
Vol. 47 No. SIG 17(TBIO 1) IPSJ Transactions on Bioinformatics Nov. 2006

Original Paper

RNA Pseudoknotted Structure Prediction Using

Stochastic Multiple Context-Free Grammar

Yuki Kato,† Hiroyuki Seki† and Tadao Kasami†

Many attempts have so far been made at modeling RNA secondary structure by formal
grammars. In a grammatical approach, secondary structure prediction can be viewed as
parsing problem. However, there may be many different derivation trees for an input sequence.
Thus, it is necessary to have a method of extracting biologically realistic derivation trees
among them. One solution to this problem is to extend a grammar to a probabilistic model
and find the most likely derivation tree, and another is to take free energy minimization
into account. One simple formalism for describing RNA folding is context-free grammars
(CFGs), but it is known that CFGs cannot represent pseudoknots. Therefore, several formal
grammars have been proposed for modeling RNA pseudoknotted structure. In this paper,
we focus on multiple context-free grammars (MCFGs), which are natural extension of CFGs
and can represent pseudoknots, and extend MCFGs to a probabilistic model called stochastic
MCFG (SMCFG). We present a polynomial time parsing algorithm for finding the most
probable derivation tree, which is applicable to RNA secondary structure prediction including
pseudoknots. Also, we propose a probability parameter estimation algorithm based on the
EM (expectation maximization) algorithm. Finally, we show some experimental results on
RNA pseudoknot prediction using the SMCFG parsing algorithm, which show good prediction
accuracy.

1. Introduction

Non-coding RNAs fold into characteris-
tic structures determined by interactions be-
tween mostly Watson-Crick complementary
base pairs. Such a base paired structure is
called the secondary structure. Pseudoknot
(Fig. 1 (a)) is one of the typical substructures
found in the secondary structures of several
RNAs, including rRNAs, tmRNAs and viral
RNAs. An alternative graphic representation
of a pseudoknot is arc depiction where arcs con-
nect base pairs (Fig. 1 (b)). It has been recog-
nized that pseudoknots play an important role
in RNA functions such as ribosomal frameshift-
ing and regulation of translation.

Many attempts have so far been made at
modeling RNA secondary structure by formal
grammars. In a grammatical approach, sec-
ondary structure prediction can be viewed as
parsing problem. However, there may be many
different derivation trees for an input sequence.
Thus, it is necessary to have a method of ex-
tracting biologically realistic derivation trees
among them. One solution to this problem is to
extend a grammar to a probabilistic model and
find the most likely derivation tree, and another

† Graduate School of Information Science, Nara Insti-
tute of Science and Technology

is to take free energy minimization into ac-
count. Eddy and Durbin 5), and Sakakibara, et
al. 13) modeled RNA secondary structure with-
out pseudoknots by using stochastic context-
free grammars (stochastic CFGs or SCFGs).
For pseudoknotted structure, however, another
approach has to be taken since a single CFG
cannot represent crossing dependencies of base
pairs in pseudoknots (Fig. 1 (b)) for the lack of
generative power. Brown and Wilson 2) pro-
posed a model based on intersections of SCFGs
to describe RNA pseudoknots. Cai, et al. 3) in-
troduced a model based on parallel communica-
tion grammar systems using a single CFG syn-
chronized with a number of regular grammars.
Akutsu 1) provided dynamic programming al-
gorithms for RNA pseudoknot prediction with-
out using grammars. On the other hand, sev-
eral grammars have been proposed where the
grammar itself can fully describe pseudoknots.
Rivas and Eddy 11),12) provided a dynamic pro-
gramming algorithm for predicting RNA sec-
ondary structure including pseudoknots, and
introduced a new class of grammars called RNA
pseudoknot grammars (RPGs) for deriving se-
quences with gap. Uemura, et al. 15) defined
specific subclasses of tree adjoining grammars
(TAGs) named SLTAGs and extended SLT-
AGs (ESLTAGs) respectively, and predicted
RNA pseudoknots by using parsing algorithm

12

Vol. 47 No. SIG 17(TBIO 1) RNA Pseudoknotted Structure Prediction Using SMCFG 13

(a) Pseudoknot

(b) Arc depiction of (a)

Fig. 1 Example of RNA secondary structure.

of ESLTAG. Matsui, et al. 10) proposed pair
stochastic tree adjoining grammars (PSTAGs)
based on ESLTAGs and tree automata for align-
ing and predicting pseudoknots, which showed
good prediction accuracy. These grammars
have generative power stronger than CFGs and
polynomial time algorithms for parsing prob-
lem.

In our previous work 8), we have identified
RPGs, SLTAGs and ESLTAGs as subclasses of
multiple context-free grammars (MCFGs) 7),14),
which can model RNA pseudoknots, and have
shown a candidate subclass of the minimum
grammars for representing pseudoknots. The
generative power of MCFGs is stronger than
that of CFGs and MCFGs have a polynomial
time parsing algorithm like the CYK (Cocke-
Younger-Kasami) algorithm for CFGs.

In this paper, we extend MCFGs to a prob-
abilistic model called stochastic MCFG (SM-
CFG). We present a polynomial time parsing
algorithm for finding the most probable deriva-
tion tree, which is applicable to RNA sec-
ondary structure prediction including pseudo-
knots. Also, we propose a probability parame-
ter estimation algorithm based on the EM (ex-
pectation maximization) algorithm. Finally, we
show some experimental results on pseudoknot
prediction for three RNA families using the SM-
CFG parsing algorithm, which show good pre-
diction accuracy.

2. Stochastic Multiple Context-Free
Grammar

For an alphabet Σ, let Σ∗ denote the set of all
finite sequences over Σ. The empty sequence is
denoted by ε. For a sequence w ∈ Σ∗, let |w|
denote the length of w, that is, the number of
symbols occurring in w.

A stochastic multiple context-free grammar
(stochastic MCFG, or SMCFG) is a probabilis-

tic extension of MCFG 7),14). An SMCFG is a
5-tuple G = (N, T, F, P, S) where N is a finite
set of nonterminals, T is a finite set of terminals,
F is a finite set of functions, P is a finite set of
(production) rules and S ∈ N is the start sym-
bol. For each A ∈ N , a positive integer denoted
by dim(A) is given and A derives dim(A)-tuples
of terminal sequences. For the start symbol S,
dim(S) = 1. For each f ∈ F , positive integers
di (0 ≤ i ≤ k) are given and f is a total function
from (T ∗)d1 × · · · × (T ∗)dk to (T ∗)d0 satisfying
the following condition (F):
(F) Let xi = (xi1, . . . , xidi

) denote the ith ar-
gument of f for 1 ≤ i ≤ k. The hth compo-
nent of the function value for 1 ≤ h ≤ d0,
denoted by f [h], is defined as

f [h][x1, . . . , xk]=βh0zh1βh1zh2 · · · zhvh
βhvh

(1)

where βhl ∈ T ∗ (0 ≤ l ≤ vh) and zhl ∈
{xij | 1 ≤ i ≤ k, 1 ≤ j ≤ di} (1 ≤ l ≤
vh). The total number of occurrences of
xij in the right-hand sides of (1) from h = 1
through d0 is at most one.

Each rule in P has the form of A0
p→

f [A1, . . . , Ak] where Ai ∈ N (0 ≤ i ≤ k), f :
(T ∗)dim(A1)×· · ·×(T ∗)dim(Ak) → (T ∗)dim(A0) ∈
F and p is a real number with 0 < p ≤ 1 called
the probability of this rule. The summation of
the probabilities of the rules with the same left-
hand side should be one. If we are not inter-
ested in p, we just write A0 → f [A1, . . . , Ak].
If k ≥ 1, the rule is called a nonterminating
rule, and if k = 0, it is called a terminat-
ing rule. A terminating rule A0 → f [] with
f [h][] = βh (1 ≤ h ≤ dim(A0)) is simply writ-
ten as A0 → (β1, . . . , βdim(A0)).

We define derivation trees as follows:
(D1) If A

p→ α ∈ P (α ∈ (T ∗)dim(A)), then
the ordered tree with the root labeled A
which has α as the only one child is a
derivation tree for α with probability p.

(D2) If A
p→ f [A1, . . . , Ak] ∈ P and t1, . . . , tk

with the roots labeled A1, . . . , Ak are
derivation trees for α1, . . . , αk with prob-
abilities p1, . . . , pk, respectively, then the
ordered tree with the root labeled A (or
A : f if necessary) which has t1, . . . , tk as
(immediate) subtrees from left to right is a
derivation tree for f [α1, . . . , αk] with prob-
ability p ·∏k

i=1 pi.
For A ∈ N , α ∈ (T ∗)dim (A) and q (0 <
q ≤ 1), we write A

∗⇒ α with probability q

14 IPSJ Transactions on Bioinformatics Nov. 2006

if q is the summation of the probabilities of
derivation trees for α with the root labeled
A. The language generated by an SMCFG
G is defined as L(G) = {w ∈ T ∗ | S

∗⇒
w with probability greater than 0}.
Example 1. Let G1 = (N1, T1, F1, P1, S) be an
SMCFG where N1 = {S, A}, T1 = {a, b} and
P1 = {S 1→ J [A], A

0.3→ f [A], A
0.7→ (ab, cd)}

where dim(S) = 1, dim(A) = 2, J [(x1, x2)] =
x1x2 and f [(x1, x2)] = (ax1b, cx2d). Then,
A

∗⇒ (ab, cd) with probability 0.7 by the third
rule, which is followed by A

∗⇒ f [(ab, cd)] =
(aabb, ccdd) with probability 0.3 · 0.7 = 0.21
by the second rule. Also, by the first rule,
S

∗⇒ J [(aabb, ccdd)] = aabbccdd with probabil-
ity 1·0.21 = 0.21. In fact, L(G1) = {anbncndn |
n ≥ 1}.
Example 2. Consider an MCFG G2 =
({S, A, X1, X2}, {a, c, g, u}, F2, P2, S) ☆ for gen-
erating RNA sequences where P2 and F2 are as
follows:

S → J [A],
A→ UPα

1L[A], X1 → UPα
1L[A],

A→ UPα
1R[A], A→ UPα

1R[X1],
A→ UPα

2L[A], X2 → UPα
2L[A],

A→ UPα
2R[A], A→ UPα

2R[X2],
A→ BPαβ [A],
A→ (ε, ε),
J [(x1, x2)] = x1x2,

UPα
1L[(x1, x2)] = (αx1, x2),

UPα
1R[(x1, x2)] = (x1α, x2),

UPα
2L[(x1, x2)] = (x1, αx2),

UPα
2R[(x1, x2)] = (x1, x2α),

BPαβ [(x1, x2)] = (αx1, x2β).
Note that α ∈ {a, c, g, u} and (α, β) ∈
{(a, u), (u, a), (c, g), (g, c)}. Functions have
mnemonic names where UP and BP stand
for unpair and base pair respectively. The
RNA sequence agacuu in Fig. 2 can be gen-
erated by the above rules as follows: A

∗⇒
BP gc[(ε, ε)] = (g, c), A

∗⇒ BP au[(g, c)] =
(ag, cu), X2

∗⇒ UP a
2L[(ag, cu)] = (ag, acu),

A
∗⇒ UPu

2R[(ag, acu)] = (ag, acuu) and S
∗⇒

J [(ag, acuu)] = agacuu. G2 has a derivation
tree (Fig. 3) for agacuu which represents the
pseudoknot shown in Fig. 2.

In this paper, we focus on an SMCFG GR =
(N, T, F, P, S) that satisfies the following con-

☆ For simplicity, we consider a non-stochastic gram-
mar here.

Fig. 2 Example of a pseudoknot.

Fig. 3 A derivation tree in G2.

ditions: GR has m different nonterminals de-
noted by W1, . . . , Wm, each of which uses the
only one type of a rule denoted by E, S, D,
B1, B2, B3, B4, U1L, U1R, U2L, U2R or P ☆☆

(see Table 1). The type of Wv is denoted
by type(v) and we predefine type(1) = S, that
is, W1 is the start symbol. Consider a sam-
ple rule set Wv → UPα

1L[Wy] | UPα
1L[Wz] where

UPα
1L[(x1, x2)] = (αx1, x2) and α ∈ T . For each

rule r, two real values called transition proba-
bility p1 and emission probability p2 are spec-
ified as shown in Table 1. The probability of
r is simply defined as p1 · p2. In application,
p1 = tv(y) and p2 = ev(ai), . . . in Table 1 are
parameters for the grammar, which are set by
hand or by a training algorithm (Section 3.3)
depending on the set of possible sequences to
be analyzed. GR can generate RNA sequences
corresponding to pseudoknots (see Example 2
and Ref. 9)).

3. Algorithms for SMCFG

In RNA structure analysis using stochastic
grammars, we have to deal with the following
three problems 4):
(1) Calculate the optimal alignment of a se-

quence to a stochastic grammar. (align-
ment problem)

(2) Calculate the probability of a sequence,
given a stochastic grammar. (scoring
problem)

(3) Estimate optimal probability parameters
for a stochastic grammar, given a set of
example sequences. (training problem)

In this section, we give solutions to each

☆☆ These types stand for End, Start, Delete, Bifur-
cation, Unpair and Pair respectively.

Vol. 47 No. SIG 17(TBIO 1) RNA Pseudoknotted Structure Prediction Using SMCFG 15

Table 1 SMCFG GR.

Type Rule set Function Transition prob. Emission prob.

E Wv → (ε, ε) 1 1

S Wv → J [Wy] J [(x1, x2)] = x1x2 tv(y) 1

D Wv → SK[Wy] SK[(x1, x2)] = (x1, x2) tv(y) 1

B1 Wv → C1[Wy , Wz] C1[x1, (x21, x22)] = (x1x21, x22) 1 1

B2 Wv → C2[Wy , Wz] C2[x1, (x21, x22)] = (x21x1, x22) 1 1

B3 Wv → C3[Wy , Wz] C3[x1, (x21, x22)] = (x21, x1x22) 1 1

B4 Wv → C4[Wy , Wz] C4[x1, (x21, x22)] = (x21, x22x1) 1 1

U1L Wv → UP
ai
1L[Wy] UP

ai
1L[(x1, x2)] = (aix1, x2) tv(y) ev(ai)

U1R Wv → UP
aj

1R[Wy] UP
aj

1R[(x1, x2)] = (x1aj , x2) tv(y) ev(aj)

U2L Wv → UP
ak
2L [Wy] UP

ak
2L [(x1, x2)] = (x1, akx2) tv(y) ev(ak)

U2R Wv → UP
al
2R[Wy] UP

al
2R[(x1, x2)] = (x1, x2al) tv(y) ev(al)

P Wv → BP aial [Wy] BP aial [(x1, x2)] = (aix1, x2al) tv(y) ev(ai, al)

problem for the specific SMCFG GR =
(N, T, F, P, S).

3.1 Alignment Problem
The alignment problem for GR is to find the

most probable derivation tree for a given in-
put sequence. This problem can be solved by
a dynamic programming algorithm similar to
the CYK algorithm for SCFGs 4), and in this
paper, we also call the parsing algorithm for
GR the CYK algorithm. We fix an input se-
quence w = a1 · · · an (|w| = n). In fact, w
is an RNA sequence composed of four sym-
bols a, c, g and u. Let γv(i, j) and γy(i, j, k, l)
be the logarithm of maximum probabilities of
a derivation subtree rooted at a nonterminal
Wv for a terminal subsequence ai · · · aj and
of a derivation subtree rooted at a nontermi-
nal Wy for a pair of terminal subsequences
(ai · · · aj , ak · · · al) respectively. The variables
γv(i, i− 1) and γy(i, i− 1, k, k − 1) are the log-
arithm of maximum probabilities for an empty
sequence ε and a pair of ε. Let τv(i, j) and
τy(i, j, k, l) be traceback variables for construct-
ing a derivation tree, which are calculated to-
gether with γv(i, j) and γy(i, j, k, l). We define
Cv = {y | Wv → f [Wy] ∈ P, f ∈ F}. To avoid
non-emitting cycles, we assume that the non-
terminals are numbered such that v < y for all
y ∈ Cv. The CYK algorithm uses a five dimen-
sional dynamic programming matrix to calcu-
late γ, which leads to log P (w, π̂ | θ) where π̂
is the most probable derivation tree and θ is
an entire set of probability parameters. The
illustration of the iteration step in the CYK al-
gorithm is shown in Fig. 4. The detailed de-
scription of the algorithm is as follows:
Algorithm 1 (CYK).
Initialization:

for i← 1 to n+1, k ← i to n+1, v ← 1 to m
do if type(v) = E

then γv(i, i− 1, k, k − 1)← 0
else γv(i, i− 1, k, k − 1)← −∞

Iteration:
for i← n downto 1, j ← i−1 to n, k ← n+1
downto j + 1, l← k − 1 to n, v ← 1 to m

do if type(v) = E
then if j = i− 1 and l = k − 1

then skip
else γv(i, j, k, l)← −∞

if type(v) = S
then γv(i, j)

← max
y∈Cv

max
h=i−1,...,j

[log tv(y)

+γy(i, h, h + 1, j)]
τv(i, j)
← arg max

(y,h)
[log tv(y)+γy(i, h, h+1, j)]

if type(v) = B1 and Wv → C1[Wy, Wz]
then γv(i, j, k, l)

← max
h=i−1,...,j

[γy(i, h)+γz(h+1, j, k, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γy(i, h)+γz(h+1, j, k, l)]

if type(v) = B2 and Wv → C2[Wy, Wz]
then γv(i, j, k, l)

← max
h=i−1,...,j

[γy(h+1, j)+γz(i, h, k, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γy(h+1, j)+γz(i, h, k, l)]

if type(v) = B3 and Wv → C3[Wy, Wz]
then γv(i, j, k, l)

← max
h=k−1,...,l

[γz(i, j, h+1, l)+γy(k, h)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γz(i, j, h+1, l)+γy(k, h)]

if type(v) = B4 and Wv → C4[Wy, Wz]
then γv(i, j, k, l)

16 IPSJ Transactions on Bioinformatics Nov. 2006

(a) type(v) = S (b) type(v) = B1 (c) type(v) = B2

(d) type(v) = B3 (e) type(v) = B4 (f) otherwise

Fig. 4 Illustration of the iteration step for calculating γ.

← max
h=k−1,...,l

[γz(i, j, k, h)+γy(h+1, l)]

τv(i, j, k, l)
← arg max

(y,z,h)
[γz(i, j, k, h)+γy(h+1, l)]

if type(v) = P
then if j = i− 1 or l = k − 1

then γv(i, j, k, l)← −∞
else γv(i, j, k, l)
← max

y∈Cv

[log ev(ai, al) + log tv(y)

+γy(i + 1, j, k, l − 1)]
τv(i, j, k, l)
← arg max

y
[log ev(ai, al) + log tv(y)

+γy(i + 1, j, k, l − 1)]
else γv(i, j, k, l)
← max

y∈Cv

[log ev(ai, aj , ak, al) + log tv(y)

+γy(i + ∆1L
v , j −∆1R

v , k + ∆2L
v ,

l −∆2R
v)]

τv(i, j, k, l)
← arg max

y
[log ev(ai, aj , ak, al)

+ log tv(y) + γy(i + ∆1L
v , j −∆1R

v ,
k + ∆2L

v , l −∆2R
v)]

Note: ev(ai, aj , ak, al) = ev(ai) for type(v) =
U1L, ev(ai, aj , ak, al) = ev(aj) for type(v) =
U1R, ev(ai, aj , ak, al) = ev(ak) for type(v) =
U2L, ev(ai, aj , ak, al) = ev(al) for type(v) =
U2R, ev(ai, aj , ak, al) = 1 for the other types
except P. Also, ∆1L

v = 1 for type(v) = U1L,
∆1R

v = 1 for type(v) = U1R, ∆2L
v = 1 for

type(v) = U2L, ∆2R
v = 1 for type(v) = U2R,

and ∆1L
v , . . . , ∆2R

v are set to 0 for the other
types except P.

When the calculation terminates, we obtain
log P (w, π̂ | θ) = γ1(1, n). If there are b Bifur-
cation nonterminals and a other nonterminals,

the time and space complexities of the CYK al-
gorithm are O(amn4 + bn5) and O(mn4), re-
spectively. To recover the optimal derivation
tree, we use the traceback variables τ and the
push-down stack holding tuples of integers of
the forms (v, i, j) and (y, i, j, k, l). The full de-
scription of the traceback algorithm is omitted
(see Ref. 9)).

3.2 Scoring Problem
As in SCFGs 4), the scoring problem for GR

can be solved by the inside algorithm. The in-
side algorithm calculates the summed probabil-
ities αv(i, j) and αy(i, j, k, l) of all derivation
subtrees rooted at a nonterminal Wv for a sub-
sequence ai · · · aj and of all derivation subtrees
rooted at a nonterminal Wy for a pair of sub-
sequences (ai · · · aj , ak · · · al) respectively. The
variables αv(i, i − 1) and αy(i, i − 1, k, k − 1)
are defined for empty sequences in a similar
way to the CYK algorithm. Therefore, we can
easily obtain the inside algorithm by replac-
ing max operations with summations in the
CYK algorithm (see Ref. 9)). When the cal-
culation terminates, we obtain the probabil-
ity P (w | θ) = α1(1, n). The time and space
complexities of the algorithm are identical with
those of the CYK algorithm.

In order to re-estimate the probability pa-
rameters of GR, we need the outside algorithm.
The outside algorithm calculates the summed
probability βv(i, j) of all derivation trees ex-
cluding subtrees rooted at a nonterminal Wv

generating a subsequence ai · · · aj . Also, it cal-
culates βy(i, j, k, l), the summed probability of
all derivation trees excluding subtrees rooted
at a nonterminal Wy generating a pair of sub-

Vol. 47 No. SIG 17(TBIO 1) RNA Pseudoknotted Structure Prediction Using SMCFG 17

sequences (ai · · · aj , ak · · · al). In the algorithm,
we will use Pv = {y | Wy → f [Wv] ∈ P, f ∈
F}. Note that calculating the outside vari-
ables β requires the inside variables α. Unlike
CYK and inside algorithms, the outside algo-
rithm recursively works its way inward. The
time and space complexities of the outside algo-
rithm are the same as those of CYK and inside
algorithms. Formal description of the outside
algorithm is shown in Appendix A.1.

3.3 Training Problem
The training problem for GR can be solved

by the EM algorithm called the inside-outside
algorithm where the inside variables α and out-
side variables β are used to re-estimate proba-
bility parameters.

First, we consider the probability that a non-
terminal Wv is used at positions i, j, k and l in
a derivation of a single sequence w. If type(v) =
S, the probability is 1

P (w|θ)αv(i, j)βv(i, j), oth-
erwise 1

P (w|θ)αv(i, j, k, l)βv(i, j, k, l). By sum-
ming these over all positions in the sequence, we
can obtain the expected number of times that
Wv is used for w as follows: for type(v) = S,
the expected count is

1
P (w | θ)

n+1∑

i=1

n∑

j=i−1

αv(i, j)βv(i, j),

otherwise
1

P (w | θ)

n+1∑

i=1

n∑

j=i−1

n+1∑

k=j+1

n∑

l=k−1

αv(i, j, k, l)

βv(i, j, k, l).
Next, we extend these expected values from a
single sequence w to multiple independent se-
quences w(r) (1 ≤ r ≤ N). Let α(r) and β(r) be
the inside and outside variables calculated for
each input sequence w(r). Then we can obtain
the expected number of times E(v) that a non-
terminal Wv is used for training sequences w(r)

(1 ≤ r ≤ N) by summing the above terms over
all sequences: for type(v) = S,

E(v) =
N∑

r=1

n+1∑

i=1

n∑

j=i−1

1
P (w(r) | θ)

α(r)
v (i, j)

β(r)
v (i, j),

otherwise

E(v) =
N∑

r=1

n+1∑

i=1

n∑

j=i−1

n+1∑

k=j+1

n∑

l=k−1

1
P (w(r) | θ)

α(r)
v (i, j, k, l)β(r)

v (i, j, k, l).

Similarly, for a given Wy, the expected number
of times E(v → y) that a rule Wv → f [Wy]
is applied can be obtained (see Appendix A.2).
For a given terminal a or a pair of terminals
(a, b), we can also obtain the expected number
of times E(v → a) (or E(v → ab)) that a rule
containing a (or a and b) is applied, as shown
in Appendix A.2.

Now, we re-estimate probability parameters
by using the above expected counts. Let t̂v(y)
be the re-estimated probability that a rule
Wv → f [Wy] is applied. Also, let êv(a) (or
êv(a, b)) be the re-estimated probability that a
rule containing a (or a and b) is applied. We
can obtain each re-estimated probability by the
following equations:

t̂v(y)=
E(v → y)

E(v)
, êv(a)=

E(v → a)
E(v)

,

êv(a, b)=
E(v → ab)

E(v)
.

(2)

Note that the expected count correctly corre-
sponding to its nonterminal type must be sub-
stituted for the above equations. In summary,
the inside-outside algorithm is as follows:
Algorithm 2 (Inside-Outside).
Initialization: Pick arbitrary probability pa-

rameters of the model.
Iteration: Calculate the new probability pa-

rameters using (2). Calculate the new log like-
lihood

∑N
r=1 log P (w(r) | θ) of the model.

Termination: Stop if the change in log likeli-
hood is less than predefined threshold.

4. Experimental Results

4.1 Data for Experiments
The data sets for experiments were taken

from an RNA family database called “Rfam”
(version 7.0) 6) which is a database of multi-
ple sequence alignment and covariance mod-
els 5) representing non-coding RNA fami-
lies. We selected three viral RNA fam-
ilies with pseudoknot annotations named
Corona pk3 (Corona), HDV ribozyme (HDV)
and Tombus 3 IV (Tombus) (see Table 2).
Corona pk3 has a simple pseudoknotted struc-
ture, whereas HDV ribozyme and Tombus 3 IV
have more complicated structures with pseudo-
knot.

4.2 Implementation
We specified a particular SMCFG GR by uti-

lizing secondary structure annotation of each
family. Rules were determined by consider-

18 IPSJ Transactions on Bioinformatics Nov. 2006

Table 2 Three RNA families from Rfam ver. 7.0.

Family Range of length # of annotated sequences # of test sequences
Corona pk3 62–64 14 10
HDV ribozyme 87–91 15 10
Tombus 3 IV 89–92 18 12

Table 3 Prediction results.

Family Precision [%] Recall [%] CPU time [sec]
Average Min Max Average Min Max Average Min Max

Corona pk3 99.4 94.4 100.0 99.4 94.4 100.0 27.8 26.0 30.4
HDV ribozyme 100.0 100.0 100.0 100.0 100.0 100.0 252.1 219.0 278.4
Tombus 3 IV 100.0 100.0 100.0 100.0 100.0 100.0 244.8 215.2 257.5

Fig. 5 Comparison of a prediction result with a trusted structure in Rfam.

Table 4 Comparison between SMCFG and PSTAG.

Model Average precision [%] Average recall [%]
Corona HDV Tombus Corona HDV Tombus

SMCFG 99.4 100.0 100.0 99.4 100.0 100.0
PSTAG 95.5 95.6 97.4 94.6 94.1 97.4

ing consensus secondary structure. Probabil-
ity parameters were estimated in a few se-
lected sequences by the simplest pseudocount-
ing method known as the Laplace’s rule 4): to
add one extra count to the true counts for each
base configuration observed in a few selected se-
quences. Note that the inside-outside algorithm
was not used in the experiments. The other se-
quences in the alignment were used as the test
sequences for prediction (see Table 2). We im-
plemented the CYK algorithm with traceback
in ANSI C on a machine with Intel Pentium
D CPU 2.80 GHz and 2.00 GB RAM. Straight-
forward implementation gives rise to a serious
problem of lack of memory space due to the
higher order dynamic programming matrix (re-
member that the space complexity of the CYK
algorithm is O(mn4)). The dynamic program-
ming matrix in our specified model is sparse,
and therefore, we successfully implemented the
matrix as a hash table storing only nonzero
probability values (equivalently, finite values of
the logarithm of probabilities).

4.3 Tests
We tested prediction accuracy by calculat-

ing precision and recall (sensitivity), which are

the ratio of the number of correct base pairs
predicted by the algorithm to the total num-
ber of predicted base pairs, and the ratio of
the number of correct base pairs predicted by
the algorithm to the total number of base pairs
specified by the trusted annotation, respec-
tively. The results are shown in Table 3.
A nearly correct prediction (94.4% precision
and recall) for Corona pk3 is shown in Fig. 5
where underlined base pairs agree with trusted
ones. The secondary structures predicted by
our algorithm agree very well with the trusted
structures. The running time of prediction in
Corona pk3 is much shorter than that of predic-
tion in HDV ribozyme and Tombus 3 IV since
every sequence in Corona pk3 can be generated
by rules without Bifurcation nonterminals.
In this case, the time complexity of the CYK
algorithm is O(m2n4).

4.4 Comparison with PSTAG
We compared the prediction accuracy of our

SMCFG algorithm with that of PSTAG al-
gorithm 10) (see Table 4). PSTAGs, as we
have mentioned before, are proposed for model-
ing pairwise alignment of RNA sequences with
pseudoknots and assign a probability to each

Vol. 47 No. SIG 17(TBIO 1) RNA Pseudoknotted Structure Prediction Using SMCFG 19

alignment of TAG derivation trees. PSTAG al-
gorithm, based on dynamic programming, cal-
culates the most likely alignment for the pair
of TAG derivation trees where one of them is
in the form of an unfolded sequence and the
other is a TAG derivation tree for known struc-
ture. SMCFG method is at least comparable to
PSTAG method in the same test sets.

5. Discussion

In the computational experiments using SM-
CFG, we obtained good prediction results in
accuracy and we did not trained probability pa-
rameters using the inside-outside algorithm any
more. Part of the reason for success of pre-
diction without training is that we were able
to obtain good structural alignment from the
database. The word “good” means that every
trusted structure is little different from con-
sensus structure and the number of gaps in
alignment is relatively few. In fact, an ear-
lier experimental results, omitted in this paper,
showed only 76.6 % average precision and re-
call in Corona pk3 and 95.7 % in Tombus 3 IV.
We should notice that there are more gaps
in the alignment of Corona pk3 than that of
Tombus 3 IV. Changing rules in such a way
that Delete rules are not successively used af-
ter the terminating rule Wv → (ε, ε), we can
obtain the present results shown in Table 3.
Hence, prediction accuracy will depend on the
way to construct rules. We think that the most
sensitive factor for prediction accuracy will be
the number of consecutive gaps in alignment.

PSTAG method aligns an unfolded sequence
with a derivation tree representing trusted
structure. In SMCFG, rules are constructed ac-
cording to a consensus structure and then the
most probable derivation tree is calculated. In
this sense, SMCFG and PSTAG have a com-
mon property that both of them take structural
alignment into consideration implicitly or ex-
plicitly. Time and space complexities of SM-
CFG algorithm have the same order as those
of PSTAG algorithm, whereas SMCFG algo-
rithm consumes less memory than PSTAG algo-
rithm since the dynamic programming matrix
of SMCFG algorithm is sparse. This greatly
contributes to practicability in computational
structure prediction.

It is not certain that the differences in pre-
cision and recall between SMCFG and PSTAG
are statistically significant since the number of
analyzed data sets is small. SMCFGs can have

arbitrary number of nonterminals and rules.
On the other hand, PSTAG method takes three
finite states into account, representing match,
insertion and deletion states. Here, we regard
nonterminals as states and rule application as
state transitions 4). The difference of the num-
ber of finite states may affect prediction accu-
racy.

6. Conclusion

In this paper, we have proposed a probabilis-
tic model named SMCFG, and designed a poly-
nomial time parsing and a parameter estima-
tion algorithm for the specific SMCFG. More-
over, we have demonstrated computational ex-
periments of RNA secondary structure predic-
tion with pseudoknots using SMCFG parsing
algorithm, which show good performance in ac-
curacy.

Comparing with other prediction methods
such as a thermodynamical approach, stochas-
tic grammars have an advantage in easily mod-
eling RNA secondary structure we would like
to analyze and training probability parameters.
We should notice that there is a trade-off be-
tween prediction accuracy and cost for con-
structing an initial grammar.

Acknowledgments This work is sup-
ported in part by Grant-in-Aid for Scientific Re-
search from Japan Society for the Promotion of
Science (JSPS). The first author thanks JSPS
Research Fellowships for Young Scientists for
their generous financial assistance. The authors
thank Dr. Yoshiaki Takata for his useful com-
ments on implementation of high dimensional
dynamic programming.

References

1) Akutsu, T.: Dynamic Programming Algo-
rithms for RNA Secondary Structure Predic-
tion with Pseudoknots, Discrete Applied Math-
ematics, Vol.104, pp.45–62 (2000).

2) Brown, M. and Wilson, C.: RNA Pseudo-
knot Modeling Using Intersections of Stochas-
tic Context Free Grammars with Applications
to Database Search, Proc. Pacific Symposium
on Biocomputing, pp.109–125 (1996).

3) Cai, L., Malmberg, R.L. and Wu, Y.: Stochas-
tic Modeling of RNA Pseudoknotted Struc-
tures: A Grammatical Approach, Bioinformat-
ics, Vol.19, suppl.1, pp.i66–i73 (2003).

4) Durbin, R., Eddy, S.R., Krogh, A. and
Mitchison, G.: Biological Sequence Analysis,
Cambridge University Press (1998).

5) Eddy, S.R. and Durbin, R.: RNA Sequence

20 IPSJ Transactions on Bioinformatics Nov. 2006

Analysis Using Covariance Models, Nuc. Acids
Res., Vol.22, No.11, pp.2079–2088 (1994).

6) Griffiths-Jones, S., Bateman, A., Marshall,
M., Khanna, A. and Eddy, S.R.: Rfam: An
RNA Family Database, Nuc.Acids Res., Vol.31,
No.1, pp.439–441 (2003).

7) Kasami, T., Seki, H. and Fujii, M.: Gen-
eralized Context-Free Grammar and Multiple
Context-Free Grammar, IEICE Trans. Inf. &
Syst., Vol.J71-D, No.5, pp.758–765 (1988). (in
Japanese).

8) Kato, Y., Seki, H. and Kasami, T.: On the
Generative Power of Grammars for RNA Sec-
ondary Structure, IEICE Trans. Inf. & Syst.,
Vol.E88-D, No.1, pp.53–64 (2005).

9) Kato, Y. and Seki, H.: Stochastic Multiple
Context-Free Grammar for RNA Pseudoknot
Modeling, NAIST Info.Sci.Tech.Rep., NAIST-
IS-TR2006002 (2006).

10) Matsui, H., Sato, K. and Sakakibara, Y.: Pair
Stochastic Tree Adjoining Grammars for Align-
ing and Predicting Pseudoknot RNA Struc-
tures, Bioinformatics, Vol.21, No.11, pp.2611–
2617 (2005).

11) Rivas, E. and Eddy, S.R.: A Dynamic Pro-
gramming Algorithm for RNA Structure Pre-
diction Including Pseudoknots, J. Mol. Biol.,
Vol.285, pp.2053–2068 (1999).

12) Rivas, E. and Eddy, S.R.: The Language of
RNA: A Formal Grammar that Includes Pseu-
doknots, Bioinformatics, Vol.16, No.4, pp.334–
340 (2000).

13) Sakakibara, Y., Brown, M., Hughey, R., Mian,
I.S., Sjölander, K., Underwood, R.C. and Haus-
sler, D.: Stochastic Context-Free Grammars
for tRNA Modeling, Nuc. Acids Res., Vol.22,
pp.5112–5120 (1994).

14) Seki, H., Matsumura, T., Fujii M. and
Kasami, T.: On Multiple Context-Free Gram-
mars, Theor. Comput. Sci., Vol.88, pp.191–229
(1991).

15) Uemura, Y., Hasegawa, A., Kobayashi, S. and
Yokomori, T.: Tree Adjoining Grammars for
RNA Structure Prediction, Theor. Comput.
Sci., Vol.210, pp.277–303 (1999).

Appendix

A.1 Outside Algorithm

Algorithm 3 (Outside).
Initialization:

β1(1, n)← 1

Iteration:
for i ← 1 to n + 1, j ← n downto i − 1,
k ← j +1 to n+1, l← n downto k−1, v ← 1
to m

do if type(v) = S and Wy → C1[Wv, Wz]
then βv(i, j)

←
n∑

h=j

n+1∑

k′=h+1

n∑

l′=k′−1

βy(i, h, k′, l′)

αz(j + 1, h, k′, l′)
if type(v) = S and Wy → C2[Wv, Wz]

then βv(i, j)

←
i∑

h=1

n+1∑

k′=j+1

n∑

l′=k′−1

βy(h, j, k′, l′)

αz(h, i− 1, k′, l′)
if type(v) = S and Wy → C3[Wv, Wz]

then βv(i, j)

←
i∑

h=1

i−1∑

k′=h−1

n∑

l′=j

βy(h, k′, i, l′)

αz(h, k′, j + 1, l′)
if type(v) = S and Wy → C4[Wv, Wz]

then βv(i, j)

←
i∑

h=1

i−1∑

k′=h−1

i∑

l′=k′+1

βy(h, k′, l′, j)

αz(h, k′, l′, i− 1)
if type(v) �= S and Wy → C1[Wz, Wv]

then βv(i, j, k, l)

←
i∑

h=1

βy(h, j, k, l)αz(h, i− 1)

if type(v) �= S and Wy → C2[Wz, Wv]
then βv(i, j, k, l)

←
k−1∑

h=j

βy(i, h, k, l)αz(j + 1, h)

if type(v) �= S and Wy → C3[Wz, Wv]
then βv(i, j, k, l)

←
k∑

h=j+1

βy(i, j, h, l)αz(h, k − 1)

if type(v) �= S and Wy → C4[Wz, Wv]
then βv(i, j, k, l)

←
n∑

h=l

βy(i, j, k, h)αz(l + 1, h)

else βv(i, j, k, l)
←

∑

y∈Pv

βy(i−∆1L
y , j + ∆1R

y , k −∆2L
y ,

l+∆2R
y)ey(ai−∆1L

y
, aj+∆1R

y
, ak−∆2L

y
,

al+∆2R
y

)ty(v)

A.2 Expected Counts in Inside-Outside
Algorithm

E(v → y) =
N∑

r=1

n+1∑

i=1

n∑

j=i−1

j∑

h=i−1

1
P (w(r) | θ)

Vol. 47 No. SIG 17(TBIO 1) RNA Pseudoknotted Structure Prediction Using SMCFG 21

β(r)
v (i, j)tv(y)α(r)

y (i, h, h + 1, j)

for type(v) = S, and

E(v → y)=
N∑

r=1

n+1∑

i=1

n∑

j=i−1

n+1∑

k=j+1

n∑

l=k−1

1
P (w(r) | θ)

β(r)
v (i, j, k, l)ev(ai, aj , ak, al)tv(y)

α(r)
y (i + ∆1L

v , j −∆1R
v , k + ∆2L

v ,

l −∆2R
v)

otherwise.

E(v → a) =
N∑

r=1

n∑

i=1

n∑

j=i

n+1∑

k=j+1

n∑

l=k−1

1
P (w(r) | θ)

δ(a(r)
i = a)β(r)

v (i, j, k, l)
α(r)

v (i, j, k, l)
for type(v) = U1L,

E(v → a) =
N∑

r=1

n∑

i=1

n∑

j=i

n+1∑

k=j+1

n∑

l=k−1

1
P (w(r) | θ)

δ(a(r)
j = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l)

for type(v) = U1R,

E(v → a) =
N∑

r=1

n−1∑

i=1

n−1∑

j=i−1

n∑

k=j+1

n∑

l=k

1
P (w(r) | θ)

δ(a(r)
k = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l)

for type(v) = U2L,

E(v → a) =
N∑

r=1

n−1∑

i=1

n−1∑

j=i−1

n∑

k=j+1

n∑

l=k

1
P (w(r) | θ)

δ(a(r)
l = a)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l)

for type(v) = U2R, and

E(v → ab) =
N∑

r=1

n−1∑

i=1

n−1∑

j=i

n∑

k=j+1

n∑

l=k

1
P (w(r) | θ)

δ(a(r)
i =a, a

(r)
l =b)β(r)

v (i, j, k, l)

α(r)
v (i, j, k, l)

for type(v) = P, where δ(C) is 1 if the condition

C in the parenthesis is ture, and 0 if C is
false.

(Received June 13, 2006)
(Accepted July 12, 2006)

(Communicated by Tetsuo Shibuya)

Yuki Kato received the M.E.
degree in information processing
from Nara Institute of Science
and Technology in 2005. He is
currently a doctoral course stu-
dent of Graduate School of In-
formation Science, Nara Insti-

tute of Science and Technology. Also, he is a
Research Fellow of the Japan Society for the
Promotion of Science. His current research in-
terests include algorithms, formal language the-
ory and their application to biological sequence
analysis.

Hiroyuki Seki received the
Ph.D. degree in information and
computer sciences from Osaka
University in 1987. He was with
Osaka University as an Assis-
tant Professor in 1990–1992 and
an Associate Professor in 1992–

1994. In 1994, he joined the faculty of Nara
Institute of Science and Technology, where he
has been a Professor since 1996. His current re-
search interests include formal language theory
and formal approach to software development.

Tadao Kasami received the
Ph.D. degree in communication
engineering from Osaka Univer-
sity in 1963. In 1963, he joined
the faculty of Osaka Univer-
sity. He was a Professor at Os-
aka University in 1966–1994, at

Nara Institute of Science and Technology in
1992–1998, and at Hiroshima City University
in 1998–2003. He received the 1999 Claude E.
Shannon Award from IEEE Information The-
ory Society. He is a life fellow of IEEE and an
honorary member of IEICE.

