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Multifactorial diseases, such as lifestyle-related diseases, for example, cancer, diabetes melli-
tus, and myocardial infarction, are believed to be caused by the complex interactions between
various environmental factors on a polygenic basis. In addition, it is believed that genetic
risk factors for the same disease differ on an individual basis according to their susceptible
environmental factors. In the present study, to predict the development of myocardial infarc-
tion (MI) and classify the subjects into personally optimum development patterns, we have
extracted risk factor candidates (RFCs) that comprised a state that is a derivative form of
polymorphisms and environmental factors using a statistical test. We then selected the risk
factors using a criterion for detecting personal group (CDPG), which is defined in the present
study. By using CDPG, we could predict the development of MI in blinded subjects with
an accuracy greater than 75%. In addition, the risk percentage for MI was higher with an
increase in the number of selected risk factors in the blinded data. Since sensitivity using the
CDPG was high, it can be an effective and useful tool in preventive medicine and its use may
provide a high quality of life and reduce medical costs.

1. Introduction

The interaction between genetic and environ-
mental factors, including diet and lifestyle, con-
tribute to cardiovascular diseases, cancers, and
other major causes of mortality 1). Myocar-
dial infarction (MI), a cardiovascular disease,
is generally caused by the occlusion of a coro-
nary artery and is often induced by the rupture
of a plaque, which occurs due to atheroscle-
rosis of the coronary arteries. MI is a mul-
tifactorial disease that is caused due to com-
plex interactions between various genetic and
environmental factors on a polygenic basis 1)∼3).
Recent genetic linkage and association stud-
ies have already identified several candidate
genes that may be responsible for predisposi-
tion to MI 3),4). A novel genetic susceptibil-
ity locus for MI has been identified on the
chromosomal region 1p34-36 with the modi-
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fied Haseman-Elston regression model (LOD =
11.68) 5). Thus, genetic factors may be nec-
essary for the development of MI; however,
this disease will not manifest in the absence of
an environmental risk factor 6). The involve-
ment of several environmental factors (con-
ventional risk factors for coronary artery dis-
eases) in the development of MI has been sug-
gested; these include hypertension, diabetes
mellitus, hypercholesterolemia, hyperuricemia,
obesity, and smoking 3). In our previous pa-
per, a significant correlation has been observed
on a sex-specific basis between the genotypes
of connexin37, plasminogen-activator inhibitor
type 1, and stromelysin-1 genes and the risk of
MI by logistic regression analysis after adjust-
ing for age; body mass index; and the preva-
lence of smoking, hypertension, diabetes mel-
litus, hypercholesterolemia, and hyperuricemia
in a large Japanese cohort. However, the ge-
netic factors responsible for the susceptibility to
MI are believed to differ among patients based
on environmental factors and other susceptible
genes, despite the fact that the same disease
is being considered. Therefore, it is very im-
portant to propose models that are a combina-
tion of various genetic and environmental fac-
tors that are associated with multifactorial dis-
eases such as MI for the prediction of disease

48



Vol. 47 No. SIG 17(TBIO 1) Classification and Prediction Method 49

development and associated causes on an indi-
vidual basis. This concept is useful for deter-
mining the treatment protocol for a patient and
for disease prevention.

Methods with a high accuracy for the de-
tection of the interaction between genes and
the environment or between the genes them-
selves and for the prediction of the development
of multifactorial diseases have rarely been pro-
posed. Detection of these interactions by using
conventional parametric statistical methods is
difficult. Attractive and convenient tools show-
ing an adequate level of performance should be
established. In addition, stepwise forward selec-
tion, which is one of the methods for selecting
reasonable variables, appears to omit important
interactions of a combination that are statis-
tically significant. The interaction containing
only the first selected variable is selected, and
the other significant interactions appear to be
omitted. On the other hand, conducting an
exhaustive search of the combined interactions
of genetic and environmental factors by step-
wise backward elimination is either impossible
or time consuming if the model that is con-
structed first includes too many input variables.
Similarly, it is impossible to select statistically
significant factors when the sample size is rela-
tively small.

In a previous study, we used single nucleotide
polymorphism (SNP) data and an artificial neu-
ral network (ANN) for the prediction of child-
hood allergic asthma that might be strongly in-
fluenced by genetic factors 7). The study com-
prised 344 subjects with data for 25 SNPs; these
data were analyzed, and the ANN model pre-
dicted the diagnosis with an accuracy that was
higher than 74%. The accuracy achieved by us-
ing ANNs and the SNP data was considerably
high. In the case of multifactorial diseases such
as MI, the developmental mechanism appears
to differ among individuals because of the in-
volvement of many risk factors. The number
of risk factors and their combination patterns
might differ across patients with multifactorial
diseases. In addition, if several significant in-
teractions are identified, it is very difficult to
predict whether the unknown subject might de-
velop the disease in the future.

Therefore, in the present study, first, ex-
haustive combinations comprising up to 3 fac-
tors were analyzed, and the risk factor can-
didates (RFCs) were extracted using binomial
and random permutation tests. Second, the

minimum number of risk factors from RFCs
was selected and the development of MI was
predicted in order to correctly classify not only
the modeling data but also the blinded data
by the criterion for detecting personal group
(CDPG), which is defined in the present study.
The CDPG, our proposed method, was com-
pared with AdaBoost (proposed by Freund and
Schapire (1997)) and majority voting, which
is whereby the option with a simple majority
of votes wins. This is the first report on au-
tomatic selection of susceptible gene-gene and
gene-environmental factor interactions in mul-
tifactorial diseases such as MI by using poly-
morphisms and environmental factors. For con-
ducting a comparison of the performance of
the CDPG, the personal developmental pat-
terns of blinded data were analyzed by employ-
ing models constructed by using thousands of
subjects. Further, to investigate the flexibility
of this analysis, a 10-fold cross-validation was
performed in RFC and risk factor selection pro-
cesses.

2. Subjects and Methods

2.1 Subjects and Data of Polymor-
phisms and Environmental Factors

Data of polymorphisms and environmental
factors were kindly provided by the Department
of Cardiovascular Genome Science, Nagoya
University, School of Medicine, Japan. Us-
ing public databases, including PubMed and
Online Mendelian Inheritance, candidate genes
that have been characterized and potentially
associated with coronary atherosclerosis or va-
sospasm, hypertension, diabetes mellitus, or
hyperlipidemia were selected. This selection
was done on the basis of a comprehensive
overview of vascular biology, platelet and leuko-
cyte biology, coagulation and fibrinolysis cas-
cades, and lipid and glucose metabolism and
other metabolic factors 3). In our previous
study, 22 and 20 polymorphisms of these genes
were selected in males and females, respectively,
from 112 common polymorphisms 3). Most of
these were in the promoter regions, exons, or
splice donor or splice acceptor sites in introns,
and they might possibly cause changes in the
function or level of expression of the encoded
protein (Table 1). In Table 1, the dominant
or recessive form in each polymorphism is indi-
cated by the lower P value, implying that the
number of case subjects is more biased; this is
because in this study, we paid greater attention
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Table 1 Genes, polymorphisms, and environmental factors examined in the present study.

Males
(i) dominant

gene polymorphism
AAb Aa + aab

P valuea casec controlc predictiond P value case control prediction
APOCIIIe C1100T 0.2089 288 160 1 0.3608 1,437 878 0

APOE e4 0.4205 1,287 826 0 0.3509 359 221 1
e2 0.3754 1,556 977 1 0.1031 90 70 0

C4070T (Arg158Cys) 0.3954 1,623 980 1 0.1496 99 71 0
T3932C (Cys112Arg) 0.4175 1,304 828 0 0.3457 365 222 1

CX37 C1019T (Pro319Ser) 0.0440 1,150 747 0 0.0062 588 295 1
NOS3 T-786C 0.3457 1,372 845 0 0.2175 366 207 1
GNB3 C825T (splice variant) 0.2376 429 274 0 0.3390 1,305 774 1
P22 C242T (His72Tyr) 0.0861 1,410 805 1 0.0042 338 255 0

PLA2G7 G994T (Val279Phe) 0.1281 1,192 754 0 0.0462 578 308 1
THBD C2136T (Ala455Val) 0.2790 923 567 1 0.2550 710 468 0
THPO A5713G 0.1435 359 238 0 0.2880 1,359 804 1
THBS4 G1186C (Ala387Pro) 0.2332 1,396 927 0 0.0336 241 127 1
TNFA C-863A 0.1298 1,293 746 1 0.0306 435 304 0

(ii) recessive

gene polymorphism
AA + Aab aab

P valuea casec controlc predictiond P value case control prediction
AGT G-6A 0.0131 651 339 1 0.0498 1,090 713 0

APOCIII C-482T 0.3091 1,312 791 1 0.1770 365 243 0
APOE G-219T 0.0832 798 530 0 0.0914 912 521 1
CCR2 G190A (Val64Ile) 0.4507 1,581 960 0 0.3457 157 90 1
GP1A A1648G (Lys505Glu) 0.2038 164 92 1 0.3942 1,494 944 0
IL10 T-819C 0.2785 1,417 933 0 0.0577 213 114 1

A-592C 0.2591 1,496 930 0 0.0417 226 112 1
TGFB1 T869C (Leu10Pro) 0.1553 1,197 795 0 0.0452 459 255 1

environmental factor P value state case control prediction P value state case control prediction
BMI 0.4220 low 1,465 900 0 0.3332 high 311 182 1

Smoking 0.1447 negative 750 486 0 0.1775 positive 1,026 596 1
Hypertension 7.06E-05 negative 941 462 1 9.29E-05 positive 835 620 0

Diabetes mellitus 9.56E-09 negative 1,160 907 0 2.18E-18 positive 616 175 1
Hypercholesterolemia 0.0011 negative 1,020 721 0 0.0001 positive 756 361 1

Hyperuricemia 0.1042 negative 1,542 891 1 0.0013 positive 234 191 0

( a ) P value calculated by using the binomial test.
( b ) AA or Aa + aa represents a dominant model, AA + Aa or aa represents a recessive model. The (i) dominant

or (ii) recessive type is determined in lower P values, implying that the number of case subjects is more
biased.

( c ) The number of case and control subjects in all data.
( d ) 0: The prediction result is control; 1: The prediction result is case. Both predictions are made using the

binominal test.
( e ) The symbol of gene was referred without abbreviating in Appendix section.

Females
(i) dominant

gene polymorphism
AA Aa + aa

P value case control prediction P value case control prediction
APOE e2 0.4770 582 549 1 0.4256 54 53 0

e4 0.3261 476 464 0 0.2117 160 138 1
T3932C (Cys112Arg) 0.3611 486 465 0 0.2631 160 139 1
C4070T (Arg158Cys) 0.4570 604 550 1 0.3614 54 53 0

NOS3 T-786C 0.2737 546 488 1 0.0975 106 117 0
ET1 G5665T (Lys198Asn) 0.4554 320 297 1 0.4560 326 308 0
SELE A561C (Ser128Arg) 0.4307 580 562 1 0.2611 40 45 0

GP1BA C1018T (Thr145Met) 0.3782 512 462 1 0.2821 142 140 0
IRS1 G3494A (Gly972Arg) 0.3277 616 578 0 0.0214 38 20 1
IL6 C-634G 0.0833 392 337 1 0.0489 242 267 0
PAI1 4G-668/5G 0.0460 240 266 0 0.0802 392 337 1
TNFA G-238A 0.4413 626 585 0 0.2315 28 21 1

(ii) recessive

gene polymorphism
AA + Aa aa

P value case control prediction P value case control prediction
APOCIII C-482T 0.3466 478 477 0 0.2316 146 130 1

TAP G1051A (Arg219Lys) 0.3689 470 450 0 0.2883 176 155 1
CD14 C-260T 0.2562 460 433 0 0.1553 206 167 1
CX37 C1019T (Pro319Ser) 0.4437 636 585 0 0.2306 26 19 1
FABP2 G2445A (Ala54Thr) 0.2997 572 531 0 0.0853 94 68 1
PON1 G584A (Gln192Arg) 0.2868 562 541 0 0.0622 86 62 1
MMP3 5A-1171/6A 0.0970 170 142 1 0.2248 456 464 0
TNFA C-850T 0.3498 620 591 0 0.0226 30 15 1

environmental factor P value state case control prediction P value state case control prediction
BMI 0.1198 low 536 514 0 0.0074 high 148 96 1

Smoking 0.1294 negative 582 555 0 0.0012 positive 102 55 1
Hypertension 0.4666 negative 288 255 1 0.4716 positive 396 355 0

Diabetes mellitus 6.62E-10 negative 390 522 0 2.65E-19 positive 294 88 1
Hypercholesterolemia 0.0113 negative 310 331 0 0.0119 positive 374 279 1

Hyperuricemia 0.3229 negative 598 548 0 0.1004 positive 86 62 1
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Table 2 The number of subjects, polymorphisms, and environmental factors.

Males Females
2,858 1,294

case control case control
1,776 1,082 684 610

polymorphisms environmental factors polymorphisms environmental factors
22 (16 genes) 6 20 (16 genes) 6

Table 3 The number of subjects in the modeling and blinded data in the
10-fold cross-validation process.

data set
Males Females

modeling data blinded data modeling data blinded data
case control case control case control case control

1 1,599 973 177 109 616 549 68 61
2 1,601 971 175 111 623 542 61 68
3 1,597 975 179 107 612 553 72 57
4 1,599 973 177 109 620 545 64 65
5 1,598 974 178 108 607 558 77 52
6 1,597 975 179 107 610 555 74 55
7 1,599 973 177 109 622 542 62 68
8 1,592 980 184 102 611 553 73 57
9 1,590 983 186 99 616 548 68 62

10 1,612 961 164 121 619 545 65 65

to the dominant or recessive analysis.
The study population comprised 4,152

Japanese subjects; of these, 2,460 subjects
(1,776 males and 684 females) had MI and 1,692
subjects (1,082 males and 610 females) did not
exhibit any symptoms of MI (Table 2). The
study protocol was approved by the committees
on the ethics of human research of Nagoya Uni-
versity Graduate School of Medicine and Gifu
International Institute of Biotechnology, and
written informed consent was obtained from
each participant. The subjects were diagnosed
by experienced doctors 3). In the present study,
the subjects with MI are referred to as “cases”
and those without any symptoms of MI are re-
ferred to as “controls.” Since sex-based differ-
ences in the association between genetic poly-
morphisms and the risk of MI might be at-
tributable, at least in part, to the differences
in the levels of estrogen or other hormones be-
tween males and females, these were particu-
larly analyzed 8).

Six environmental factors, namely, habitual
cigarette smoking, obesity (body mass index;
BMI), hypertension, diabetes mellitus, hyperc-
holesterolemia, and hyperuricemia, were used
as the conventional risk factors for coronary
artery disease. Their data were converted into
binary data using a clinical protocol 3). In the
present study, the subjects who smoked and
those with hypertension, diabetes mellitus, hy-
percholesterolemia, and hyperuricemia are re-

ferred to as “positive” data, while the others
are referred to as “negative” data. The sub-
jects with and without obesity were classified
based on their BMI as “high” and “low,” re-
spectively (Table 1). Each of the 1,692 control
subjects (1,082 males and 610 females) had at
least one “positive” or “high” data.

The data was divided into 10 groups by ran-
domizing and alternating the data. Nine groups
were assigned as modeling data, and 1 group
was assigned as blinded data. Each group was
assessed once as blinded data (10-fold cross-
validation). The number of cases and controls
in each data set is shown in Table 3. Mod-
eling data was used for combination analysis
of gene-gene or genetic-environmental factors
and for the selection of RFCs and risk factors
mentioned later in the manuscript to predict
the development of disease in blinded data and
their classification into personal optimum de-
velopment patterns.

2.2 Extraction of RFCs
A binomial test was used to extract RFCs

that might be associated with the development
of MI. The case/control ratio was calculated for
various combinations of up to 3 factors: (1)
1 polymorphism, 1 environmental factor, and
(2) a combination of 1 polymorphism and 1 en-
vironmental factor; a combination of 2 poly-
morphisms, and (3) a combination of 2 poly-
morphisms and 1 environmental factor, a com-
bination of 3 polymorphisms by using mod-
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Fig. 1 The rule table using a combination between
2 polymorphisms and 1 environmental factor.
Ncase,l and Ncontrol,l represent the number of
case and control subjects, respectively, belong-
ing to rule l.
The combination of dominant and recessive
genotypes was determined when the P value
in one of the rules under the condition
Ncase,l/Ncase > Ncontrol,l/Ncontrol was the
lowest among P values calculated with exhaus-
tive combinations of modeling data using the
dominant and recessive concepts—22 combina-
tions in this case.

eling data, except the missing data, that is,
the subjects who had lost at least 1 of the
polymorphism and environmental factor data
in the combination. Combinations among en-
vironmental factors were not considered. The
reason for employing this analysis was that we
particularly considered the genes susceptible to
each environmental factor related to the devel-
opment of MI and the classification of each de-
velopment pattern. The cause and effect re-
lationship in the combinations was evaluated
against exhaustive combinations of less than 3
of the factors mentioned above.

The most important cause and effect relation-
ship among the combinations was defined as the
remarkable rule (Fig. 1) in which the existing
ratio between the case and control is mostly
biased among all combinations. The rule repre-
sents one square matrix in Fig. 1; thus, in dom-
inant or recessive analysis, there are 4 and 8
rules in case of 2 and 3 SNP combinations, re-
spectively. For example, in rule 1 of Fig. 1, sub-
jects with the genotype AA of SNP A, B allele
of SNP B, and negative state of the environmen-
tal factor are considered to be one of the rules
for using the 2 SNP and 1 environmental factor
combination. To date, several analytical ap-
proaches have been proposed for gene-gene in-

teractions, including combinatorial partitioning
method (CPM) 9) and multifactor dimensional-
ity reduction (MDR) 10)∼12); however, these ap-
proaches assess all rules together using a certain
evaluation value for the interaction. For exam-
ple, in the MDR method, gene-gene interactions
are assessed by testing the accuracy in the 10-
fold cross validation, the cross-validation con-
sistency, and the P value computed by compar-
ing its (accuracy or consistency) value with the
empirical distribution. However, since a risk
factor is considered to be composed of certain
alleles or genotypes (one rule) in a combination
and could be missed when all rules are assessed
together, we assessed only one rule by using the
P value mentioned below. The biased degree
of relationship was evaluated with the existing
ratio by the binomial test using the binomial
distribution as follows 13):

f(Ncase,l) =
n!

Ncase,l!Ncontrol,l!
pNcase,l(1 − p)Ncontrol,l .

(1)
where n is the sum of the observed num-

ber for Ncase,l and Ncontrol,l existing in rule
l. The probability p represents Ncase/(Ncase +
Ncontrol), where Ncase and Ncontrol represent
the total number of cases and controls ana-
lyzed in the combination. The null hypoth-
esis (Ncase,l/Ncase ≤ Ncontrol,l/Ncontrol) is
tested by computing the sum (P value) of all
f(Ncase,l) that are equal to or lesser than that
for the observed value of Ncase,l (one-tailed
test) 14).

Since there are 3 genotype patterns in each
genetic factor, i.e., homozygote of the major al-
lele, heterozygote, and homozygote of the minor
allele in the SNP, the number of rules in a com-
bination of 2 SNPs is 9. However, in the present
study, since the method of SNP analysis us-
ing dominant and recessive concepts appears to
be practical for the application of various phe-
notypes (such as diseases), the heterozygote is
combined with either of the homozygotes men-
tioned below. Based on this information, data
in high dimensions that is constructed by com-
bining 3 genotype patterns can be reduced to
lower dimensions by constructing it with com-
binations of the dominant and recessive geno-
type patterns and important evidence on the
biological aspects might be obtained.

The procedure for extraction of RFCs has
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Fig. 2 The extraction procedure of risk factor candidates (RFCs) using the
binomial test and the random permutation test in a combination with
2 polymorphisms.

been divided into 2 steps and is outlined in
Fig. 2. In step 1, the P values were calcu-
lated from exhaustive genotype combinations of
the dominant and recessive genotypes, for ex-
ample, 2g dominant and recessive combinations
and 2g × 2g rules in a combination of g SNPs.
Then, a combination of dominant and recessive
genotypes among the 2g combinations was de-
termined as a preferable combination for the
prediction of MI, in which the P value in one
of the rules under the condition Ncase,l/Ncase

> Ncontrol,l/Ncontrol was the lowest among the
2g × 2g P values. The dominant model is a
comparison of the Aa plus aa genotypes with

the AA genotype, while the recessive model is
a comparison of the aa genotypes with the AA
plus Aa genotypes. The P value of the poly-
morphisms and environmental factors analyzed
in the present study is shown in Table 1.

In order to extract RFCs, the statistical sig-
nificance of the rule in each combination was
assigned to the P value. In step 2, this was
done by modeling the null distribution that had
the lowest P value in each combination by us-
ing the random permutation test 15)∼17). In the
random permutation test, the signal of the sub-
ject was randomized, thereby ensuring that the
number of subjects in the rule did not change.
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We then examined how well the rule of correctly
labeled data in each combination explains the
extent of risk compared with the rule of ran-
domly labeled data. The significance of the rule
is P ran(Px) (Eq. (2)), which is the percentage
of random rules 16).

P ran(Px)=
1

T1 · T2

T1∑

i=1

T2∑

j=1

θ(Px − Pi,j).

(2)
θ(z) = 1 if z ≥ 0, and it is equal to 0 oth-

erwise. Pi,j is the lowest P value of the rule
obtained by using the randomly labeled data
calculated with the binomial test in one combi-
nation and the permutation test in the other.
Px is the P value of the rule that uses cor-
rectly labeled data calculated with the bino-
mial test. In other words, P ran(Px) is the P
value of Px in the null distribution, which is
the lowest P value in each combination, and
this value is calculated using the random per-
mutation test. T1 and T2 are the number of per-
mutations and the number of combinations, re-
spectively. In the present study, T1 is 1,000. T2

is 22C2 = 231 in the combination of 2 polymor-
phisms in males because in the random permu-
tation test, the combination of dominant and
recessive genotypes was already determined us-
ing the correctly labeled data mentioned above.
In the present study, RFCs were inferred at the
P ran(Px) level by using this distribution and
was calculated to be less than 0.01 (P ran(Px)
< 0.01) by using a random permutation test.

2.3 Cover Rate and Case Rate
We defined the cover rate for each rule as the

ratio of the subjects satisfying the rule to the
total number of subjects and the case rate for
each rule as the ratio of the case subjects to
the subjects in the rule (Eqs. (3) and (4), re-
spectively). Ncase,l, Ncontrol,l, Ncase, Ncontrol

are mentioned above.

CoverRate =
Ncase,l + Ncontrol,l

Ncase + Ncontrol
. (3)

CaseRate =
Ncase,l

Ncase,l + Ncontrol,l
. (4)

Cover rate and case rate for the modeling
data and blinded data, respectively, were cal-
culated using a rule table that was constructed
using modeling data.

2.4 Selection of Risk Factors from
RFCs for the Prediction of De-
velopment and Causal Factors of
Blinded Data

This section describes our new criterion, the
CDPG, which is used for selecting the minimum
number of risk factors in order to classify the
blinded data into personally optimum develop-
ment patterns and predict the disease develop-
ment in these patterns. We refer to the RFCs
that are selected by CDPG and other classifi-
cation methods as “risk factors.” The selection
of the mth risk factor is carried out in order to
maximize the index I.

I =
N

(m)
RFC,case

Ncase
− N

(m)
RFC,control

Ncontrol
. (5)

N
(m)
RFC,case and N

(m)
RFC,control represent the

number of case and control subjects who have
more than 1 RFC while selecting the mth risk
factor. Ncase and Ncontrol represent the num-
ber of case and control subjects, respectively, in
the modeling data, which adjust the difference
of the number of subjects between cases and
controls. Accuracy (Ac), sensitivity (Se), and
specificity (Sp) in the selected M risk factors
are defined as follows:

Ac =
N

(M)
RFC,case+N

(M)
noRFC,control

Ncase + Ncontrol
. (6)

Se =
N

(M)
RFC,case

Ncase
. (7)

Sp =
N

(M)
noRFC,control

Ncontrol
. (8)

N
(M)
noRFC,control = Ncontrol − N

(M)
RFC,control.

N
(M)
RFC,case and N

(M)
RFC,control represent the num-

ber of case and control subjects who had more
than 1 risk factor among M risk factors. If
the subject is a case and has more than 1 risk
factor among M risk factors, the prediction is
considered true (true positive; TP) and if the
case subject has no risk factors, the predic-
tion is considered false (false negative; FN ). If
the subject is a control and has no risk factor
among M risk factors, the prediction is consid-
ered true (true negative; TN ) and if the con-
trol subject has more than 1 risk factor, the
prediction is considered as false (false positive;
FP). The concept of selecting risk factors by
the CDPG is employed to enable the selection
of RFCs that would include more case subjects
and less control subjects, preferably in the mod-
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eling data. Information on obtaining the ex-
ecute code, for example, data and documen-
tation of the CDPG software, is available at
the following URL. http://www.nubio.nagoya-
u.ac.jp/proc/english/indexe.htm

We then compared our proposed method—
CDPG—with 2 other classification methods,
namely, AdaBoost 18) and majority voting. In
multifactorial disease, there might be no con-
clusive and sole risk factor for elucidating the
developmental mechanism. The reason for em-
ploying these methods was that AdaBoost and
majority voting have the same strategy for se-
lecting input variables as CDPG. The strategy
is that these methods predict the development
of the disease with a focus on case or control
subjects who can not be still explained with
selected risk factors by selecting another risk
factor stepwise.

The basic concept of AdaBoost is to re-
peatedly apply a simple learning algorithm
called the weak learner to different weightings
of the same training set (modeling data in
the present study). In its simplest form, Ad-
aBoost is intended for binary prediction prob-
lems where the training set consists of pairs
(x1, y1), (x2, y2), . . . , (xm, ym); xi corresponds
to the features of an example and yi ∈ −1, +1
is the binary label to be predicted. A weighting
of the training examples is an assignment of a
real value wi to each example (xi, yi). Given a
learning algorithm that generates a set of weak
learners h1, h2, . . . , hT , the AdaBoost algo-
rithms construct a combined hypothesis f of the
form,

f(x) =
T∑

t=1

αt · ht(x). (9)

αt is the weight of the weak learner ht, and
both weights and hypotheses are learned by
the AdaBoost algorithm. The final predic-
tion learned by AdaBoost is sign[f(x)], which
is weighted by majority voting, and TP, FN,
TN, and FP are determined using sign[f(x)]
(f(x) > 0: prediction result is case; f(x) < 0:
prediction result, control). In the present study,
we constructed a weak learner h using RFC as
follows. If the subject is a case and has the
RFC rule in the combination among genes or
genes and environmental factors, the prediction
is considered true (TP); in other combinations,
the prediction is considered false (FN ). If the
subject is a control and does not have the RFC
rule in the combination, the prediction is con-

sidered true (TN ); otherwise, the prediction is
considered false (FP).

Majority voting is whereby the option with a
non-weighted majority of votes wins. Its pre-
diction result is as follows. If the subject is a
case and its risk factor rate (RFR) is >0.5, the
prediction is considered true (TP), otherwise,
the prediction is considered false (FN ). If the
subject is a control and the RFR is <0.5, the
prediction is considered true (TN ), otherwise,
the prediction is false (FP). RFR is m/M ; m is
the number of risk factors that the subject has
among M selected risk factors. Ac, Se, and Sp
are defined as follows:

Ac =
NTP + NTN

Ncase + Ncontrol
. (10)

Se =
NTP

Ncase
. (11)

Sp =
NTN

Ncontrol
. (12)

NTP and NTN are the number of TN and
FN, respectively. The criterion for selecting the
risk factors by AdaBoost is to determine the
hypothesis weight αt, which is determined by
minimizing the loss function in the modeling
data 18), while that by majority voting is to de-
termine the risk factors, which are determined
by maximizing the Ac in the modeling data.

2.5 Data Simulation
To evaluate the power of CDPG for classi-

fying subjects into personally optimum devel-
opment patterns and predict the disease devel-
opment in these patterns, we simulated case-
control data including 10 development patterns
and 1,000 non-development patterns. In the 10
patterns, the bias of case subjects with risk in
all subjects had the same propensity as that of
case subjects with selected RFCs derived from
MI with respect to cover and case rates men-
tioned above (0.1 < cover rate < 0.45 and 0.7
< case rate < 1). In the 1,000 non-development
patterns, risk or not was randomly determined
in case and control subjects; however, the cover
and case rates of 1,000 patterns did not sat-
isfy the propensity of the selected RFCs de-
rived from MI. The simulation study popula-
tion was the same as in the MI model in males
comprising 2,858 subjects—1,776 case subjects
and 1,082 control subjects. The case subjects
had at least one risk in the 10 patterns. The
number of control subjects without any devel-
opment pattern was 293. The data was divided
into 10 groups by randomizing and alternating
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Fig. 3 Cover rate and case rate of simulation data.
The 10 patterns (black dots) had the same
propensity with respect to cover and case rates
as those of the selected RFCs derived from MI
(Fig. 4), while the 1,000 patterns (gray dots)
did not have the same propensity as those of
the selected RFCs.

the data. Nine groups were assigned as model-
ing data, and one group was assigned as blinded
data. Each group was assessed once as blinded
data (10-fold cross-validation). The number
of cases and controls in each data set was the
same as that shown in Table 3. Cover and case
rates of the 1,010 simulation data are shown in
Fig. 3. We also compared CDPG with 2 other
classification methods, AdaBoost and majority
voting. The criterion for selecting input vari-
ables by the 3 methods are shown above.

3. Results

3.1 Extraction of RFCs That Might be
Associated with MI

Several reports have suggested an association
between MI and genes or environmental fac-
tors; this association has been analyzed in the
present study. For example, a novel genetic sus-
ceptibility locus for MI had been identified on
chromosomal region 1p34-36 5). The C1019T
polymorphism in the connexin 37 gene lying
on chromosomal region 1p34-36 was associated
with a significant risk of MI in males, and the
4G-668/5G polymorphism in the plasminogen-
activator inhibitor type 1 gene and the 5A-
1171/6A polymorphism in the stromelysin-1
gene were associated with a significant risk of
MI in females 3).

In the present study, we analyzed 22 and 20
polymorphisms in 16 candidate genes of males
and females, respectively, and 6 environmen-
tal factors as conventional risk factors for coro-
nary artery disease (Table 1). The study pop-

ulation and data sets for validation are shown
in Tables 2 and 3. The association between
these single factors and MI was assessed with
P ran(Px), which was calculated using the bi-
nomial test and the random permutation test
described in the Methods. The number of ex-
tracted RFCs that were one of the rules (Fig. 1)
in a combination that comprised genes and en-
vironmental factors with P ran(Px) are shown in
Table 4. For example, in data set 1, in males,
there were 1 RFC and 44 rules when 1 poly-
morphism was used, while there were 3 RFCs
and 12 rules when 1 environmental factor was
used. The polymorphism is CT or TT of con-
nexin 37 (C1019T), and the environmental fac-
tors are negative for hypertension, positive for
diabetes mellitus, and positive for hypercholes-
terolemia. In males, diabetes mellitus had the
lowest P value as a single factor. This was used
as the sole factor for discriminating between the
cases and controls in modeling data set 1. The
accuracy of prediction was 52.9%, and the sen-
sitivity and specificity were 34.3% and 83.5%,
respectively, when the number of case subjects
and control subjects were compared in order to
assess the discrimination performance. Thus,
sensitive prediction of disease development in
all subjects by using a single factor was impos-
sible, even though it had a statistically signifi-
cant P value.

Therefore, initially, we focused on the combi-
nation analysis of polymorphisms and environ-
mental factors. The procedure is outlined in
Fig. 2. In data set 1, in the 1 polymorphism-
1 environmental factor combination, there were
80 RFCs; this constituted approximately 15%
of the 528 rules, whereas in the combination
of 2 polymorphisms, there were 18 RFCs; this
constituted approximately 2% of the 924 rules.
This tendency was observed in all data sets.
Therefore, as analyzed in the present study, it
is suggested that the development of MI might
be more sensitive to environmental factors com-
bined with polymorphisms that are susceptible
to these factors. In addition, it is suggested that
several risk factors that are susceptible combi-
nations for the development of MI may be se-
lected by a combination analysis of polymor-
phisms and environmental factors. The same
results were obtained in the case of females,
as shown in Table 4 (ii). Thus, we found that
it was very important to analyze the combina-
tions of polymorphisms and environmental fac-
tors for elucidating the mechanism of MI. In the
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Table 4 The number of risk factor candidates that satisfied the conditiona.

(i) Males

polymorphisms environmental factors all rules risk factor candidates
data set 1 2 3 4 5 6 7 8 9 10

1 0 44 1 2 2 2 1 2 2 2 1 1
0 1 12 3 3 3 3 3 3 3 3 3 3
1 1 528 80 80 83 79 75 73 79 78 78 83
2 0 924 18 20 42 29 17 25 22 14 9 19
2 1 11,088 906 905 943 922 882 879 908 877 918 921
3 0 12,320 157 219 343 268 221 236 200 168 113 164

(ii) Females

polymorphisms environmental factors all rules risk factor candidates
data set 1 2 3 4 5 6 7 8 9 10

1 0 40 0 0 1 0 1 2 0 1 0 0
0 1 12 2 4 3 4 3 4 4 3 3 4
1 1 480 57 79 57 74 70 67 56 58 62 65
2 0 760 5 9 12 8 24 29 8 16 5 14
2 1 9,120 594 790 649 700 718 709 546 622 643 673
3 0 9,120 103 150 150 117 221 228 84 169 121 143

( a ) The P value is less than 0.01 (P ran(Px) < 0.01) when calculated by the binomial test and the random
permutation test.

present study, analyses of up to 3 combinations
were performed because greater the number of
factors constituting the combination, lesser the
number of the subjects belonging to the rule
and longer is the time required for the calcu-
lation. Therefore, the RFCs shown in Table 4
were used later for analysis.

In addition, RFCs were evaluated using 2 in-
dices, namely, the cover rate and case rate. The
former is the ratio of the subjects satisfying
the rule to the total number of subjects and
the latter is the ratio of the case subjects to
the subjects in the rule (Eqs. (3) and (4) in the
Methods). These ratios for males and females
in data set 1 are shown in Fig. 4. RFCs had
a characteristic propensity with respect to the
cover rate and the case rate in the modeling
data (Fig. 4). Since the case rates of all RFCs
have been plotted against the cover rates of the
RFC in Fig. 4, the correlation between the case
rate and cover rate can be summarized. A risk
factor that has a high value in both cover and
case rates is indicative of disease development.
However, when the development of MI was ana-
lyzed using polymorphisms and environmental
factors, the observations were as follows: higher
the cover rate, lower was the case rate (in 560
case subjects and 304 control subjects, the low-
est case rate was 0.648 and the cover rate was
0.366), and lower the cover rate, higher was the
case rate (in 13 case subjects and 0 control sub-
jects, the lowest cover rate was 0.00541 and the
case rate was 1 (Fig. 4 (a)). This tendency of
RFCs was also observed in females (Fig. 4 (b)),
and the blinded data also recorded similar re-
sults. Therefore, it was very difficult to select
the most conclusive and sole risk factor for elu-
cidating the developmental mechanism of MI.

On the contrary, it is considered that subjects

Fig. 4 Cover rate and case rate of risk factor candi-
dates in modeling data set 1 of (a) Males and
(b) Females.

having MI comprise several groups in which the
risk factors differ on an individual basis. Fur-
ther, we selected susceptible risk factors for MI
from RFCs to predict the development of MI
in the subjects in the personal group. A per-
sonal group is a virtual group of individuals.
We considered that all MI subjects are charac-
terized by a pattern on the basis of which they
can be classified into personal groups. We de-
fined the CDPG that enables the classification
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Fig. 5 A shift in the accuracy and sensitivity of
blinded data in the procedure of selecting 30 in-
put variables using CDPG, AdaBoost, and ma-
jority voting in simulation data. Their values
are averaged in the 10-fold cross-validation.

of each group, including a large number of case
subjects and few control subjects by restricting
the number of risk factors to a minimum.

3.2 Simulation Study
We performed a simulation study to evalu-

ate the power of CDPG for classifying subjects
into personally optimum development patterns
and predicting the disease development based
on these patterns. We investigated whether 10
development patterns can be selected from sim-
ulation data by means of CDPG. Simulation
data are consisted of 1,000 variables that did
not satisfy a propensity with respect to cover
and case rates of the selected RFCs derived
from MI model in males (Fig. 3). The shift of
Ac and Se defined in the Methods in the case
of blinded data is shown in Fig. 5. We counted
the number of times which the 10 development
patterns were selected within the first 10 se-
lected input variables in each cross-validation
step. The number was totaled in the 10-fold
cross-validation and it was shown in Table 5.
Accuracy, sensitivity, and specificity of blinded
data using first selected 10 input variables are

Table 5 The number of times the 10 development pat-
terns were selected within the first 10 selected
input variables, and the accuracy, sensitivity,
and specificity of blinded data using the first
10 selected input variables.

CDPG AdaBoost majority voting
selected number

89a 39 36
(/100)

accuracy 0.715b 0.572 0.456
sensitivity 0.941 0.453 0.319
specificity 0.345 0.765 0.850

( a ) The number is totaled in the 10-fold cross-
validation.

( b ) The value is averaged in 10-fold cross-
validation.

also shown in Table 5, which are averaged in
the 10-fold cross-validation. As shown in Ta-
ble 5, 10 development patterns were selected
many times in CDPG as compared with that in
AdaBoost and majority voting. One develop-
ment pattern which had the highest cover rate
was selected only once within the first 10 in-
put variables in CDPG. On the other hand, in
AdaBoost and majority voting, selected devel-
opment patterns had a high cover rate. Al-
though case subjects had at least one devel-
opment pattern among the 10 patterns, the 2
methods could not classify subjects into each
personal group.

It was found that CDPG could classify sub-
jects into personally optimum development pat-
terns and predict the disease development in
these patterns with high accuracy by selecting
almost all development patterns. In addition,
after the selection of the development patterns,
the Ac in CDPG decreased with an increase in
input variables; this is in contrast to that ob-
served with AdaBoost. In conclusion, CDPG
might be able to select various types of devel-
opment patterns when there is no conclusive
and sole risk factor for elucidating the develop-
mental mechanism in multifactorial disease.

3.3 Selection of Risk Factors from
RFCs and Classification of Blinded
Data into Personal Optimum De-
velopment Patterns

Our proposed method—CDPG—was com-
pared with AdaBoost and majority voting as
described in the Methods using MI model as
well as a simulation study. The shift of Ac,
Se, and Sp defined in the Methods is shown
in Fig. 6. A total of 30 risk factors were se-
lected from the RFCs shown in Table 4 and
those for males were different from those for
females. We decided the number of risk fac-
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Fig. 6 A shift in accuracy, sensitivity, and specificity in the procedure of
selecting 30 risk factors with CDPG, AdaBoost, and majority voting
in (a) Males and (b) Females. Their values are averaged in 10-fold
cross-validation.
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Table 6 Accuracy, sensitivity, and specificity aver-
aged in 10-fold cross-validation using risk fac-
tors selected by CDPG, AdaBoost, and ma-
jority voting.

(i) Males
modeling CDPG AdaBoost majority voting

risk factors 28 3 3
accuracy 0.678 0.567 0.554
sensitivity 0.747 0.490 0.551
specificity 0.566 0.693 0.558

blinded CDPG AdaBoost majority voting
accuracy 0.619 0.554 0.540
sensitivity 0.709 0.477 0.546
specificity 0.473 0.680 0.530

(ii) Females
modeling CDPG AdaBoost majority voting

risk factors 24 1 1
accuracy 0.736 0.631 0.631
sensitivity 0.824 0.430 0.430
specificity 0.638 0.856 0.856

blinded CDPG AdaBoost majority voting
accuracy 0.645 0.631 0.631
sensitivity 0.751 0.429 0.429
specificity 0.527 0.857 0.857

tors when the Ac in modeling data averaged in
10-fold cross-validation reached the maximum
value in the CDPG, AdaBoost, and majority
voting (Table 6). In the CDPG model, the
accuracy and sensitivity with both modeling
and blinded data were high in males and fe-
males (Fig. 6 and Table 6). In particular, sen-
sitivity was high. When the risk factors were
selected by the CDPG, the sensitivity of the
prediction of case subjects in blinded data was
70.9% and 75.1% in males and females, respec-
tively, whereas that of case subjects in the mod-
eling data was 74.7% and 82.4% in males and fe-
males using 28 and 24 risk factors, respectively
(Table 6), indicating that the diagnosis of case
subjects by using this model was more accurate
than that with AdaBoost and majority voting.
However, the specificity of our method was low
(both males and females: approximately 60%
and 50% in modeling and blinded data, respec-
tively) as compared with that of AdaBoost and
majority voting, indicating that the percentage
of control subjects with a minimum of 1 risk fac-
tor was at least 40%. By using AdaBoost and
majority voting, Ac, Se, and Sp hardly changed
with risk factor selection in males and females.

When the risk factors were selected by Ad-
aBoost, the sensitivity of the prediction of case
subjects in blinded data was 47.7% and 42.9%
in males and females, respectively, whereas that

of case subjects in the modeling data was 49.0%
and 43.0% in males and females, respectively.
The number of risk factors selected by Ad-
aBoost was 3 (mentioned below) and 1 (positive
for diabetes mellitus) in males and females, re-
spectively. When the risk factors were selected
by majority voting, the sensitivity of the predic-
tion of case subjects in blinded data was 54.6%
and 42.9% in males and females, respectively,
whereas that of case subjects in the modeling
data was 55.1% and 43.0% in males and fe-
males, respectively. The number of risk factors
selected by majority voting was 3 and 1 in males
and females, respectively.

In data set 1, the 3 risk factors for males se-
lected by AdaBoost were (1) negative for hyper-
tension, (2) positive for diabetes mellitus and
(3) a combination of CC of p22phox (C242T),
AG or GG of Thrombopoietin (A5713G) and
negative for hyperuricemia shown in Table 7.
The cover rates of the 3 factors were 0.488,
0.276, and 0.497; their case rates were 0.676,
0.773, and 0.658. As shown in Table 7, the risk
factors selected by the CDPG had higher case
rates and lower cover rates when compared with
those selected by AdaBoost. Since the CDPG
is capable of classifying each group, which in-
cludes many case subjects and a few control
subjects, by restricting the number of risk fac-
tors to a minimum (concept of the CDPG),
it tends to select more risk factors that have
low cover rates and high case rates compared
with AdaBoost. This evidence of the power of
our method for classification into each personal
group was obtained in the simulation study.
Thus, the CDPG achieves the concept men-
tioned above by selecting various risk factors
that have high case rates and by decreasing the
number of control subjects who have risk fac-
tors.

On the other hand, AdaBoost cannot select
risk factors similar to those selected by the
CDPG or those in the simulation study because
weighting of the training wi becomes larger
while selecting these risk factors (i.e., the num-
ber of inaccurate classifications by using these
weak learners (ht) is higher). This concept is
important when there is no conclusive risk fac-
tor that has high cover and case rate values.
Therefore, a higher accuracy was achieved by
using these risk factors compared with that ob-
tained with factors selected by AdaBoost. The
possibility that novel and significant factors for
minor groups with respect to the development
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Table 7 The number of male subjects who had a se-
lected risk factor by (i) CDPG and (ii) Ad-
aBoost in data set 1.

(i)

risk factor
modeling data blinded data
case control case control

1 528 148 66 13
2 282 104 34 20
3 162 61 25 7
4 281 107 33 19
5 263 104 38 20
6 47 12 2 3
7 24 1 4 0
8 113 38 14 2
9 18 2 0 0

10 42 8 5 1
11 31 6 1 1
12 29 4 1 0
13 73 21 9 4
14 43 11 5 4
15 45 11 3 2
16 26 4 1 4
17 32 7 2 2
18 17 1 2 0
19 30 6 7 3
20 32 6 3 0
21 19 2 0 1
22 33 7 4 0
23 76 19 10 1
24 110 39 12 3
25 20 2 3 0
26 341 90 42 10
27 14 0 1 0
28 76 14 9 2

more than one riska 1,223 447 142 64

no riskb 376 526 35 45

(ii)

risk factor
modeling data blinded data
case control case control

1 848 407 93 55
2 548 161 68 14
3 842 437 100 53

more than one riska 1,365 719 159 84

no riskb 234 254 18 25

( a ) Subjects with a minimum of 1 risk factor and
predicted to be case subjects.

( b ) Subjects without any risk factor and pre-
dicted to be control subjects.

of multifactorial disease could be extracted us-
ing the CDPG was achieved in this study. Since
minor risk factors (low cover rate but high case
rate) might be present in multifactorial dis-
eases, the CDPG is considered as an effective
tool in terms of selecting risk factors when com-
pared with AdaBoost and majority voting.

3.4 Investigation of the Extent of Risk
for Each Subject due to the Inter-
action among Risk Factors

In CDPG analysis, by selecting a greater
number of risk factors, the number of control
subjects with a minimum of 1 risk factor and
predicted to be case subjects increased (low
specificity in CDPG). In case of multifactorial
disease, the extent of risk for development ap-

pears to differ among the subjects. Although
the specificity in CDPG was low, the extent of
risk of control subjects might be lower than that
of case subjects. Thus, in order to investigate
the extent of risk for each subject, we paid at-
tention to the interaction among the risk factors
and examined it as follows.

By the CDPG method, 52.9% (572/1,082)
and 47.2% (288/610) of the male and female
control subjects, respectively, of the blinded
data have been assigned to the personal group
through the 10-fold cross-validation by using
the selected risk factors. Since it is believed
that risk of development of a disease increases
based on the interaction among the risk factors,
we examined the relationship between the num-
ber of subjects and the number of risk factors
(NRF) (Fig. 7). The risk rate (RR) was defined
as follows (Eq. (13)).

RR =
Ncase,NRF≥R

Ncase,NRF≥R + Ncontrol,NRF≥R
.

(13)

R represents the cutoff value of NRF.
Ncase,NFR≥R and Ncontrol,NFR≥R represent
the number of case and control subjects who
had more than R risk factors from the risk fac-
tors selected by the CDPG. The shift of risk
rate is shown in Fig. 7. It was observed that
the risk rate was higher with increasing R in
the modeling data. The same result was ob-
tained in the blinded data, thereby satisfying
the conditions R ≥ 3 and R ≥ 4 in males and
females, respectively. The number of male and
female subjects who had more than 4 and 5 risk
factors, respectively, was less when compared
with the total number of subjects in the model-
ing data (the number of case subjects was less
than 20% of all the case subjects). When the
cutoff value was defined as 3 and 4 in males and
females, respectively, the respective risk rates
were 76.1% and 76.8%. In the blinded data, the
value was higher than the Ac (61.9% and 64.5%
in males and females, respectively) which was
defined as follows: if the subject has more than
1 risk factor among M selected risk factors, the
prediction is case. Thus, it was observed that
the interaction among risk factors selected by
the CDPG had increased the risk of developing
MI.

By using CDPG, 18 and 16 risk factors were
selected for (i) males and (ii) females, respec-
tively, as shown in Table 8. These were se-
lected at least 5 times by CDPG in the 10-fold
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Fig. 7 The number of risk factors that the case or control subjects have
among 28 (males) and 24 risk factors (females) selected using CDPG
and the number of subjects in 10 blinded data sets of (a) Males and
(b) Females. Risk rate represents the rate of case subjects who have
more than given number of risk factors.

Table 8 Risk factors selected by CDPG.

(i) Males

gene polymorphism genotype gene polymorphism genotype gene polymorphism genotype n (/10)a
or environmental factor or state

APOCIII C-482T CC PLA2G7 G994T GT + TT BMI high 10
APOCIII C1100T CC AGT G-6A GG + GA BMI high 9

APOE e4 e3e4 + e4e4 GP1A A1648G AA + AG AGT G-6A GG + GA 9
CX37 C1019T CC + CT Diabetes mellitus positive 8

PLA2G7 G994T TT BMI high 8
IL10 T-819C TT IL10 A-592C AC + CC 6

THBS4 G1186C GC + CC THPO A5713G GG Hypertension negative 6
APOE e4 e3e3 CCR2 G190A AA Hypertension negative 6

THBD C2136T CC APOCIII C1100T CC GNB3 C825T TT 6
TGFB1 T869C CC APOCIII C1100T CC + CT IL10 A-592C CC 6
THBD C2136T CC TGFB1 T869C CC Hyperuricemia positive 5
THBS4 G1186C GC + CC THPO A5713G GG Smoking positive 5
IL10 T-819C TT IL10 A-592C AC + CC BMI low 5

APOCIII C1100T CC + CT GNB3 C825T CT + TT Hypercholesterolemia positive 5
CX37 C1019T CT + TT THPO A5713G AG + GG AGT G-6A GG + GA 5
IL10 T-819C CC TGFB1 T869C CC APOCIII C1100T CC + CT 5

GP1A A1648G AA + AG APOCIII C-482T CC PLA2G7 G994T GG 5
IL10 T-819C CC TGFB1 T869C TT APOE G-219T TT 5

(ii) Females

gene polymorphism genotype gene polymorphism genotype gene polymorphism genotype n (/10)a
or environmental factor or state

Diabetes mellitus positive 10
MMP3 5A-1171/6A 5A5A + 5A6A TAP G1051A GG Hypertension negative 10

TNFA C-850T CT + TT FABP2 G2445A AA CD14 C-260T TT 9
TAP G1051A AA CD14 C-260T TT ET1 G5665T GT + TT 9
SELE A561C AA + AC Diabetes mellitus positive 8

APOCIII C-482T TT IL6 C-634G CC GP1BA C1018T CC 8
CX37 C1019T CC ET1 G5665T GT + TT BMI high 7

PAI1 4G-668/5G 5G5G GP1BA C1018T CT + TT Hypertension positive 7
CX37 C1019T CC FABP2 G2445A AA BMI high 7

MMP3 5A-1171/6A 5A6A + 6A6A Diabetes mellitus positive 6
TAP G1051A GG APOE e4 e3e4 + e4e4 BMI high 6
PON1 G584A AA ET1 G5665T GT + TT Hypertension negative 6

FABP2 G2445A AA TAP G1051A AA Hypertension positive 6
MMP3 5A-1171/6A 5A5A + 5A6A PAI1 4G-668/5G 4G4G APOE e2 e3e2 + e2e2 6
PAI1 4G-668/5G 4G5G + 5G5G APOE e2 e3e3 Hyperuricemia positive 5

IL6 C-634G CC FABP2 G2445A GG TAP G1051A AA 5

( a ) n represents the number of times the same combination comprised the genotype or the environmental factor
was selected by CDPG in 10-fold cross-validation. Risk factors in which n was more than 5 are shown in this
table.

cross-validation, and they showed the same pat-
terns in terms of both their risk rule and dom-
inant or recessive pattern.

4. Discussion

In the present study, initially, the analysis

of exhaustive combinations of up to 3 factors
was performed, and RFCs that had a statisti-
cally significant bias with regard to the num-
ber of case and control subjects and those that
might be associated with MI were extracted us-
ing the binomial test and the random permu-
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Fig. 8 Polymorphism combination between IL-10 T-819C and A-592C may
be associated with MI (gray rule) in males. (a) modeling data and (b)
blinded data in data set 1.

tation test. Next, by analyzing the simulation
data including 10 development patterns satisfy-
ing a propensity of RFCs, we obtained evidence
of the high power of CDPG for classifying sub-
jects into personally optimum development pat-
terns and predicting the disease development in
these patterns. As evidenced in the simulation
study and MI model, we were able to classify
the case and control subjects into personally
optimum development patterns with a high ac-
curacy.

Another objective of this step was to select
the most susceptible RFCs and exclude the
others that had the same pattern of develop-
ment as mentioned above. For example, RFCs
with cover and case rates that were more than
0.2 and 0.7 (Fig. 4), respectively, represent the
RFCs, including one that was negative for hy-
pertension, one that was positive for diabetes
mellitus, and one that was positive for hyperc-
holesterolemia in males and one that was posi-
tive for diabetes mellitus in females. As shown
in Table 8, the CDPG selected the most suscep-
tible risk factors, including the environmental
risk factors, i.e., the most effective interaction
between the environmental factors and genes in
RFCs. In addition, since the risk rate for MI
increased with an increase in the number of risk
factors in both the modeling and blinded data,
it was observed that the interaction among the
risk factors selected by the CDPG had increased
the risk of development of MI.

In preventive medicine, accurate prediction
of subjects who might develop the disease(s) in
the future and the development pattern of the
disease is very important. In addition, warn-
ing these susceptible subjects regarding their
risk factors is also necessary. Since the CDPG
method showed a high sensitivity, it is consid-
ered as an effective and useful tool in preventive

medicine and its use may provide a high quality
of life and reduce medical costs.

To characterize the developmental mecha-
nisms that are believed to differ among patients
with multifactorial diseases such as MI based
on their environmental factors and susceptible
genes, despite the fact that the same disease
was being considered, we investigated several
relationships between polymorphisms and en-
vironmental factors that might not be exclu-
sively associated with MI. In addition, based
on their developmental mechanism, we classi-
fied the subjects into personal groups that com-
prised people who might have different suscep-
tible factors related to MI.

In the present study, 2 risk factors comprised
the TT genotype of Interleukin-10 (IL-10 ) (T-
819C) and AC or CC genotype of IL-10 (A-
592C), and the genotype combination with low
for BMI were selected 6 and 5 times, respec-
tively in 10-fold cross-validation process as one
of the personal groups by CDPG and they were
estimated to be at a high risk for the patho-
genesis of MI (Table 8 (i), Fig. 8). Since the
results of the modeling data were the same as
those obtained in the blinded data set 1 (Fig. 8),
polymorphisms in the promoter region of IL-10
were found to be susceptible for MI and a re-
sponsible marker for MI in males.

In addition, the risk factor comprised the GT
or TT genotype of PAF-acetylhydrolase (PAF-
AH ) (G994T), CC genotype of Apolipoprotein
CIII (ApoCIII ) (C-482T), and high for BMI
were selected 10 times by CDPG in 10-fold
cross-validation process as one of the personal
groups, and they were considered to be at a
high risk for the pathogenesis of MI (Table 8 (i),
Fig. 9). It was reported that the T allele of
PAF-AH G994T (Val279Phe) might exacerbate
cardiac damage in Japanese individuals with
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Fig. 9 Polymorphism and environmental factor combination among PAF-AH
G994T, ApoCIII C1100T, and BMI might be associated with MI (gray
rule) in males. (a) modeling data and (b) blinded data in data set 1.

hypertrophic cardiomyopathy 19). The inter-
action between PAF-AH, ApoCIII and BMI
for the development of MI is indicated in the
present study.

As shown in Table 8, the risk factors that
are combinations of polymorphisms and those
that are susceptible to environmental factors
were selected in both males and females. Us-
ing these risk factors, we were able to predict
the development of multifactorial diseases such
as MI and classify the subjects into personal
optimum development patterns with a high ac-
curacy by using candidate genes with known
functions. Thus, it was very difficult to select
the most conclusive and sole risk factor for elu-
cidating the developmental mechanism of mul-
tifactorial disease such as MI. In conclusion, our
proposed method–CDPG–that includes genetic
and environmental factors can be an effective
and useful tool because it enables the selection
of various types of development patterns for MI
and predicting the disease development in these
patterns with high accuracy.

5. Conclusions

We were able to classify the case and con-
trol subjects into personally optimum develop-
ment patterns for multifactorial diseases such
as MI with a high accuracy. For this, we used
risk factor combinations that were selected by
the binomial test and the random permutation
test, which analyzes exhaustive combinations
between polymorphisms and environmental fac-
tors, and CDPG, our proposed method, which
is defined in the present study. Therefore, the
CDPG method can be an effective and use-
ful tool in preventive medicine and its use can
provide high quality of life and reduce medical

costs.
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Appendix

A.1 Abbreviation Index
gene symbol gene

AGT Angiotensinogen
APOCIII Apolipoprotein C-III
APOE Apolipoprotein E
CCR2 CC chemokine receptor 2
CD14 CD14 receptor
CX37 Connexin 37
ET1 Endothelin-1

FABP2 Fatty acid binding protein 2
GNB3 G protein β3 subunit
GP1A Glycoprotein Ia
GP1BA Glycoprotein Iba
IL10 Interleukin-10
IL6 Interleukin-6
IRS1 Insulin receptor substrate-1

MMP3 Stromelysin-1
NOS3 Endothelial nitric oxide synthase
P22 p22phox
PAI1 Plasminogen-activator inhibitor type 1

PLA2G7 Platelet-activating factor acetylhydrolase
PON1 Paraoxonase
SELE E-selectin
TAP ATP-binding cassette transporter

TGFB1 Transforming grpp. owth factor β1
THBD Thrombomodulin
THBS4 Thrombospondin 4
THPO Thrombopoietin
TNFA Tumor necrosis factor α
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