second sliding window with 10 seconds in length. Each
intermediate sample contains 10 seconds of packets from the
flow. Figure 3 illustrates the flow slicing window.

( 3 ) An intermediate sample is restructured with a transfer size
binning and a packet count binning into a complete train-
ing sample. Packets in the intermediate sample are counted
and binned into 10 1-second transfer size bins and 10 1-
second packet count bins. Protocol (TCP or UDP), source
TCP/UDP port, and destination TCP/UDP port are also
added. Ultimately, each complete training sample is a vec-
tor with 23 dimensions. Table 1 shows an example complete
training sample.

3.2 Training Deep Neural Network Model
A 3-layer stacked denoising autoencoder network with sigmoid

activation functions is used in this work. Softmax functions are
applied at the final layer to “squash” the output into the probabil-
ity distribution. The error function is a standard mean square error
function comparing the clean input and the reconstructed output.
Adam optimizer, an optimization algorithm based on stochastic
gradient descent, is used for the optimization with all parameters
set to its default value [13]. Figure 4 illustrates the structure of
the model.

A stack denoising decoder is an unsupervised deep neural net-
work model structure that is commonly used for automatic fea-
ture extraction [14], [15]. The denoising process is introduced to
the standard autoencoder to address overfitting problem which is
prevalent in case the size of the encoded representation is larger
than the size of the input vector. A stack denoising autoencoder
model is trained on a layer-by-layer basis. For the training of
each layer, the model takes a clean input vector and generate a
noised input from the clean input. The noised input is fed to the
encoder in the encoding step to create an encoded representation
of the noised input. The encoded representation is then fed to the
decoder in the decoding step to create a reconstructed input. The
quality of the encoded representation is defined as the inverse of
the error function. The error function is a distance function be-
tween the clean input and the reconstructed input. An optimizer
is used to minimize the value of the error function as the training
step goes on. After the training of each layer, the decoder is dis-
carded and the training continues with the output from the trained
encoder as an input to the next layer. Figure 5 illustrates the train-
ing process of the first layer of the stack denoising autoencoder

model used in this work.
We have also experimented with the other networks such as

deep denoising autoencoder. However, they did not produce use-
ful results. Only the stacked denoising autoencoder is discussed
in this paper due to space limitation.

4. Experimental Results
Several stacked denoising autoencoder models were trained

with varying numbers of hidden layers, size of each hidden layers,
and size of the output vector (numbers of output nodes). All mod-
els were trained with CAIDA Internet traffic dataset [16]. Not all
results are shown due to space limitation.

The following 3-layer stacked denoising autoencoder model
produces the best results. The first two hidden layers contain 100
and 10 nodes respectively. The output layer has 3 nodes. Uniform
random masking noise is used to create the noised input from the
clean input. Figure 4 illustrates the structure of this model.

The resulting model cluster network communication into three
classes. Figure 6 and Figure 7 shown properties distribution of
classes generated with this model.

Information from Figure 6 and Figure 7 is used to interpret the
meaning of the classes. From the Figure 7, we observe that all dis-
tributions of class 2 are grouped at the very small value compared
to the other classes. According to the Figure 6, all UDP commu-
nications are also clustered into this class 2. We interpret these
observations as class 2 representing a low-frequency communi-
cation considered as an irregular communication pattern. Com-
paring only class 0 and class 1, class 1 have a relatively higher
transfer size and packet rate across the board. Transferred size
standard deviation distribution of class 1 also significantly higher
the other classes. We interpret these observations as class 0 rep-
resents a regular-frequency communication with relatively lower
packet size (latency-bound communication pattern) whereas class
1 represents a regular-frequency communication with relatively
higher packet size (bandwidth-bound communication pattern).
With these interpretations, the classes are interpreted as followed.
( 1 ) Class 0: Regular-frequency communication with relatively

low packet size (latency-bound pattern).
( 2 ) Class 1: Regular-frequency communication with relatively

high packet size (bandwidth-bound pattern).
( 3 ) Class 2: Low-frequency communication (irregular pattern).

It is also important to note that the three classes discov-
ered by this model are similar to our prior curated classification
(bandwidth-bound/latency-bound classification) used in the de-
velopment of the application-aware network [1].

5. Self-Optimizing Network
The classifier model presented in this work, together with the

application-aware network, can be used to develop an automatic
self-optimizing network. Figure 2 illustrates the concept of a self-
optimizing network.

An implementation of a self-optimizing network has to be able
to operate in a high-throughput environment. Raw network traf-
fic contains an enormous amount of data. Ideally, during each
optimization cycle, every network flows have to be identified and
categorized Then, a rule for each flow are created or updated to re-

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-IOT-40 No.6
2018/3/5



IPSJ SIG Technical Report

Time

Flow

1 second

Intermediate
Samples

(10 seconds)
{

Packet (not to scale)

Fig. 3: Example intermediate training samples sliced from a flow

Protocol Source Port Destination Port Transferred Size (second 0-1, Bytes) . . . Transferred Size (second 9-10, Bytes) Packet Count (second 0-1) . . . Packet Count (second 9-10)

TCP 80 56931 796 . . . 2, 073 6 . . . 4

Table 1: An example complete training sample

I: Input Vector (23 nodes)

H1: Sigmoid Units (100 nodes)

H2: Sigmoid Units (10 nodes)

O: Softmax Units (3 nodes)

Fig. 4: The 3-layer stacked denoising autoencoder model
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Fig. 5: Training process of the first layer of the stacked denoising
autoencoder model used in this work

flect the current classification of the corresponding flow. The flow
categorization and identification process has to be highly scalable
to cope with the amount of the raw network traffic data. Since it
is not practical to create a rule for every single flow due to the
limitation of OpenFlow, the implementation requires a method to
prioritize the creation and maintenance of optimization rules for
high-impact flows.

We propose the following design for an implementation of
a self-optimizing network. At every edge switch, the ingress
communication is mirrored out to a collector port. sFlow [17]
could be used to output a uniform sampling of the communica-
tion at each switch instead of mirroring everything to reduce the
throughput if required. The communication is gathered at the col-

Fig. 6: Class size distribution

lector and bucketed into each identified flow. The network flow
samples are constructed from the latest collected communication
together with corresponding duration counter. To prioritize high-
impact flows, only flow sample from the flows with the duration
longer than a specific threshold value are sent to the classifier
model for classification. Flow class identification (classification)
can be parallelized for higher throughput with parallel model in-
ferencing. The result of the classification is used to create and
update the flow optimization rules for the application-aware net-
work. Figure 8 illustrates the structure of this implementation.

This design is feasible and highly scalable. The sFlow sam-
pling rate and the flow duration threshold can be optimized the
achieve the acceptable balance between classification accuracy
and scalability unique to each network. Parallel model inferenc-
ing also allows for scaling-out by increasing the numbers of the
classifiers.

6. Conclusion
In this work, we describe the development of a network flow

categorization and identification model using deep learning tech-
nique. The model was developed using a 3-layer stacked denois-

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-IOT-40 No.6
2018/3/5



IPSJ SIG Technical Report

(a) Transferred size distribution per class

(b) Packet rate distribution per class

(c) Transferred size standard deviation distribution
per class

(d) Packet rate standard deviation distribution per
class

Fig. 7: Properties distribution of the resulting classification

ing autoencoder and trained with CAIDA internet traffic dataset.
3-classes classification is discovered from the dataset. They are a
latency-bound pattern, a bandwidth-bound pattern, and an irreg-
ular pattern. This result suggested that deep learning is a feasible
approach for network flow categorization and identification in the
context of the application-aware network.

The design of the self-optimizing network using the developed

Application-Aware Network

Route

Controller

Parallelized Classifier Models

Packet Collector

Fig. 8: Structure of the proposed design of a self-optimizing net-
work

model is also proposed. The design has to be highly scalable to be
feasible given the size of the network traffic workload. All design
decisions were described and rationalized in detail to demonstrate
its scalability.

In the future, we plan to expand upon this work by continu-
ally improving our DNN classifier model as well as looking into
the other categorization and identification techniques. The real
implementation of the proposed self-optimizing network is also
being developed.
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