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Combfit: A Normalization Method for Array CGH Data
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The recently developed array-based comparative genomic hybridization (array CGH) tech-
nique measures DNA copy number aberrations that occur as causes or consequences of cell
diseases such as cancers. Conventional array CGH analysis classifies DNA copy number
aberrations into three categories: no significant change, significant gain, and significant loss.
However, recent improvements in microarray measurement precision enable more quantitative
analysis of copy number aberrations. We propose a method, called comb fitting, that extracts
a quantitative interpretation from array CGH data. We also propose modifications that allow
us to apply comb fitting to cases featuring heterogeneity of local aberrations in DNA copy
numbers. By using comb fitting, we can correct the baseline of the fluorescence ratio data
measured by array CGH and simultaneously translate them into the amount of changed copy
numbers for each small part of the chromosome, such as 0,£1,£2,--.. Comb fitting is ap-
plicable even when a considerable amount of contamination by normal cells exists and when
heterogeneity in the ploidy number cannot be neglected.

Nov. 2006

1. Introduction

The recently developed array-based compar-
ative genomic hybridization (array CGH) tech-
nique measures DNA copy number aberrations
that occur as causes or consequences of cell
diseases such as cancers 1):2),61,11),14)018) = The
segmentation structure of chromosomal aber-
rations is of major interest because segmental
gains or losses often cause or reflect cell dis-
eases. Fridlyand, et al. (2004)%) assumed that
measured copy number aberrations could be
generated by a hidden Markov model (HMM)
with latent segmentation structures, which was
estimated by a forward-backward algorithm.
Daruwala, et al. (2004)%) proposed a similar
model to the HMM and calculated the optimum
segmentation structure by a dynamic program-
ming algorithm. There has been a great deal
of other research on the segmentation problem
such as®)9):12):13) " Such sequential segmental
structures are also used for noise reduction, and
there exist many approaches other than seg-
mentation, such as simple moving average?,
penalized quantile smoothing ), and wavelet fil-
ter”. For segmentation and noise reduction,
other research efforts have compared alterna-

tive methods 10):19).
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Assigning an appropriate copy number of
DNA is the next important issue, since what
we can directly observe is the fluorescent level
of each spot corresponding to each BAC (bac-
terial artificial chromosome) clone that is com-
plementary to the objective piece of the sam-
ple DNA. Furthermore, the fluorescent level in-
evitably includes biases and variances from var-
ious causes. In many previous studies, copy
number aberrations of DNA were classified into
categories of no significant change, significant
loss, significant gain, and sometimes large am-
plification. In this study, we present a method
that extracts quantitative interpretation from
array CGH data, called comb fitting. Using
this method, we can correct the baseline of the
fluorescence ratio data for each clone of each
sample measured by array CGH and simulta-
neously transform the data into a numerical
copy number for the changes of clones, such
as 0,4+1,£2,--.. Consequently, this improves
the analysis of phenomena observed on chro-
mosomes.

2. Formal Description on Chromoso-
mal Aberrations

Each chromosome in somatic cells normally
has two DNA copies, and chromosomal aber-
ration in cancer cells sometimes causes aneu-
ploidy, i.e. the total copy number becomes
three, four, five or more; these are called
triploid, tetraploid, pentaploid, and so on.
These ploidy numbers are described as Np =
2,3,4,5,---.
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Various other types of copy number aberra-
tions can be mentioned:

e Copy number gains in the whole or a part of
a chromosome, which correspond to several
or more BAC clones. We call these +1 gain,
+2 gain, and the like.

e Copy number losses in the whole or a part
of a chromosome, which correspond to sev-
eral or more BAC clones. We call these +1
loss, 4+2 loss, and the like.

e Copy number gain whose amount is usu-
ally larger than ten, in a small part of a
chromosome; we call this an amplification.

Each of these events is generally called a local
aberration, which denotes the number of local
gains or losses of copies and is expressed by Nc.

First, all cancer cells in an objective sample
are assumed to have homogeneous genetic aber-
rations. IN;; denotes a copy number of the ith
piece of chromosome corresponding to the ith
BAC clone in the jth sample; in the follow-
ing, we call it simply a copy number of the ith
clone. The copy number is an integer, N;; €
{0,1,2,---}, and is the sum of the ploidy num-
ber and the local aberration, N;; = Np;+Ng;;.
In the conventional array CGH analysis, we are
interested in local aberration, N¢, rather than
Np, because Np can be observed by other con-
ventional methods, and the loci and amounts
of local aberrations are believed to have im-
portant information about the characteristics of
the cancer. The actual measurement involves
some degree of noise; therefore, obtaining the
expected local aberration, Z, which is called
the mean local aberration, is the major aim of
our method.

Next, we consider the heterogeneity of the
cell characters in an objective sample, which
are due to the various reasons listed below.

e (a) Contamination by normal cells

e (b) Presence of multiple types of chromo-
somal aberration

— 1. heterogeneity in ploidy number

— 2. heterogeneity in local aberrations
This heterogeneity presents many difficulties for
quantitative analyses of chromosomal aberra-
tions.

If the amount of contamination by normal
cells is known, in case (a), then we can cor-
rect these effects by using the knowledge that
Np = 2 and N¢ = 0 in normal cells. When we
do not know the amount of contamination, how-
ever, the correction is based on an estimation;
this estimation is also provided in our frame-
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work (see Section 3.3).

In case (b).1, we need another correction that
depends on the mixing ratios of ploidy numbers,
but this can be made similarly to case (a) (see
Section 3.3).

In case (b).2, Z is regarded as the mean of
N¢ over the cells in a sample; we call this the
mean local aberration. For example, when a
tumor sample consists of the same amount of
cells with No = —1 and N¢ = —2, the mean
local aberration becomes —1.5. Our method
intends to obtain the real number Z;; rather
than the integer N¢,;.

When sample cells are sufficiently homoge-
neous with respect to N¢ values, the true mean
local aberration Z is an integer for almost every
BAC clone. Consequently, when Z is estimated
as, for example, Z = 1.1, we assume that the
real Z is +1.0, including a noise contribution of
0.1. Note, however, that we cannot eliminate
from this observation the possibility of a mix-
ture containing 90% N¢ = 1 and 10% N¢ = 2.

Microarray technology measures fluorescence
levels of CY3 (CY3;;) and CY5 (CY5;;), which
correspond to the copy numbers of objective
and control samples, respectively, at the ith
BAC clone in the jth objective sample. The
log fluorescence ratio x;; is calculated as

:L‘ij = logz(CY?)”/CYB”) (1)

Note that Eq. (1) is conceptual but not neces-
sarily precise because it always requires correc-
tion. Various correction methods are available
for various artifacts involved in microarray mea-
surements. The most popular one is to intro-
duce the correction term:

fj(logy CY3;; + log, CY5;5), (2)

which is a function of total fluorescence inten-
sity.

Consequently, the objective of our method
can be described as to estimate the mean lo-
cal aberration Z;; from the observed log fluo-
rescence ratio w;;.

3. Comb Model

3.1 The Simplest Comb Model

Provided that every objective sample consists
of homogeneous cells, let IV;; and Ny denote the
DNA copy number of a clone i in an objective
sample j and that of a control sample, respec-

tively. As the control sample, we prepared nor-
mal cells that are all diploid DNA, i.e., Ny = 2.
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We obtain the log fluorescence ratio x in a
similar fashion to that in the gene expression
measurement:

ciN;

x;; = log, 2

) g2 CONO
= logy(Np; + Noyj) + v

+ 1 +logy(cj/coNo) + €ij,

j"'Vi"'ﬂ;“"eij

1
= 10g2<—NCij+1> v+ t€i5, (3)
NPj

where v; and u; are constant biases that de-
note mean log fluorescence ratios of the BAC
clone 7 and the sample j, respectively. c¢; and
co are constant factors proportional to the num-
ber of cells in the corresponding sample, hy-
bridization efficiency, and so on, correspond-
ing to the j-th objective sample and the con-
trol sample, respectively. The unknown fac-
tors, c¢j,co, are united to a single bias term,
pi = pj + logy(cjNpj/coNo). €;; denotes a
residual component that is assumed to obey a
normal distribution with mean 0 and variance
o2. The variance o2 corresponds to observa-
tion error and its value is assumed to be known
before our analysis.

In the following discussion, we ignore the
clone-wise bias v;, because it is corrected by
some common methods, such as Eq.(2). We
also omit j, because our method deals with indi-
vidual samples. Consequently, Eq. (3) becomes
simply:

1
z; = log, (N—Pch‘ + 1) +pute. (4

Thus, when the variance o2 is small enough,

the expected local aberration ¢ can be approxi-
mately obtained as:
Z; = E[N¢;] = Np(2¥%7# —1). (5)

The unknown bias p cannot be ignored, be-
cause it involves many aspects of variability in
microarray slides, such as the inequality be-
tween the total amounts of DNA in objective
and control samples and the asymmetry in the
fluorescence of CY3 and CY5.

3.2 Comb Fitting Based on the Sim-

plest Comb Model

Given the observed fluorescence ratio X =
(z1,--+, x4, ---) for a sample, the likelihood of
the unknown parameter § = {u} is defined as
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LX) =[] I] p(xilNei = k. )
i keK
P(NCi = k;)v (6)
1

p(xl|NCz k,,LL) /—27_‘_0_2
1
exp {—ﬁ(m - mk)ﬂ , (7)
where we assume that the residual ¢; is an in-
dependent normal noise with variance o2, 6
represents the unknown parameter py, K =
{-Np,---,-1,0,1,2,---} is a set of possible
values of local aberrations, and m;, denotes the
Gaussian center defined by

1
my, = log, <N—Pk + 1> + u. (8)

p(Ng; = k) is the a priori probability, in short
‘prior’, of local aberration being k at the ith
clone. In the simplest method, it is set to be
equal for all &, but we discuss some advanced
ways to incorporate a priori knowledge in Sec-
tion 5.2.

We can determine p to maximize the likeli-
hood L(#|X). For the mixture of normal distri-
butions, their Gaussian centers my are aligned
in a pre-determined manner and shifted by a
single location parameter p. In the following,
we call this mixture model a comb model and
call m;, the kth comb tooth. This maximum
likelihood estimation corresponds to fitting the
comb model into the data distribution by shift-
ing the location y of the comb. Figure 1 shows
the concept of this comb fitting.

Since the comb teeth, logs(Np + k) + 1, have
non-equal intervals, there is a single location
at which the set of comb teeth fits best into
an ideal data set that obeys a normal mixture

k= -2 4 0 1 2345

-2 -1 0 1 2
Iog2 flu. ratio
Fig.1 Conceptual diagram of comb fitting. The comb,
whose teeth are aligned at certain intervals, is
fitted into the distribution of log fluorescence
ratios. The mean local aberration Z is then
obtained.
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distribution with Gaussian centers, which have
non-equal intervals, and a homogeneous Gaus-
sian variance o2.

3.3 Contamination by Normal Cells

Let b denote the contamination rate of nor-
mal somatic cells whose copy number is Ny = 2
at all clones and assume that the ploidy number
Np of the tumor cells in the objective sample
is homogeneous. When the contamination level
is not negligible, the fluorescence ratio x;; be-
comes
c; bijNo + (1 —b;) Ny,

“r/lz;- + Vi + € (9)

which leads to a modification of the comb teeth
into
mg = logQ{Bk + 1} + u,

b; -t
Bj = 2Ny + Np, ) (10)
1—0b;

We can easily find that when b; =0, i.e. B; =
ijl, it is equivalent to the simplest case (3).
In addition, consider the extreme case of high-
level contamination, b; — 1, ie., B; — 0; in
this case, the comb teeth become insensitive to
the local aberration k.

The two unknown parameters b; and Np; are
united into Bj, and if B; is obtained the ex-
pected local aberration is obtained as

Z; = E[N¢;] ~ By '(2%7# —1).  (11)

Thus, we estimate § = {B, u} by the maximum
likelihood estimation instead of considering b
and Np.

3.4 Heterogeneity in Ploidy Number

Assume that there is considerable heterogene-
ity in ploidy number Np of objective tumor
cells; the ratios of Np = 2, Np = 3,--- are
given by ), 3G) ... respectively, with the
condition ) pNP) = 1. We assume that
the contamination ratio b of normal cells is also
considerable, but the local aberration N¢ is the
same for all cells regardless of their ploidy num-
ber.

In this case, comb teeth take precisely the
same form as Eq. (10), except that the defini-
tion of the parameter B; is

-1
bj (N
BjZ (1_ij0+Zﬁ p)Np> (12)

Np
Consequently, comb fitting needs only two
parameters, p and B, even when there is het-
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erogeneity in the ploidy number Np.

Even if there is considerable heterogeneity in
local aberrations for some clones, it is negligible
when its amount is small relative to the number
of total clones in the sample.

Accordingly, the problem becomes obtaining
only two parameters, p and B, in all of the
above cases. The most ideal case, which is con-
sidered first, is equivalent to assuming B = 0
in Eq. (10). How to determine the parameters
will be described in the next section.

4. Maximum Likelihood Estimation
and Its Problems

Maximum likelihood estimation estimates
0 = {u, B} to maximize the log likelihood func-
tion L(6|X).

Figure 2 shows a contour plot of the func-
tional relationship of the log likelihood with the
parameters p and B when applied to typical
array CGH profile data. The mark ‘x’ in the
contour denotes the maximum likelihood solu-
tion, (pumax, Bmax). Obvious multi-modality
can be seen in the log likelihood landscape;
such multi-modality is often observed, espe-
cially when the heterogeneity is low. To ob-
tain the maximum likelihood solution, we used
a mesh search method, which searches the mesh
over the space of p and B for the maximum
point. This was done because simple gradient-
based methods fail to obtain the optimal solu-
tion due to the multi-modality.

There are two reasons causing such multi-
modality to appear. The first is that a stepping-
stone-like alternative, whose comb teeth corre-
spond to the first, third and fifth teeth of the
optimal comb for example, may have a com-
parable likelihood. The second is that as B be-

0.5
0.4
0.3
m
0.2

0.1

-0.5 0 0.5
u

Fig.2 Contour plot of log-likelihood. The mark ‘x’
in the contour denotes the maximum likelihood
solution.
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Fig.3 Comb tooth when B is small.

comes small, the intervals between teeth cannot
be distinguished, which makes the likelihood in-
variant with respect to the shift in the comb
position.

Figure 3 shows the relationship between B
values and comb tooth intervals. For a small B,
tooth intervals are narrow and the difference
between neighboring intervals becomes small.
When the neighboring intervals are similar, unit
shift of the comb does not lead to a significant
difference in fitting performance, which gives
the solution ambiguity. There is another diffi-
culty. Because the residual variance o? is fixed,
narrower tooth intervals lead to larger overlap
between two adjacent Gaussian distributions,
which makes it difficult to distinguish them.
Accordingly, when B approaches 0, the simple
maximum likelihood method to perform comb
fitting becomes difficult.

A small B means a high contamination rate.
To overcome the difficulties due to high contam-
ination rate, we propose several devices, such as
designing data preprocessing, introducing a pri-
ori knowledge, or brute force by hand-tuning.
We explain these devices in the next section.

5. Modifications of Comb Fitting

5.1 Preprocessing

We applied spatial filtering on each chromo-
some as a data preprocessing device. T'wo types
of one-dimensional spatial filters, lowess and
block filter, were tried. The lowess filter is
based on the assumption that log fluorescence
ratio varies continuously along the locus coor-
dinate in a single chromosome. The block fil-
ter assumes three block regions in a chromo-
some, where the copy number is assumed to
be identical in a single block. Although there
are many segmental or other filtering proce-
dures 295):109).12),13)  we did not tried all of

them because we only need a filtering process
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Smoothing filters as data preprocessing. Gray
and black spots denote original and filtered
data, respectively. The Gray and black his-
tograms on the right hand side are correspond-
ing to the original and filtered data, respec-
tively.

in order to obtain a better global profile for the
histogram of the log fluorescence ratio, and the
various types of filtering do not yield large dif-
ferences in the histogram.

Figures 4 (A) and 4 (B) show the results af-
ter applying the lowess filter and the block fil-
ter, respectively. With either filter, the comb
tooth structure was clarified, as can be seen in
the histogram shown to the right of the corre-
sponding panel. Note that the final results of
the comb fitting are comparable despite which
filter is used because the two histograms are
similar.

DNA copy number aberrations sometimes
seem to have a block structure, i.e., a certain
region of a P-arm or Q-arm exhibits a fixed
copy number gain or loss. To obtain such a
block structure, the block filter splits the chro-
mosome into three blocks, each with a unique
copy number. To determine the break points of
the three blocks, we define the distortion mea-
sure based on the comb:

Dy= Y (@—m@), (13)
2Echromosome T

where r denotes chromosome index and m(i)
denotes mean log fluorescence ratio of the block
to which the ith clone belongs. Block filter-
ing determines two break points for each chro-
mosome r to minimize D,. Pre-defined outlier
clones are omitted from the filtering.

5.2 Using a priori Knowledge

If we have biological knowledge about copy
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number aberrations, it can be used as a priori
knowledge for improving the estimation made
by comb fitting.

Most local aberrations of chromosomes are
at most a single gain or loss. If comb fitting
suggests that a large area of a chromosome in
diploid sample cells has lost its two copies, this
result is not natural, because such a loss would
cause serious damage even to tumor cells. Be-
cause our comb model is formulated as a prob-
abilistic model, such a priori knowledge can
be incorporated as the prior distribution. The
prior p(Ng; = k) represents the probability
that a local aberration of the ith clone is k.
There are three possible ways of preparing the
prior: subjective tuning, empirical tuning and
recursive tuning.

Subjective tuning is based on a subjective be-
lief about the frequency of copy number aberra-
tions. As a standard setting for diploid tumor
cells, we used the following prior:

(Nc = —2) =eC

p(Ne = -1) =5C

p(Nc =0)=10C

p(Ne =1)=2C

p(Nce=2)=C

p(Nc =3) =C,
where ¢ is a small number (= 0.01) that repre-
sents the rareness of the event Ng = —2; how-

ever, ¢ = 0 incurs too large a penalty in the
case that Z becomes —2, possibly due to occa-
sional noise. C' is set from the normalization
condition Zi:_zp(NC =k)=1

When much information is available about
the occurrence rates of local aberrations, em-
pirical tuning is advantageous. Namely, we
set the prior probability p(Ne = k) directly
to the empirical ratio of copy numbers N¢ =
-2,-1,0,1,2,3,---. Note that setting p(N¢c =
k) = € > 0 will be better even when N¢ = k
has not occurred empirically.

We may consider recursive tuning of the prior
when we have insufficient background informa-
tion but have a fairly large amount of array
CGH data. Namely, the frequencies of copy
number aberrations estimated using a subjec-
tively tuned prior are used as new background
information for the next empirical tuning.

When it is known, the dependence on ploidy
and/or chromosome numbers should be used in
each tuning method.
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5.3 Hand Tuning

Either when B is close to 0 or when there is
significant heterogeneity of local aberrations in
sample cells, our comb model with the above-
mentioned modifications has difficulty in ob-
taining an appropriate solution. In such a case,
one possible way is hand tuning. In hand tun-
ing, we need to set at most three pairs of refer-
ence values to determine the two unknown pa-
rameters p and B unequivocally.

For example, if we set log fluorescence ratios
2D 20 2 to Z = —1,0,1, respectively, p
and B are unequivocally determined and hence
the remaining (=2, 2 2z®) ... correspond-
ing to Z = —2,2,3,--- are determined auto-
matically.

6. A Case Study

Figure 5 shows a demonstrative analysis of
array CGH observation data obtained from a
frozen sample of human neuroblastoma.

In neuroblastoma, it is known that chromo-
somal aberrations in the first and seventeenth
chromosomes have a high correlation with the
patient’s prognosis. We conducted fluorescence
in situ hybridization (FISH) observations on
these two chromosomes and found the follow-
ing points.

e The sample cells have three or four copies
of both the first and seventeenth chromo-
somes.

e The copy number ratio between the Q-arm
and the centromere of the seventeenth chro-
mosome, 17q/17cen, is 8/3 or 9/4.

According to these observations, we conclude
that this sample has heterogeneity in the
ploidy number, which lies between triploid and
tetraploid, and the local aberration of 17q is +5
gain.

In Fig. 5 (a), a gray point denotes original log
fluorescence ratio observed at each clone, and
a black point denotes the corrected value af-
ter block filtering. Figure 5 (b) shows the his-
tograms of the original and the filtered log ra-
tios, which are depicted by gray and black col-
ors, respectively. Although the histogram of the
original ratios shows a single large peak, that of
the filtered ratios shows clear multi-modality,
which seems to fit the comb model. Accord-
ingly, we applied comb fitting to these block-
filtered data. We set the constant o2, the vari-
ance of each single comb tooth, at the mean
variance over blocks extracted by the block fil-
tering; namely, it is set at the mean squared



Vol. 47 No. SIG 17(TBIO 1) Combfit: A Normalization Method for Array CGH Data 79
(a) , 298 259y 958888 2535988 & Z8QQQ BRI (b)
.
08| -
o
= 06
© - °
—
o 04F |
c ° -
Q o2} =f X T :
o 02 O P 21 — et ¢ = .
3 ol T : 7 pit e e S B R
o . ot o AL 1
o s - s - £ B
S 0.2k B TR e Do 2 - L A
= 33 3 . — N o
D04F A 5 :
S =
-0.6f
-0.8f
-1 J
5
(C) 28 fsfs 9sasee o agsgs s 28282 2098 Reameo g
C 194 8§59 9 3g84ge 2 5958 S32
7
s
6
5
4 :
N3
2
r .
0 e : T e = s e
-1 r~ X¢d g : = 2 B
-2 :

Fig.5 Demonstration of comb fitting. Demonstration of comb fitting for a
sample that has large and complex chromosomal aberrations.

residual of the block filtering divided by the
mean number of clones within a block. Al-
though it is possible in principle to estimate o2
as another parameter of the likelihood, we re-
garded it as a constant because increasing the
number of parameters makes it difficult to es-
timate them against the multi-modality of the
likelihood function. As the prior, we used a
uniform distribution to reflect the lack of back-
ground knowledge.

The results of the comb fitting are shown
by ‘+’ marks in Fig.5 (b), which denote comb
teeth fitted into the histogram. Figure 5 (c)
shows the mean local aberration values, Z, ob-
tained by comb fitting. The Z value for each
clone and its block-wise mean are plotted as
gray and black spots, respectively. We can see
that the Z values, especially for the block-wise
means, densely cluster around integer numbers.

The Z values at the Q-arm of the seventeenth
chromosome, 17q, cluster around the 46 gain,
which differs by one copy from the FISH obser-

vation (+5 gain). Our result is consistent with
the FISH data, however, if we assume that the
baseline (0) of the Z values corresponds to a sin-
gle copy loss. Actually, the second peak of the
log likelihood of the comb model corresponded
to the alternative solution. Since the differ-
ence between their peak heights is small, we can
probably obtain the second peak as the best so-
lution if we use appropriate a priori knowledge.

We found in Figs.5(a) and 5(c) that log
fluorescence ratios and mean local aberrations
of clones have noisy distribution centered at
block-wise filtered values. Concerning variances
of residuals, those in the log fluorescence ra-
tio are almost homogeneous at any location
(Fig.5 (a)), while those in the mean local aber-
ration are large because the mean local aberra-
tion itself is large (Fig.5(c)). This is because
the comb tooth intervals are narrow when the
mean local aberration is large, and hence ex-
pansion from the log fluorescence measurement
to the mean local aberration becomes large.
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Therefore, a large portion of the residual varia-
tion in copy number aberrations is due to obser-
vation noise in the log fluorescence ratio, rather
than as an outcome of local genetic copy num-
ber aberration such as homozygous gains or
losses.

7. Discussion

Appropriate application of comb fitting of-
ten requires subjective setting of parameters
based on a priori knowledge. Although this
may seem, at first glance, to violate the objec-
tivity of data analysis, it is objective enough be-
cause the a priori knowledge must be expressed
explicitly as the prior distribution to meet the
probabilistic estimation process with the comb
model.

From the Bayesian point of view, data anal-
ysis of all sorts includes inevitable bias from a
researcher’s subjective a priori beliefs about the
analysis targets. Therefore, what is important
for sound data analysis is to explicitly express a
priori knowledge in the form of prior probabil-
ity. The subjective tuning and hand tuning of
the comb fitting, discussed in Section 5.3, were
based on such an idea.

When the prior probability is available, we
can update it by using a posteriori knowledge
obtained from the observed data, which en-
hances the objectivity of the analysis. The em-
pirical tuning and recursive tuning of the prior,
discussed in Section 5.2, were based on this
idea.

8. Conclusion

We have developed a method called comb
fitting, which determines the copy number of
DNA corresponding to each BAC clone from
each fluorescence ratio measured by array CGH.

Automatic comb fitting can be used even
when there is considerable contamination by
normal cells or when tumor cells have heteroge-
neous ploidy numbers. We also proposed modi-
fications using a priori knowledge and/or hand
tuning, which help comb fitting when automatic
fitting is difficult to apply, as in cases where
large contamination of normal cells or large het-
erogeneity in local aberrations exists.
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