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Demands on efficient drug design have been increasing with the advancement of computing
technology and bioinformatics. A variety of information technologies pertaining to drug design
have been proposed recently and such technology mostly contributes to drug design research.
Molecular docking simulation is a promising application for drug design, and can be realized
with current information technology. However although docking simulation and the related
information technology have advanced in recent years, scientists still have difficulty finding
a suitable parameter set of docking simulations for accuracy of simulation. The parameter-
tuning step takes a long time, and existing computing technology can hardly assist in this
step. This is because the parameter-tuning step involves factors that are difficult to automate
with computers. In this paper, we propose a new architecture for assisting procedures that
require the decisions of scientists, especially when they need to tune parameters in a docking
simulation.

1. Introduction

In-silico drug design, or drug design using
computers, is becoming an important research
topic among life scientists. Generally, creat-
ing a new drug is laborious and time-consuming
work and thus often takes longer than 10 years.
Today, many experts who are engaged in life
science want and demand an information tech-
nology that helps them effectively, efficiently,
and cost-reductively design a drug using com-
puters.

Bioscientists have been fascinated by in-silico
drug design because of two main factors. The
first factor is the advancement and maturity of
bioinformatics. This advancement and matu-
rity of bioinformatics has allowed scientists to
computationally simulate the behavior of pro-
teins and other chemicals. Scientists are able
to investigate their functions and chemical re-
actions without any in-vitro experiments.

The second factor is the advancement in high-
performance computing and information tech-
nology. There exist many application programs
that are executed in parallel in the biological re-
search field. Recent high-performance technol-
ogy including cluster and Grid computing al-
lows us to execute time-consuming applications
within a much shorter time in comparison with
traditional single PC-based ways. These facts
mean many biological simulations and analysis
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can be performed in a more efficient way than
traditional computational methods.

Today, many researchers have been at-
tempting to apply high-performance computing
(HPC) technology to the drug-designing pro-
cess. The most typical application to which
HPC technology is applied is a docking sim-
ulation. A docking simulation is an applica-
tion that checks whether a target protein and
a ligand (chemical compound) chemically bind
together or not, by simulating the behavior of
the protein and the ligand. The effective use
of the docking simulation is expected to reduce
the total cost for drug design because the dock-
ing simulation screens out ligands that cannot
be drugs.

In general, drug design using the docking sim-
ulation is composed of two steps: parameter
tuning and screening. Scientists tend to place
emphasis on the second screening step because
the main purpose of using docking simulation
is to perform a screening of drug candidates.
Most research until today has had the tendency
to focus on the screening step where hundreds
of thousands of ligands have to be simulated
to test for binding. The research has tried to
reduce the time of the screening step.

In the screening step, scientists run docking
simulations to screen drug candidates chosen
from some compound databases. Each com-
putation for the docking simulation targeting
a compound can be operated independently
of other computations. This means that the
screening itself can be applied to parallel com-
puting with ease. In practice, many researchers
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have succeeded in distributing the computa-
tional workload for docking applications using
parallel computing technology. Buyya et al.,1)
report on an effective environment for screening
step using Grid technology.

From a more practical viewpoint, however,
the parameter-tuning step prior to the screen-
ing step is more important for efficient drug
design because accurate simulation needs an
accurate parameter set. In other words, how
accurately scientists can describe the protein
and compounds used in a docking simulation is
the key to success of the simulation. Although
the computational time for the screening step
is easily reduced using high-performance com-
puting technology by taking advantage of the
locality of computation, reducing the time for
the parameter-tuning step is difficult because of
the complexity explained in this paper.

In this paper, we focus on the parameter-
tuning step in using the docking applica-
tion. We describe the architecture of a mid-
dleware that allows scientists to efficiently
and effectively perform parameter tuning of
docking simulation. Many docking simula-
tion tools have been developed and evaluated,
such as DOCK, AutoDock, and GOLD 2),3).
DOCK 4),5) is a well-known docking tool that
is available free of charge for academic insti-
tutions and many results from DOCK are re-
ported. DOCK has been adopted in this re-
search, but we consider to other docking appli-
cations can be applied in our system.

The rest of this paper is organized as follows.
In Section 2, we describe the target application
named DOCK and explain some of the prob-
lems that exist in the DOCK application. Sec-
tion 3 explains our concept and approach to
solving these problems. In Section 4, we de-
scribe our implementation to realize the con-
cept. In Section 5, we conclude.

2. DOCK and Our Focus

In our research, we use the DOCK application
for the docking simulation. Scientists perform
docking simulations for the screening of drug
candidates. As described in Section 1, drug de-
sign using the docking simulation is composed
of two steps. The first step is the parameter-
tuning step and the second is the screening step.
Our research focuses on the parameter-tuning
step in using the DOCK application.

In this section, we first describe an overview
of the DOCK application. Subsequently, we

Fig. 1 Overview of DOCK application.

show an example of the parameter-tuning step.
From the example, we derive the problems in
the parameter-tuning step.

2.1 DOCK Application
“DOCK” is one of the tools used for the dock-

ing simulation. The DOCK application pro-
vides a suite of tools and programs for perform-
ing a docking simulation including GRID, SPH-
GEN and DOCK. In this paper, we use the term
“DOCK application” to refer to these tools and
programs including DOCK itself.

Figure 1 shows a simple docking flow using
the DOCK application. Roughly, the DOCK
application offers us a series of scores that in-
dicate the strength of the binding between a
target receptor and ligands. For a docking sim-
ulation between a ligand and a receptor, a lig-
and (“Ligand File” in Fig. 1) selected from “lig-
and DB” is computationally bound to a recep-
tor (“receptor File”). Next, DOCK calculates
scores for the strength of the binding between
the ligand and the target receptor. By checking
scores derived by the docking simulation be-
tween a target receptor and multiple ligands,
experts can reduce the number of ligand candi-
dates for the drug to the target receptor.

Before running DOCK, scientists have to pre-
pare two files, a “Site File” and a “Grid File”
generated from the target receptor file. A Site
file contains a cluster of spheres that are used
to determine a point where one of the ligand’s
atoms is located. A Grid file includes the chem-
ical information at various grid points around
active sites. An active site means the possible
area where a ligand binds to a receptor. DOCK
uses a site file to locate a ligand and then calcu-
lates scores using a Grid file. Scientists use two
tools named SPHGEN and GRID to generate a
Site file and a Grid file respectively.

To perform a docking simulation with the
DOCK application, we have to complete two
steps. The first step is the parameter-tuning
step, and the second step is the screening step.
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In the first step, scientists find a suitable pa-
rameter set for all tools in the DOCK appli-
cation. The main purpose of the parameter-
tuning step is to feed a suitable parameter set
into the docking simulation so that the dock-
ing simulation is performed accurately enough
to obtain trustworthy results for the screening
step.

After the parameter-tuning step has finished,
scientists carry on the screening step repeatedly
to retrieve ligand files from ligand databases.
The total time of the screening step can be
reduced by parallel computing technology be-
cause each docking simulation can be operated
separately. The time required for parameter
tuning is, however, difficult to reduce because
the parameter-tuning step contains the scien-
tists’ trial-and-error processes. We try to re-
solve these difficulties in the parameter-tuning
step.

2.2 Parameter-Tuning Step
The parameter-tuning step has to be fin-

ished prior to the screening step. For the ac-
curate screening of drug candidates, scientists
have to feed suitable parameters to the DOCK
application. Figure 2 shows the whole flow
of the DOCK application. Scientists have to
decide all parameters to be fed to each tool.
The parameter-tuning step strongly affects the
screening step. Thus, whether the parameter-
tuning step is correctly completed or not is di-
rectly linked to the accuracy of the screening.

To find a suitable parameter set for the dock-
ing simulation of a target receptor, scientists
need to test the correctness of the docking sim-
ulation. Scientists generally test the correct-
ness by using receptor-and-ligand pairs that are
known to functionally bind in real experiments.
If all parameters are set correctly, the result of
the docking simulation is expected to be the
same as in the real experiment.

For the parameter-tuning step, scientists’ ex-
perience and knowledge of tools and target com-
pounds take on an important role. While sci-
entists can reduce the total computational time
in the screening step with HPC technology,
scientists have difficulty finding a suitable pa-
rameter set because of the inexistence of avail-
able, established systematic procedures in the
parameter-tuning step. In Section 2.3 and Sec-
tion 2.4, we discuss why systematic procedures
do not exist and also discuss issues that need
to be resolved.

Fig. 2 Flow of DOCK application.

2.3 Example of Parameter Tuning
To discuss parameter-tuning problems, we

start with an example of the parameter- tun-
ing step using the DOCK application. Tools
in the DOCK application have many parame-
ters. In particular, DOCK has the most pa-
rameters among the DOCK application. For
example, DOCK version 5.4.0 has 96 parame-
ters. If scientists need to find a parameter set
suited for DOCK, they have to consider all pa-
rameter values and their theoretical combina-
tions. There are innumerable combinations of
parameter values in such cases. Thus, in gen-
eral, scientists pick a few parameters that they
consider important, and then try to tune only
those parameters.

Table 1 shows an example of parameter
tuning for DOCK. In this example, seven pa-
rameters are picked from all 96 parameters of
DOCK. These seven parameters are “Minimiz-
ing,” “Orientation,” “Number of Orientation,”
“Flexible Ligand,” “Number of Flexible,” “Pri-
mary Scoring Function,” and “Secondary Scor-
ing Function”. The Score and RMSD fields in
Table 1 are the results of DOCK. Score indi-
cates the strength of binding between a ligand
and a receptor. RMSD is used as an indicator
that shows the difference in ligand shape from
real experiments’ coordination data.

Here we assume that scientists want to fix
the values for primary scoring function and sec-
ondary scoring function, which control the cal-
culations of docking scores. These two scoring
functions correspond to the parameters named
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Table 1 An Example of parameter tuning.

Minimizing Orientation Flexible Primary Secondary Score RMSD(Å)

No No — No — Contact Contact −142 0.00
Yes No — No — Contact Contact −193 2.67
Yes Yes 1000 No — Contact Contact −203 10.29
Yes No — Yes 100 Contact Contact −319 8.51

No No — No — Contact Energy −27.93 0.00
Yes No — No — Contact Energy −36.52 0.43
Yes Yes No — Contact Energy −36.31 0.44
Yes No — Yes 100 Contact Energy −38.02 1.22

No No — No — Energy Energy −27.93 0.00
Yes No — No — Energy Energy −36.52 0.43
Yes Yes 1000 No — Energy Energy −36.31 0.44
Yes No — Yes 100 Energy Energy −38.09 1.09

“Primary Scoring Function” and “Secondary
Scoring Function” in Table 1. The parameter
of the scoring function defines the algorism that
DOCK uses for calculation scores. We take up
these parameters as an example, because these
two parameters for scoring function are impor-
tant for screening ligands. Five other parame-
ters are also picked because they have a strong
dependency with the two scoring functions. Sci-
entists, based on their experience and knowl-
edge, pick seven parameters from all parame-
ters of DOCK.

The purpose of the parameter tuning in the
example of Table 1 is to fix two parameters on
two kinds of score functions. Scientists can fix
the values of the two parameters, by checking
the Score and RMSD computed for all combi-
nations. One way to fix two parameters is to
check that a Score is close to real experiments
and RMSD (difference of shape from real exper-
iments) is small. In this scenario, scientists can
fix the values of two parameters, “Energy” for
primary score function and “Energy” for sec-
ondary function.

After two parameters are fixed, scientists sub-
sequently have to fix the remaining 94 parame-
ters of DOCK. Likewise, to fix a certain param-
eters, scientists pick some parameters and then
fix those certain parameters. Scientists have to
repeat a similar procedure as shown in Table 1
to find suitable values for all 96 parameters of
DOCK.

Moreover, the best parameter set changes if
the target receptor used by DOCK changes.
Scientists have to find a new, suitable parame-
ter set for DOCK if a target receptor changes.
Thus, every time they perform a docking simu-
lation, they have to repeat similar but different
parameter-tuning steps based on their experi-
ence.

In addition, the parameter-tuning step be-

comes more complex when the number of tools
involved increases. DOCK has other related
tools, such as SPHGEN and GRID. As shown
in Fig. 2, DOCK takes input files generated by
SPHGEN and GRID. Thus, results of SPH-
GEN and GRID affect DOCK’s computation
strongly. In other words, the parameter tuning
of SPHGEN and GRID affects the entire dock-
ing simulation as well as the parameter tuning
of DOCK. In the case of the DOCK applica-
tion, each tool in Fig. 2 has dependency on the
other tools. Scientists utilizing DOCK appli-
cation often have to tune parameters of some
tools simultaneously because of dependencies
among tools. The fact that scientists have to
tune parameters of multiple tools simultane-
ously makes the parameter-tuning step in the
DOCK application more complex. In this pa-
per, we analyze these kinds of problems and
then propose a solution to solve these problems.

2.4 Problems
As described in Section 2.3, scientists who use

the DOCK application have to perform com-
plex parameter tuning. We believe this com-
plex step leads to an increase of time that drug
design takes as a whole. We have reached the
idea that a combination of the following two
factors makes the situation complex.
( 1 ) Number of parameters

DOCK has many parameters. In fact, DOCK
version 5.4.0 has more than 90 parameters.
Parameter tuning of a tool with many pa-
rameters is difficult because trying all possi-
ble cases produced by a combination of val-
ues of these parameters within real time is
impossible. To reduce the number of combi-
nation parameter sets, scientists have to pick
parameters which depend on each other and
tune them. They check the result of param-
eter tuning and then pick another set of pa-
rameters. In this way, scientists can find the
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(a) Dependencies among Parameters

(b) Dependencies among Tools

Fig. 3 Complexity on paramter tuning.

most appropriate parameter set while taking
account of dependencies among certain pa-
rameters (Fig. 3-a). The same problem oc-
curs in other cases of using tools in the DOCK
application like SPHGEN and GRID.

( 2 ) Number of tools related with DOCK
DOCK has many related tools, such as SPH-
GEN and GRID. All related tools directly in-
fluence the result of “DOCK” because DOCK
takes input files from these related tools (as
shown in Fig. 2). Scientists need to tune
parameters of multiple tools simultaneously.
Which tools are used depends on how they
relate to each other. Thus, scientists tune pa-
rameters of these tools while considering the
dependencies among all tools (Fig. 3-b).
Figure 3-b shows the dependency between

GRID and DOCK. In the parameter tuning
shown in Fig. 3-b, scientists also consider the
parameters’ dependencies as a factor. The fact
that scientists have to consider dependencies
of parameters and tools makes the parameter-
tuning step complex.

3. Concept and Approach

In this section, we first explain a simplified
model of the parameter-tuning procedure, a
building block of our solution. Next, we intro-
duce our solution to the problems in Section 2.4.

3.1 Simplified Model of Parameter
Tuning

As described in Section 2.4, scientists have
to deal with the complexity caused by the re-
lationship between parameters and tools in the
parameter-tuning step. To simplify this rela-
tionship, we break down the procedure for pa-
rameter tuning. Figure 4 shows a procedure

Fig. 4 Simplified model of parameter tuning.

Table 2 Possible cases (analytic space) in Fig. 4.

Parameter Parameter Parameter
a1 b1 b2

Case1 “Yes” 100.0 5
Case2 “Yes” 100.0 6
Case3 “Yes” 100.0 7
Case4 “No” 100.0 5
Case5 “No” 100.0 6
Case6 “No” 100.0 7

model based on tuning examples frequently
seen in the parameter-tuning step. This model
indicates the parameter tuning procedure using
two tools named “A” and “B”. The procedure
model shows that tools are executed in order
from A to B and that A has 1 input file and
1 output file, while B has 2 input files and 1
output file. This model is applicable to the pa-
rameter tuning procedure shown in Fig. 3-b.

Also, this model shows how the parameter
tuning is performed. In this figure, tool A has
a parameter named “a1,” and tool B has 2 pa-
rameters named “b1” and “b2”. Parameter a1
only takes the value of either “Yes” or “No” and
parameter b2 takes the value of 5, 6 or 7. In
this example model, if we consider all combina-
tions, there are six possible cases (as shown in
Table 2). If scientists need to find the best pa-
rameter set, they have to run all possible cases
(six cases) and then decide which parameter set
is the best. In this paper, we refer to this ex-
ploration of space consisting of all cases in the
parameter-tuning step as “analytic space”. In
Fig. 4, “analytic space” consists of six cases (as
shown in Table 2).

In the example of Fig. 4, there are only three
parameters and the value of the parameters is
limited. Therefore, finding the best parameter
set in this example is not difficult.

However, the analytic space scientists have
to explore is almost unlimited because the val-
ues of parameters change more finely and have
a wide range than the example in Fig. 4. In
addition, scientists need to consider parameter
tuning for multiple tools.

3.2 Concept
Figure 5 shows our concept for solving the
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Fig. 5 Our concept.

problems described in Section 2.4. Our concept
contains the following two features. We explain
the effectiveness and synergy of both features
below.
( 1 ) Analytic Space Management: Separation

of management for parameters and flow
of the tools (also known as workflow).

( 2 ) High-Performance Computing: Seamless
connection from the analytic space man-
agement to existing parallel computing
technology, such as Grid computing and
cluster computing

First, we propose the separation of the man-
agement for parameters from the management
of the flow of the tools. With this feature, scien-
tists can concentrate on parameter tuning. In
this paper, this management is called “Analytic
Space Management”.

As described in Section 2.4, in the parameter-
tuning step, scientists have to consider the com-
plexity of parameters and workflow simultane-
ously. We conclude that the complexity of the
parameter-tuning steps is caused by this simul-
taneous management. As a result, we propose
to manage parameters and tools separately.

The second feature of our concept shows how
analytic space management can utilize paral-
lel computing technology such as Grid comput-
ing and cluster computing. Parallel computing
technology is a mature and commonly avail-
able technology. For example, by using local
schedulers such as PBS 6) and Condor 7), scien-
tists can perform intensive computational anal-
ysis within a short time on the cluster system
composed of multiple computers. Furthermore,
Grid computing technology provides us with a
more advanced way to use many computers or
clusters. The Globus Toolkit 8) developed by
Globus Alliance 9) is a solution for the build-

ing a Grid environment composed of multiple
computers and cluster systems on the Internet.

By using parallel computing technology, we
can run many jobs in a short time using multi-
ple computers. In the screening step, scientists
can easily utilize such parallel computing tech-
nology. All they have to do is to decide which
jobs to execute, and then the parallel comput-
ing system will run these jobs automatically.

The synergy of these two features provides
scientists with a flexible and effective way for
trial-and-error analytic space management be-
cause this system allows scientists to manage
separately the complexity of parameter and
workflow and, at the same time, utilize the ben-
efit of HPC technology. With these two fea-
tures, scientists can concentrate on what they
want to perform. For example, scientists who
want to perform a parameter tuning of the
DOCK application can concentrate only on pa-
rameter space management. The system auto-
matically performs workflow management such
as job status management and input-output
data management after scientists feed workflow
data into the system. In addition, by separat-
ing the HPC environment from analytic space
management, scientists can avoid the manage-
ment of each tool. This means that once sci-
entists define the analytic space they want to
perform, the system can automatically execute
necessary tools in the parallel computing envi-
ronment. In the next section, we explain the
implementation for realizing our concept.

4. Implementation

In Section 3.1, we defined the data structure
for representing a procedural model. Subse-
quently, in Section 3.2, we described the system
architecture embodying our concept as well as
the implementation. In this section, we explain
the implementation of our system.

4.1 Data Structure for Analytic Space
Management

We use a two-step approach to complete the
data structure for the analytic space manage-
ment. First, we define data structure for work-
flow management. Second, we add data for
parameter management into the workflow data
structure.

The first step of data structure design for ana-
lytic space is to define workflow information in a
database for workflow management. Figure 6
shows a basic idea to provide data structure for
workflows. In Fig. 6, a flow of two tools named
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Fig. 6 Workflow template.

Fig. 7 Data structure for workflow template.

“A” and “B” is shown. A’s output is connected
to B’s input. The words shown with upper case
letter in Fig. 6 such as “INPUT”, “OUTPUT”,
“ACTIVITY”, “TRANSITION” and “TEM-
PLATE” are table names in the database. A
single tool is defined as ACTIVITY and each
ACTIVITY has some INPUTs and OUTPUTs.
We define TRANSITION for the connection be-
tween INPUT and OUTPUT. In other words,
TRANSITION manages the data flow in the
workflow.

Figure 7 shows an Entity Relationship Di-
agram (ERD) to represent workflow templates
as shown in Fig. 6. By tracing relations in each
table, a system can realize workflow informa-
tion such as which tools exist, how many in-
put/output data the tool has and how the tools
are combined with each other in the workflow.
The system can recognize that tool A’s output
is connected to tool B’s input and can see the
transition data between A and B. Similarly, the
system can realize the information of outputs
and inputs to trace the relationship between
ACTIVITY data, INPUT data, and OUTPUT
data.

In the second step of data structure design
for analytic space, we add the parameter man-
agement data structure on the workflow tem-
plate data structure. Parameter management
needs the data of parameter variation for each
tool, variations such as the range and the fine-

Fig. 8 Proposed system architecture.

ness necessary for parameter values. The key
point to parameter management data structure
is utilizing the TRANSITION table, which rep-
resents data transition. We equate parameters
with input files and define data structure for pa-
rameter management associated with TRANSI-
TION. This data structure for parameter man-
agement can deal with parameter variation for
a certain workflow.

In addition to the two steps above, we de-
fine the attribute named “DELETE FLAG” in
each table. This attribute is used to delete in-
formation from each data table. In Fig. 7, for
example, if we need to delete an ACTIVITY,
the value of DELETE FLAG is set to “true”.
Similarly, we can delete some parameter space
by setting the DELETE FLAG of the target
flow instances to “true”.

4.2 System Design and Implementa-
tion

Based on our concept described in Sec-
tion 3.2, we implemented our proposed system.
Figure 8 shows our proposed system architec-
ture. The proposed system is composed of three
layers. Our main implementation is the Prob-
lem Solving Layer, which takes a major role in
our concept described in Section 3.2. The “Pre-
sentation Layer” is the user interface that sys-
tem users (scientists) can access directly. The
“Grid Layer” plays the role of executing each
tool. By separating the analytic space man-
agement (Problem Solving Environment Layer)
and the execution management (Grid Layer),
each layer does not interfere with each other.

Two engines that exist in the Problem Solv-
ing Environment layer are the “Parameter En-
gine” and the “Workflow Engine”. The “Pa-
rameter Engine” manages parameter tuning
and the “Workflow Engine” manages workflow.
These two engines correspond to the two man-
agements shown in Fig. 5. These two engines
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use a management database that holds the
data structure defined in Section 4.1 Thus this
database manages the procedural model defined
in Section 3.1.

Our main implementation is the Problem
Solving Environment layer that is the first fea-
ture of our concept described in Section 3.2.
When procedural data including analytic space
information is inserted, the Parameter Engine
interprets the analytic space and then generates
flows to be executed. The Workflow Engine re-
ceives flows from the Parameter Engine and in-
terprets these flows. Based on flow data, the
Workflow Engine decides which tools should be
executed and then orders the execution of each
tool to the Grid Engine in the Grid Layer. The
Workflow Engine only manages the flows them-
selves and not how the tools are executed in the
Grid Layer.

Separating the role of one engine from an-
other is a remarkable characteristic of our im-
plementation. By having engines with spe-
cific roles, system users can concentrate on
what they want to coordinate. For example,
in the parameter-tuning step of the DOCK
application, system users can concentrate on
the parameter-tuning step after having decided
which tools to use.

4.3 Effectiveness of Analytic Space
Management

We will explain the system’s behavior by
using the parameter-tuning example of the
DOCK application. In this case, the GRID and
DOCK are used for the exploration of analytic
space. We assume scientists have to fix three
parameters: “Grid Spacing,” “Number of Ori-
entation,” and “Number of Flexible”.

The parameter “Number of Orientation” in-
dicates the maximum number of times the lig-
and is moved in the docking simulation. “Num-
ber of Flexible Shapes (Conformations)” deter-
mines how many times a ligand changes shape.
The GRID influences the execution of DOCK.
In particular, the parameter “Grid Spacing”
in GRID is the most critical value for DOCK
because this parameter decides the interval of
the grid for representing chemical information
of the target receptor. Grid points generated
by the tool GRID are used to calculate scores
in DOCK. If the grid spacing is small enough,
DOCK can calculate accurate scores, but re-
quires a much longer time. Because of the de-
pendency among parameters between the two
tools, scientists have to perform parameter tun-

Fig. 9 Procedure model example using DOCK
application.

Fig. 10 Data representation for the model in Fig. 9.

ing using both tools simultaneously (as in the
example of Fig. 9).

In Fig. 9, scientists pick two tools and three
parameters. In this example, there exists a to-
tal of 64 possible cases if we consider all possi-
ble cases. To execute the procedure in Fig. 9,
scientists have to first generate the workflow
template and then generate parameter variation
data for parameter management.

Figure 10 shows data representation for the
procedural model shown in Fig. 9. To build
workflow data, scientists represent data by con-
necting the output of GRID to the input of
DOCK. This data is stored in the database
shown in Fig. 7. After building the work-
flow template, scientists complete the parame-
ter variation data by linking the corresponding
TRANSITION on the workflow template. Sci-
entists can perform their parameter-tuning step
by feeding this representation data into the sys-
tem described in Section 4.2.

Figure 11 shows system behavior after the
analytic space data shown in Fig. 10 has been
built. First, representation data for analytic
space is fed to the Parameter Engine. The
Parameter Engine manages the analytic space
derived from parameter variation and then in-
terprets the representation data. In the data
described in Fig. 10, if all cases have to be
performed, the Parameter Engine generates 64
flows based on parameter management data,
which contain parameter variation information.



Vol. 47 No. SIG 17(TBIO 1) Analytic Space Management for Drug Design Application 101

Fig. 11 System behavior.

Each of the 64 flows has a different combination
of parameter value.

Second, the Parameter Engine sends 64 flows
to the next Workflow Engine. The Workflow
Engine manages the flow of tools in the work-
flow template. In this case, the Workflow En-
gine manages the order of GRID and DOCK
and the data delivery from GRID to DOCK.

Finally, the Workflow Engine judges which
tool is to be executed and checks all input data.
Next, the Workflow Engine commits the execu-
tion order to the next Grid Engine. The Grid
Engine then executes the tools using HPC Tech-
nology, such as the Grid or Cluster Computing.

Each engine has its own role and does not
need to manage the work of other engines. For
example, the Workflow Engine manages the or-
der of tools and data transfer, but does not need
to be concerned about how the analytic space
is made-up (Parameter Engine’s role) or how to
execute tools in computers (Grid Engine’s role).
With this architecture, scientists can concen-
trate on parameter management using the Pa-
rameter Engine without being concerned with
workflow and execution management.

Our main implementation is the Parameter
Engine and the Workflow Engine. For now, we
implement the Grid Engine as a stub. We will
need to add a mechanism into the Grid Engine
to access HPC technology transparently in a
way reported by Klous, et al. 10). Also, our im-
plemented system is command-line based only.
We need a user-friendly interface for an effec-
tive paramter-tuning step in the Presentation
Layer (as shown in Fig. 8).

Furthermore, we designed the data structure
with a “delete flag” as described in Section 3.1.
By using a delete-flag mechanism, scientists can
efficiently reduce the analytic space that they
have to explore. The situation in Fig. 9 pro-
duces 64 flows in the Parameter Engine. For ex-
ample, if scientists can judge a parameter value

Table 3 Parameter-tuning step in actual case.

that does not need to be performed, scientists
can dynamically cut flows including unneces-
sary parameter values by utilizing the delete-
flag. Although we have defined the delete-flag
in the data structure, we have not implemented
a collaborating system with job managers in
Grid or Cluster computing. This mechanism
is expected to offer a more efficient way of pa-
rameter sweeping in the DOCK application.

4.4 Evaluation of Proposed System
We show an example of parameter tuning for

DOCK using an actual scenario. We take up
the receptor named SHP-1 11), which is involved
in the cellular signaling pathways for the prolif-
eration and development of hematopoietic cells.
We use the crystal structure whose PDB-ID is
“1FBR” brought from a real experiment.

Table 3 shows the actual parameter values
and results obtained in the process of parame-
ter tuning for four parameters of DOCK in us-
ing SHP-1. Parameters “a,” “b,” “c,” and “d”
in Table 3 show the actual parameters (shown
below the Table). RMSD and Execution Time
are the results from DOCK. We used comput-
ers with Pentium III Processor (1.4 GHz, dual)
and 1 GB memory in a cluster. The operat-
ing system is Linux kernel 2.6 and the version
of DOCK we used is 5.4.0. The workflow in
this experiment consists of only one tool (tool
DOCK only) To simplify the explanation, we
take up the example of the parameter-tuning
step in which only one parameter can be tuned
at once..

The criteria for finding a suitable parame-
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ter set of DOCK in this case are minimizing
the value of RMSD and minimizing the compu-
tational time for DOCK. The minimization of
RMSD means the improvement of accuracy. If
we can make the computational time small, we
can perform fast other parameter-tuning step or
docking simulation after this paramter-tuning
step

The parameter-tuning step was performed in
an order from the top to the bottom in Table 3.
Using the default values as a starting point, a
range of values for each parameter was tested
to find the best combination of small RMSD
and computational time values. Default values
for the four parameters are colored with gray in
Table 3.

The points at t1, t2, t3, and t4 indicate the
time when we fixed the value of one of the pa-
rameters. At time t0, t1, t2, and t3, we defined
a new analytic space. For example, at time t1,
we fixed the value of parameter “a” to 100 and
then we defined another analytic space in which
the value of parameter “b” has variation (200,
50, and 20). The reason why we fixed paramter
“a” at time t1 is that we assumed parameter
“a” does not affect the simulation, and there-
fore, we chose only the default value of param-
eter “a”. Similarly for parameter “a”, we fixed
parameters “b,” “c,” and “d” at time t2, t3,
and t4, respectively, with the criteria that max-
imizes accuracy and minimizes time. Finally,
we fixed the values of “a,” “b,” “c,” and “d‘ to
100, 20, 10, and 25, respectively.

When we perform this paramter-tuning step
without our proposed system, for each set of
parameters, we have to set parameters and run
DOCK to check its results repeatedly. With
our proposed system, we only defined an ana-
lytic space that contains the workflow and how
the parameter values should be moved. Once
an analytic space is defined, the system exe-
cutes the necessary tools to run automatically.
In the paramter-tuning step of Table 3, an ana-
lytic space we defined contains only one param-
eter variation. However, we can define more
complex analytic space in which multiple pa-
rameter values vary.

We could apply our proposed system in the
case of the parameter tuning for SHP-1. In
the case of Table 3, we had to redefine ana-
lytic space at time t1, t2, and t3. We assume
this labor redefining process is one of the prob-
lems of our system now. We consider one of the
solutions for more effective paramter tuning is

using the delete-flag mechanism as described in
Section 4.1. With the delete-flag mechanism,
for example, we first define large analytic space
and then we can reduce dynamically the dele-
tion of analytic space (deleting no-need work-
flows) with our own criteria. We are confident
that this delete-flag mechanism will be effective
and efficient in the case of the parameter tuning
in Table 3.

5. Conclusion

In our research, we focused on the parameter-
tuning step using the DOCK application. We
realized that the complexity in parameter tun-
ing is caused by a combination of both parame-
ters and tools. We proposed a system based on
our concept of “analytic space management” as
shown in Fig. 5. Subsequently, we defined the
procedural model to be executed in this sys-
tem. Also, we designed the system architecture
and implemented the main part of the system
to realize our concept.

Our proposed system allows scientists to per-
form flexible computational experiments. We
verified that our proposed system can be ap-
plied with an actual paramter-tuning step. We
are confident that this system can and will con-
tribute not only to the field of drug design with
computers, but also to other complex computa-
tional experiments.

In the future, we plan to implement a func-
tion into the system which can utilize the
delete-flag mechanism to assist computational
experiments more efficiently, such as in the dy-
namic deletion of workflows and jobs.
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