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Finding Video Parts with Natural Language

Mayu Otani1,a) Yuta Nakashima2,b) Esa Rahtu3,c) Janne Heikkilä4,d)

Abstract: The increasing number of videos have motivated the development of content-based video retrieval (CBVR)
methods, which search for videos whose content is relevant to a query. Since most existing datasets for this task
provide short video clips capturing a single activity, previous methods have focused on short video clips. However,
the majority of real-world videos are more lengthy and edited. Such videos may consist of multiple video clips and
may include various content within a video, thus previous methods may fail with real-world videos. In this paper, we
propose a new video retrieval task which aims to handle such multi-clip videos. The task is to find query-relevant parts
from a video consisting of multiple clips, which we call fine-grained video retrieval (FGVR). For this new task, we
build datasets from existing video-description datasets. We synthesize multi-clip video and query pairs by augment-
ing video-description datasets, which results in large-scale training and evaluation data. We introduce several deep
neural network-based approaches as baselines and a training scheme using the synthesized video and query pairs. We
investigate the baselines on two datasets built from YouTube and movie datasets, respectively, and present preliminary
results.

1. Introduction
The tremendous growth of online videos has increased de-

mands for content-based video retrieval (CBVR) that takes a nat-
ural language query as input and retrieves videos relevant to the
query from a huge database. To retrieve videos, the relevance be-
tween a query and a video clip is required. A major approach is
to develop a deep neural network that models relevance between
a query and a video clip as in [12], [26], [28], [30]. Most of
these existing methods assume that video clips in a database are
trimmed in such a way that the resulting video has consistent con-
tent, such as a single activity or an event. However, this problem
setting is not always valid in practice. Many real-world videos
including, YouTube videos, TV shows, or movies, are lengthy
and consist of multiple video clips which are not limited to a sin-
gle action or an event. As most existing methods are designed to
produce a relevance score aggregated over the whole content of a
video clip, this may exhibit drawbacks when they are applied to
such videos.

Observing the limitations, we propose a new video retrieval
task to find video parts which match a natural language query
(Figure 1). In this paper, we call this task as fine-grained video re-
trieval (FGVR). In contrast to existing CBVR tasks, FGVR aims
to handle more complex videos which may have multiple clips
and varying content within a video. This problem setting is more
alike to videos in the wild. Thus, we expect developing methods
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“She kisses his cheek”

Multi-clip video

Relevance estimation

Retrieved frames

Fig. 1 Given a natural language query, fine-grained video retrieval finds
video frames which the query describes (yellow borders). An input
video consists of multiple video clips.

for this task contributes to a wide range of applications.
Since this is a new task of video retrieval, there is no dataset

for training and testing FGVR methods. Making a FGVR dataset
that is large enough to develop recent deep network models will
require immense amount of human intervention, thus we ex-
ploit existing datasets. Previous work on CBVR utilizes large-
scale video-description datasets as benchmarks for their task
[2], [14], [16], [27]. As videos in video-description datasets are
trimmed to exclude scenes irrelevant to their descriptions, these
datasets cannot be used for our FGVR task. Instead of using
videos in these datasets as is, we make video and query pairs for
FGVR from the existing datasets. We concatenate several videos
and use one of the descriptions annotated to these videos as a
query sentence. By this data generation, we can obtain a num-
ber of videos, which have a query sentence and corresponding
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frame-level annotation of ground truth labels. As our data gen-
eration scheme can be applied to any video-description datasets,
large-scale benchmarks can be built. In this paper, we present two
FGVR benchmarks built from two video-description datasets:
one with YouTube videos, and the other with movies. In order
to promote the FGVR research, the compiled datasets will be re-
leased in public.

One possible approach for the FGVR task is to divide an in-
put video into shorter video clips and rank the video clips based
on query-relevance which can be computed by existing video re-
trieval methods, such as [17], [26]. Another way is to compute
query-relevance for every frame. In this approach, FGVR can
be done without temporal video segmentation. In this paper, we
explore both of these approaches. We implement deep neural
network-based methods and present preliminary results. We will
also provide implementations of the FGVR methods as baselines
on this task.

The contributions of this paper are as follows:
• We propose a new task of video retrieval, i.e., FGVR. This

task assumes that a video consists of multiple video clips,
which may contain different object, actions, or scenes. This
assumption is more practical because most videos (online
videos, broadcast programs, and movies) are edited and con-
sist of multiple video clips.

• We present several neural network-based baseline methods
for FGVR. We also propose a training scheme of models of
the baseline methods. In the experiments, we demonstrate
performance of the baseline methods on two datasets, which
are built from YouTube videos and movies, respectively. The
comparison of their results offers insights into developing
FGVR methods.

• We propose to synthesize video and query pairs from
existing video-description datasets. Our data generation
scheme can build FGVR samples from any video description
datasets. This enables large-scale benchmarks of this task,
which are essential for developing deep neural network-
based methods.

2. Related work
Video retrieval.

Early work addressed content-based video retrieval by detect-
ing predefined concepts in videos, such as objects, actions, and
events [18], [25]. A single visual concept may not be enough
to spot the desired video, so users are more likely to query with
their combinations. Video retrieval by natural language queries
provides an intuitive way to make a combination of concepts in a
specific context represented in a query. One possible approach is
to detect visual concepts and match them to extracted keywords
in a natural language query [7], [9], [24], [26], but as they re-
quire pre-trained concept detectors, such as [4], [23], [32], types
of concepts are limited.

In order to overcome such limitations, Socher et al. [19] pro-
posed to train embeddings of images and concept labels into a
common space, which can handle unseen concepts. Several ap-
proaches in this direction have been proposed on both image re-
trieval [3], [6] and video retrieval [12], [28], [33]. Xu et al. [28]

proposed a deep neural network for video retrieval by sentence
queries and vise versa. They embed a video clip and a sentence
into a common space to compute the similarity between them. Yu
et al.’s approach [30] learns a similarity metric between a whole
video content and a query sentence. In contrast to these meth-
ods, FGVR requires to estimate the relevance that varies within a
video.

FGVR is closely related to the works by Tapaswi et al. [21] and
Zhu et al. [33], which aim to align book text and movie scenes, as
well as query-focused video summarization by Sharghi et al. [17].
Both methods search for a part of a long video using a natu-
ral language query. The main difference between ours and this
task is that ours have less assumptions about target videos and
queries. In order to align book chapters or sentences to movie
scenes, these approaches [21], [33] assume that the movie comes
with closed captions and that the book text and the movie follow a
similar timeline. Sharghi et al.’s approach [17] only uses a limited
set of nouns as queries and does not accept more generic queries,
e.g., by natural language. Our task has neither rich metadata of
videos nor rough temporal locations.
Video and language datasets.

The research community has provided various datasets involv-
ing video and language, such as descriptions [2], [14], [16], [27],
[31], titles [20], [31], and concept labels [1], [8], [13]. Chen et
al. [2] provide 1,967 short YouTube video clips capturing a single
activity. Each video in this dataset is annotated with descriptions.
Xu et al. [27] released a larger-scale dataset, which contains 10K
video clips collected with a video search engine and natural lan-
guage descriptions annotated by crowdsource workers.

There are several datasets for specific domains. The movies
are one of such domains, and datasets of movies aligned with
descriptions are introduced in [10], [14], [15], [22]. Senina et
al. [16] collected cooking video clips and their descriptions. Zeng
et al. collected 18K user-generated videos and their titles. The av-
eraged length of the videos in this dataset are approximately 1.5
minutes ( longer than in most other datasets), and they are not
edited. The movie datasets in [14], [16] have alignment of de-
scription and video frames; therefore, they might be suitable for
our task. However, their vocabulary and content in video clips
are fairly different from other videos, such as online videos or
broadcast programs, since the movies includes fantasy, sci-fi, etc.

3. Fine-grained video retrieval by sentence
queries

3.1 Problem statement
In the FGVR task, the input is a video consisting of multi-

ple clips and a natural language query. The goal is to retrieve
a subset of frames whose content is semantically relevant to the
query (Figure1). Specifically, given a sentence and video frames
V = {v1, . . . vT }, where vt is a visual feature extracted from the t-th
frame, FGVR estimate relevance scores R = {r1, . . . , rT } at each
time step to retrieve frames. This task is similar to the video re-
trieval task for finding videos in a dataset which are relevant to a
query. However, video retrieval tasks often implicitly assume that
each video in the dataset is short and can be represented by a sin-
gle query sentence. This assumption is not valid for most videos,
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“Woman plays a song on the piano”Query:

A woman plays a song on the pianoVideo-description dataset

Shu�e and concatenate

A man is ...

A girl is ...

Fig. 2 FGVR samples are generated from a video-description dataset. A video clip associated with a
description is combined with randomly sampled videos. This results in a multi-clip video and a
sentence which describes only a part of the video.

e.g., broadcast programs, movies, and even YouTube videos. A
majority of these videos are lengthy and come with multiple con-
cepts or scenes. The FGVR task relaxes this assumption: only a
small part of the target video is relevant to a sentence query.

3.2 Data generation
Since there are no existing datasets for FGVR, we build such

by re-utilizing the existing CBVR datasets. To build datasets,
we need a number of videos and corresponding query sentences.
For FGVR benchmarks, videos must 1) consist of multiple clips,
2) have corresponding query sentence related to only a part of
the video, and 3) be annotated with frame-level relevance labels.
Since there is no dataset tailored for this task, we make video and
query pairs from a large-scale video-description dataset, such as
[14], [27].

The data generation using a video-description dataset is illus-
trated in Figure 2. To get a video consisting of multiple clips, we
sample several video clips and their corresponding descriptions.
We then choose one of the descriptions as a query sentence and
concatenate the video clips in random order. Concatenation of
multiple videos results in shot boundaries like most edited videos.
The frames in a video clip corresponding to the selected query
sentence are labeled as relevant frames, and other frames as irrel-
evant ones. By doing this, we can generate a number of videos
where only a small part of it is relevant to a query sentence. Our
data generation scheme can be applied to any dataset which pro-
vides videos and descriptions. This enables us to evaluate FGVR
methods on diverse videos provided by existing datasets.

3.3 FGVR baselines
For this task, we introduce several baseline methods which uti-

lize deep neural network models that read video frames V and
produce relevance scores R. We employed the pool5 layer of
ResNet-50 [4] for feature extraction from video frames.

3.3.1 Clip-level relevance prediction
One possible approach is to divide input video into short video

clips and compute relevance scores for each video clip as illus-
trated in Figure 3 (left). We call this approach a clip-level ap-
proach. We test two temporal video segmentation for this ap-
proach: Ground truth video segmentation uses clip boundaries in
a synthesized videos, and uniform segmentation divides videos
with a uniform interval. Similarly to [22], we implement two neu-
ral network models that take a sequence of frames {vts , . . . , vte } in
a video clip as input and produce a vector representation x that
summarizes the frames.
Frame pooling (F-Pool)

summarizes the frames {vts , . . . , vte } in a video clip by average
pooling. The averaged feature vectors are fed to a fully-connected
layer. Therefore, the F-Pool model maps a video clip into the
common feature space by

ṽ =

te∑
i=ts

vi, (1)

x = tanh(Wfpṽ + bfp), (2)

where Wfp and bfp are parameters of the fully-connected layer.
Weighted average (WA)

incorporates the soft-attention mechanism [29] in frame pool-
ing. The weights ai of the frame vi is computed based on the
frame feature and a query sentence y by

ei = wT
a tanh(Wa[y, vi] + ba), (3)

ai = exp(ei)/
tn∑

j=ts

exp(e j), (4)

where wa, Wa, and ba are learnable parameters, and [·, ·] denotes
the concatenation of vectors. The vector t is a text embedding
computed with a text encoding model described in Sec. 3.3.3.
Using the weights, we obtain a weighted sum of frames and feed
it to a fully-connected layer to get a clip representation x as:
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Video embedding

Text embedding

Relevance score

Clip

“A man is conducting
with happy excitement.”

Relevance score

Video embedding

Text embedding

“A man is conducting
with happy excitement.”

Fig. 3 Illustration of clip-level (left) and frame-level (right) approaches. Green bars for video frames
are feature vectors extracted using the ResNet model. For text, the sentence representation is
computed by the text encoding model in Section 3.3.3.

ṽwa =

te∑
i=ts

aivi, (5)

x = tanh(Wwaṽwa + bwa), (6)

where Wwa and bwa are parameters of the fully-connected layer.
3.3.2 Frame-level relevance prediction

In the clip-level approach, an input video needs to be seg-
mented beforehand; however, segment boundaries are not always
available, and temporal video segmentation itself is still a chal-
lenging task. Another direction for this task is to read frames and
produce a relevance score at each time step as in Figure 3 (right).
For this approach, we implemented three models that encodes
video frames to a sequence of vector representations {x1, . . . , xT }.
Sliding window (SW)

model reads an input frame sequence in the sliding window
fashion. At each time step, we perform average pooling over
frames within a temporal window and feed its output to a fully-
connected layer in the same way as the F-Pool model.
Bidirectional-LSTM (biLSTM)

model utilizes a two-layer LSTM network that reads frames in
forward and backward directions as in Figure 3 (right). Hidden
states at each time step are concatenated and transformed with a
fully-connected layer as:

xt = tanh(W[hforward
t , hbackward

t ] + b), (7)

where hforward
t and hbackward

t are hidden states of the forward-
LSTM and the backward-LSTM layers for the input frame vt.
Fully-connected (FC)

model is a variation of the biLSTM model. We remove the
temporal connection by replacing the bidirectional LSTM lay-
ers with a fully-connected layer. Therefore, the input frame vt is
transformed by

ht = tanh(W1vt + b1), (8)

xt = tanh(W2ht + b2), (9)

where W1, W2, b1, and b2 are parameters of the fully-connected
layers. This model estimates relevance scores in a frame-by-
frame fashion. Therefore, this model is equivalent to frame-level
CBVR.

In the frame-level approaches, relevance score between a query
text and frame embedding at each time step is computed.
3.3.3 Text encoding

For text encoding, we employ two models that encode a se-
quence of words {w1, . . . , wN} into a vector representation y,
where wn is a word vector. One is the word pooling-based model
(W-Pool). Input word vectors are averaged to be transformed
with a fully-connected layer as:

w̃ =

N∑
n=1

wn, (10)

y = tanh(Wwpw̃ + bwp), (11)

where Wwp and bwp are parameters of the fully-connected layer
and y is a sentence representation.

The other is the word LSTM model (W-LSTM) that encodes a
sequence of word vectors with an LSTM layer, i.e.,

hn, cn = LSTM(wn, hn−1, cn−1), (12)

where hn and cn are a hidden state and a memory cell of the LSTM
layer, respectively. We employ the last hidden state as a represen-
tation of the sentence in the common feature space.

3.4 Training
The models for videos and sentences are jointly trained so that

the query relevance scores of relevant frames are larger than those
of others. We compute an averaged score of relevant and irrele-
vant frames, and update the model to make the difference between
the scores larger. During the training, a model is trained by min-
imizing the loss computed from predicted relevance score R and
ground truth label L = {l1, . . . , lT } as:

Loss(R, L) = max(−S corepos + S coreneg + µ, 0), (13)

S corepos =
1

Npos

T∑
t=1

ltrt, (14)

S coreneg =
1

Nneg

T∑
t=1

(1 − lt)rt, (15)

where Npos and Nneg are the number of relevant and irrelevant
frames in a video, respectively. lt is a label representing if the
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MSR-VTT MPII-MD
How to take care of 
donkeys.

A man in blue is 
interviewed on his 
yellow car.

He turns to see the 
weights on the ends 
of the bar, and 
someone walks up to 
him.

Someone o�ers her 
hands then guides 
her sister up from 
her seat.

Fig. 4 Query sentence and video pairs, where only keyframes are displayed for videos. The videos are
composed by combining multiple video clips from an existing video-description dataset. The ex-
amples in the left column are built from MSR-VTT, and in the right from MPII-MD. The red boxes
indicate the frames corresponding to the query sentence.

frame is relevant to a query sentence. We set lt = 1 if the frame is
relevant, and otherwise 0. The parameter µ is a predefined margin
to penalizes the smaller difference between the averaged score of
relevant and irrelevant frames than the margin. Models of the
clip-level approach do not produce frame-level scores, thus we
spread a clip-level score to all frames in the clip.

4. Experiments
We investigated the performance of the baselines described in

Section 3.3 on two benchmarks built from MSR Video to Text
(MSR-VTT) dataset [27] and the MPII Movie Description dataset
(MPII-MD) [15].

4.1 Implementation detail
The model was trained in an end-to-end manner with stochastic

gradient decent with the mini-batch size of 100. We used Adam
[5] for optimization with the initial learning rate 10−3 for MSR-
VTT and 10−4 for MPII-MD. In all experiments, models were
trained for 15 epochs, and we employed a model at the minimum
loss on the validation split. During training, we halved the learn-
ing rate at the 10th epoch. We adopted gradient clipping with
threshold 10.0 and weight decay with weight 0.0005 for MPII-
MD. We set the parameter µ for the loss function to 1.0. To extract
video frame features, we employed the output of the pool5 layer
of ResNet-50 pretrained on ImageNet [4]. The word embeddings
were initialized with word vectors by [11], which we found help-
ful for training. We set the output size of video and text encoding
models to 256. The window size of SW was 5, and input videos
were padded with zeros to keep the output length the same as the
number of input video frames. Both of the bidirectional LSTM
layers in the biLSTM model have 256 units, and the output vec-
tors were fed to the fully connected layers whose output size was
also 256.

4.2 Datasets
We tested baselines on the MSR-VTT and the MPII-MD

datasets. Examples of generated video and query pairs are
displayed in Figure 4. The MSR-VTT dataset includes 6,513
YouTube video clips, and 20 descriptions were annotated for each
video clips. MPII Movie Description dataset has 101,046 video
clips from movies, and each video clip was annotated with one

description. For the MSR-VTT dataset, we used training and test
splits provided by the MSR-VTT official web page. For the MPII-
MD dataset, we used splits for the LSMDC’16 movie annotation
and retrieval task [22]. Word vocabulary is collected from de-
scriptions in the training split. The descriptions were normalized
by punctuation removal and lowercasing, then we compiled a vo-
cabulary dictionary by sampling words occurring more than three
times in training queries, which results in 8,935 words for the
YouTube dataset and 10,066 words for the movie dataset. The
videos were down-sampled at 5 fps and rescaled to 244 × 244.
During building the datasets as in Section 3.2, we sampled three
video clips and description to get a video query pair as in Fig-
ure 2, which were trimmed into 20-100% of its original length.

4.3 Qualitative evaluation
We show some examples of relevance prediction by a model

trained for the FGVR task. We show relevance prediction exam-
ples by a model trained for the FGVR task. Figure 5 shows an
example of frame-level scores for different queries by the biL-
STM model. The video shown in Figure 5 was generated from
the MSR-VTT dataset. For query sentence (1) and (2), the model
predicted high relevance scores for corresponding frames. Inter-
estingly, for query (3), frames of a girl with a microphone got
high score as well as the ground truth frames of a crowds. This
might be caused by the crowd behind the girl. Within a video
clip, we can observe that relevance scores varied according to the
content of the frame, e.g., frame without the cooking tools are
less relevant than other frames for query (2).

4.4 Quantitative evaluation
We conducted a quantitative evaluation of predicting relevant

frames from multi-clipped videos on MSR-VTT and MPII-MD
datasets. We generated test videos in the same way as in Sec-
tion 3.2 from test splits of the datasets. For each test samples,
we computed frame-level relevance scores of a video to a query
sentence, then evaluated the performance with average precision
(AP). We report the mean and the standard deviation (the values
in parenthesis) of the AP scores over all test samples in Table 1.
To compute AP, the clip-level scores were transformed to frame-
level scores by simply spreading the clip-level score to all frames
in the clip. The scores obtained by random score prediction are
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(1)

(2)

(3)

(1) A little girl is performing (2) A woman in a red apron mixes 
ingredients in a bowl in a kitchen

(3) A crowd is cheering

Time

1

0

-1
1

0

-1
1

0

-1

Fig. 5 Relevance scores of a multi-clipped video for different queries. The horizontal axes represents
time. From top to bottom: scores for query (1), (2), and (3). Blue represents relevance scores and
yellow ground truth relevance labels. Overlapping areas are thus green.

reported in the bottom row.
Overall, cosine similarity performs better than partial order

similarity in this task. For clip-level approaches, there are no sig-
nificant differences between models. Note that these scores with
ground truth clip boundaries can be regarded as a sort of upper
bounds of the clip-level approaches. We also report scores ob-
tained by uniformly dividing input video into three clips (UNI).
These results suggest that the performance of clip-level FGVR
methods highly rely on temporal video segmentation.

On the other hand, we can also observe the frame-level ap-
proach, which do not require temporal video segmentation,
achieving good retrieval performance on the MSR-VTT dataset.
This suggests that video segmentation is not a necessity for
FGVR. From the comparison between models for the frame-level
approach, we can see that incorporating nearby frames improves
the performance. This might be because context obtained from
other frames is helpful to understand a video content.

For the MPII-MD benchmark, all baselines resulted in lower
scores. As this benchmark is more challenging as shown in Fig-
ure 4. Many of the sentences often describe complex scenes, for
which LSTM may have difficulties in encoding the semantics.
Moreover, movies often have dark and low-contrast scenes, which
may cause failures in understanding video content.

5. Conclusion
In this paper, we propose a new video retrieval task to find

relevant frames to a natural language query. This task is based
on the idea that developing video retrieval methods that can han-
dle untrimmed videos consisting of multiple clips is important
for real-world applications. For this task, we present a data gen-
eration scheme to build large-scale datasets. We also introduce
two lines of approaches and implemented baseline models for this
task. In our experiments, we present preliminary results on two
benchmarks, which are built from a YouTube video dataset and
a movie dataset. The benchmarks and codes will be available in

public. The experimental results suggest that the clip-level ap-
proach can be improved by leveraging sophisticated video seg-
mentation methods. We also observed that considering context
by the sliding window fashion or temporal connections between
frames helps to encode video frames. We also expect that text
encoding methods that can handle complicated sentence will be
a key component for further improvement. An FGVR task on
manually edited videos, e.g., retrieving a scene from a movie, is
a challenging and important topic. We will explore FGVR on
manually created videos by modifying video and text alignment
datasets, such as [14], [16] .
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[21] Tapaswi, M., Bäuml, M. and Stiefelhagen, R.: Book2movie: Aligning
video scenes with book chapters, IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1827–1835
(2015).

[22] Torabi, A., Tandon, N. and Sigal, L.: Learning Language-Visual Em-
bedding for Movie Understanding with Natural-Language (13 pages,
2016).

[23] Tran, D., Bourdev, L., Fergus, R., Torresani, L. and Paluri, M.: Learn-
ing Spatiotemporal Features With 3D Convolutional Networks, IEEE
International Conference on Computer Vision (ICCV), pp. 4489–4497
(2015).

[24] Ueki, K., Kikuchi, K., Saito, S. and Kobayashi, T.: Waseda at
TRECVID 2016: Ad-hoc Video Search, TRECVID Workshops (5
pages, 2016).

[25] Wang, M., Hong, R., Li, G., Zha, Z. J., Yan, S. and Chua, T. S.:
Event driven web video summarization by tag localization and key-
shot identification, IEEE Trans. Multimedia, Vol. 14, No. 4, pp. 975–
985 (2012).

[26] Xiong, B., Kim, G. and Sigal, L.: Storyline Representation of Ego-
centric Videos With an Applications to Story-Based Search, IEEE In-
ternational Conference on Computer Vision (ICCV), pp. 4525–4533
(2015).

[27] Xu, J., Mei, T., Yao, T. and Rui, Y.: MSR-VTT: A Large Video

Description Dataset for Bridging Video and Language, IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5288–5296 (2016).

[28] Xu, R., Xiong, C., Chen, W. and Corso, J.: Jointly modeling deep
video and compositional text to bridge vision and language in a uni-
fied framework, AAAI Conference on Artificial Intelligence, pp. 2346–
2352 (2015).

[29] Yao, L., Ballas, N., Larochelle, H. and Courville, A.: Describing
Videos by Exploiting Temporal Structure, IEEE International Con-
ference on Computer Vision (ICCV), pp. 4507–4515 (2015).

[30] Yu, Y., Ko, H., Choi, J. and Kim, G.: End-to-end Concept Word Detec-
tion for Video Captioning, Retrieval, and Question Answering, arXiv
preprint, arXiv:1610.02947 (20 pages, 2016).

[31] Zeng, K.-H., Chen, T.-H., Niebles, J. C. and Sun, M.: Title Generation
for User Generated Videos, European Conference on Computer Vision
(ECCV), pp. 609–625 (2016).

[32] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A. and Oliva, A.: Learn-
ing Deep Features for Scene Recognition using Places Database, Ad-
vances in Neural Information Processing Systems (NIPS), pp. 487–
495 (2014).

[33] Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Tor-
ralba, A. and Fidler, S.: Aligning Books and Movies: Towards Story-
like Visual Explanations by Watching Movies and Reading Books,
IEEE International Conference on Computer Vision (ICCV), pp. 19–
27 (2015).

c© 2018 Information Processing Society of Japan 7

Vol.2018-CVIM-211 No.7
2018/3/1


