
Vol. 48 No. SIG 5(TBIO 2) IPSJ Transactions on Bioinformatics Mar. 2007

Database/Software Paper

Self-organizing Clustering: Non-hierarchical Clustering

for Large Scale DNA Sequence Data

Kou Amano,†,†† Hiroaki Ichikawa,†† Hidemitsu Nakamura,††

Hisataka Numa,†† Kaoru Fukami-Kobayashi,†,†††

Yoshiaki Nagamura†† and Natsuo Onodera†

Recently, clustering has been recognized as an important and fundamental method that
analyzes and classifies large-scale sequence data to provide useful information. We devel-
oped a novel clustering method designated as Self-organizing clustering (SOC) that uses
oligonucleotide frequencies for large-scale DNA sequence data. We implemented SOC as
a command-line program package, and developed a server that provides access to it en-
abling visualization of the results. SOC effectively and quickly classifies many sequences
that have low or no homology to each other. The command-line program is downloadable
at http://rgp.nias.affrc.go.jp/programs/. The on-line web site is publicly accessible at
http://rgp.nias.affrc.go.jp/SOC/. The common gateway interface (CGI) for the server is
also provided within the package.

1. Introduction

Self-organizing clustering (SOC) rapidly
produces non-hierarchical clusters from a large
amount of DNA sequence data by using
oligonucleotide frequencies. By evading time-
consuming and complicated sequence align-
ments, it works effectively to classify sequences
that have low or no homology to each other
and that cannot be classified with existing
clustering tools. When sequences are obtained
from promoter regions, non-coding regions, or
are randomly sampled from several species,
they rarely have homology with each other.
SOC can classify even such sequences.

A prototype of SOC was originally developed
as a command-line program (SOC commands)
and released in 2003 1),2). We then made the
commands accessible through a web browser
designated as the SOC server.

2. Program Overview

The clustering algorithm of SOC is based on
the k-means and learns to move cluster nodes,
which represent clusters, expressing the cen-
troids of clusters. The time complexity of the
calculation is O(cnml), where c, n, m, and l
refer to the number of clusters specified by the
user, number of sequences, size of the vector
that is comprised of oligonucleotide frequencies,

† School of Library and Information Science, Univer-
sity of Tsukuba

†† National Institute of Agrobiological Sciences
††† RIKEN BioResource Center

and number of loop iterations, respectively.

3. Algorithm and Implementation

The SOC server consists of the following four
functions: (1) Preprocessing: generating a nu-
merical matrix whose elements correspond to
the oligonucleotide frequencies of the sequences.
(2) Initializing: placing cluster nodes at random
or according to user specification. (3) Clus-
ter node alignment: learning how to move each
cluster node so that it expresses the centroid
of the cluster. (4) Visualization: displaying the
results graphically. Functions (1) and (4) are
realized by a common gateway interface (CGI),
while (2) and (3) are executed by the SOC
commands. The CGI is written in Perl lan-
guage with a GD module, and it is installed
only on a Linux PC at present. The SOC com-
mands are written in C language, and their
compilation and execution have been verified
on many operating systems, including HP-UX,
Linux, Mac OS X, SGI-IRIX, and SUN OS.
Figure 1 shows the work flow corresponding
to function (1) where the inputs by the user
are handled and transferred to the SOC com-
mands through the web browser. In initializ-
ing process corresponding to function (2), the
user can select a cluster generating mode from
four methods: “Diagonal”, “random=Value”,
“node=Central”, and “Grid”. In these modes,
soc-init command generates cluster nodes on
diagonal line, at random, on the samples near
to the centroid of the sample coordinates, or
on lattice points of the sample space, respec-

49



50 IPSJ Transactions on Bioinformatics Mar. 2007

Sequence data

User input{
Accession numbers
FASTA sequences
Numerical matrix

Matrix operation{
Raw matrix
TF-IDF
PCA

Option settings

User input and
pull-down selection

• Type of input data
• Conditions of

oligonucleotide frequencies

• Conditions of
matrix operation

• Options of SOC commands

SOC commands

���

�

�

�

�

Fig. 1 Overview of the SOC server. The work flow of
user input and settings. A thick arrow repre-
sents data transformation. Thin arrows repre-
sent data transfer. Left brackets “{” indicate
selection of items. Items with dots surrounded
by dash-boxes “• text” indicate conditions nec-
essary for the operation.

Read sample and cluster data.

Assign each sample node to the nearest clus-
ter node (Samples which are assigned to
same cluster node are members of the same
cluster).

Calculate the centroid of each cluster.

Move each cluster node toward the given
centroid.

Calculate the distances between all given
two cluster nodes.

Unify a pair of cluster nodes with the short-
est distance, unless the distance is longer
than a threshold value given by the user.

Calculate each cluster radius (mean dis-
tance from centroid to sample nodes).

Generate a new cluster nodes in the cluster
which have largest radius, unless the radius
is shorter than a threshold value given by
the user.

��������
��������Iterations > User-specified loop

��������
��������

Return sample ID with clustered structure.

Fig. 2 Flow chart of learning process. Unifying and
generating operations are executed with times
set in user-specified loop. Therefore, this op-
eration has little influence in complexity of the
calculation.

tively. Figure 2 shows the algorithm of the
learning process corresponding to cluster node
alignment (function 3) executed by soc-lm
command. Figure 3 shows snapshots of the
browser connected to the SOC server. In the

data input page (Fig. 3a), the user can se-
lect the query type from among “FASTA se-
quence”, “Accession number”, and “Numerical
matrix”. When “FASTA sequence” is selected,
the SOC server generates a numerical matrix
of oligonucleotide frequencies from the input se-
quences. When “Accession number” is selected,
the server accesses the DNA sequence database
to obtain the relevant sequences and generates
a numerical matrix. On the other hand, when
“Numerical matrix” is selected, the user can
directly input a numerical matrix. In any case,
the user can use normalized vectors when the
box “Use per kbp value” was checked. The
analysis is executed by cron daemon at spec-
ified intervals. When the job is completed, the
system notifies the user by an e-mail containing
the URL where the result is located.

One of the advantages of the SOC server
is that it provides the user with some clues
to avoid problems of local solutions caused by
initial value dependency, which often occur in
learning type clustering methods. The follow-
ing two functions achieve the advantage, when
their respective options are specified.

One of the functions generates cluster nodes
with equal intervals in a principal component
space. In the initializing process, principal com-
ponent analysis (PCA) is made based on the
oligonucleotide frequencies. The SOC server di-
vides the principal component space into equal
intervals and generates cluster nodes on the lat-
tice points. As a consequence, it is likely that
the SOC server is able to bypass the initial value
dependency and local solutions.

Another function is for dynamic generation
and unification of cluster nodes. In the learning
process, it is often observed that some members
of a cluster are located at a distance from the
cluster center, while different clusters are very
closely located. In these cases, the expected
results might not be obtained. To avoid the
cases, the SOC server generates new clusters to
locate outlying specimens and unify closely re-
lated clusters into one. Using these procedures,
the SOC server maintains the validity of the
cluster radius.

4. Application

4.1 Genome-wide Clustering
of Caenorhabditis elegans

Figure 4 shows genome-wide SOC clustering
and mapping of Caenorhabditis elegans based
on the tetranucleotide frequency. We seg-



Vol. 48 No. SIG 5(TBIO 2) Self-organizing Clustering 51

Fig. 3 Snapshots of the SOC server. (a) Data input page. The user can input
sequence data, matrix options, and cluster node options. (b) Summary
page. The options specified by the user in “data input page” are
summarized. (c) Plot setting page. The user can select the parameters
for X and Y axes. (d) Plot page. Samples belonging to a cluster are
plotted in the same color. The user can obtain sequence information
(sequence, sequence ID, and cluster ID) when the dots are clicked.

a b

Fig. 4 Clustering and mapping of all six chromosomes of Caenorhabditis el-
egans. (a) Concept of mapping. Frames that are the same in size
and that have no overlaps are prepared from each chromosome. All
the frames (members) of the clusters are mapped to their native po-
sitions on the genome. (b) Result of mapping. The size of frames
was 1,000 bp. The initial number of clusters was specified six. SOC
found the regions corresponding to the locations of TTAGGC repeats
(Cluster 1).

mented each chromosome sequence of C. ele-
gans into 1,000 bp pieces and obtained 100,092
frames without overlaps. The remainder was
assigned to both ends of each chromosome.
And the frames containing over 5% character

of ‘N’s were discarded. Thus, we used 94,460
frames to classify them into five to ten clus-
ters. Figure 4a and b show the concept behind
the mapping and the obtained results, respec-
tively. In Fig. 4b, the localization pattern of



52 IPSJ Transactions on Bioinformatics Mar. 2007

Table 1 Use of SOC to cluster 629 coding regions from
three domains based on the pentanucleotide
frequency.

Cluster
Domain 1 2 3 4
Eukarya 542 1 2 1
Bacteria 1 62 0 0
Archaea 0 0 20 0

Sizes of coding regions are between 2.0 and 2.2 kbp.
Initial value of clusters was 25. Each value shows
the number of cluster members.

cluster 1 members looks like a broken line at the
centromeric portion of each chromosome. This
pattern correlated with that of the TTAGGC
telomeric repeat (CeRep26) 3),4). The result in-
dicated that SOC can detect the localization
pattern of a sequence repeat, even if the pres-
ence of the repeat is not recognized a priori.
The other clusters (IDs 2–6) made no localiza-
tion. In this mapping method, only one or a
few of the clusters could usually detect charac-
teristic distributions.

4.2 Clustering of Coding Regions from
Three Domains

We selected 629 coding regions extracted
from the following five species that belong to
three domains: Aeropyrum pernix (Archaea),
Rhizobium radiobacter (Agrobacterium tume-
faciens) strain C58 (Bacteria), Arabidopsis
thaliana (Eukarya, Plantae), C. elegans (Eu-
karya, Animalia), and Saccharomyces cerevisiae
(Eukarya, Fungi). To avoid the influence of
sequence length, only coding regions of 2.0–
2.2 kbp in length were used for SOC clustering.
Such coding regions were obtained from the
whole genome sequences of A. pernix (20 coding
regions), R. radiobacter (63), and S. cerevisiae
(231), and from chromosome I sequences of A.
thaliana (228) and C. elegans (87). We classi-
fied them on the conditions that the lengths
of oligonucleotide are 2–5 bp, and the initial
number of clusters are 5 to 50 (with steps of
5). The best result was obtained, when the
pentanucleotide frequencies were used and the
initial number of clusters was specified as be-
ing between 20 and 30 (Table 1). Interest-
ingly, most of the coding regions were clas-
sified into their specific clusters. The clus-
ter 1 was characterized by AT-rich sequences
and most Eukarya coding regions were clas-
sified into the cluster. The clusters 2 and 3
were characterized by poly-G/poly-C sequences
and by (GC)n tandem repeats, respectively.
SOC revealed the sequence characteristics of

individual species for all the sequences except
five coding regions from Eukarya and Bacte-
ria. A unique coding region classified in clus-
ter 4 was derived from A. thaliana and bore
a repeated motif of 72 bp, which is a very
peculiar feature for a protein coding region.
The sequence contains 18 leucine-rich repeats
(LRR), and no other sequence with high ho-
mology to the LRR sequence was found in the
DDBJ/EMBL/GenBank database. In SOC,
such a feature was not considered to belong to
any other cluster. The other four coding re-
gions also had atypical sequence feature of each
domain and were positioned on the outskirts of
the cluster of the other members. Thus, these
results demonstrated that SOC can recognize,
distinguish and extract the features of individ-
ual sequences with high accuracy.

5. Concluding Remarks

In this paper, We showed two examples of
clustering for a number of nucleotide sequences
using SOC. The results indicate that SOC is
suitable for clustering a large number of di-
verse sequences and extracting specific sequence
characteristics among them.

Acknowledgments We thank Prof. M.
Iwasawa (School of Library and Information
Science, University of Tsukuba), and Dr. T.
Yamaguchi (Cybernet Systems Co., Ltd.) for
helpful comments on SOC. CGI development
for the server was assisted by Mitsubishi Space
Software Co., Ltd. This work was partly sup-
ported by a grant from the Ministry of Agricul-
ture, Forestry and Fisheries of Japan (Green
Technology Project: EF1001 and EF1004).

References

1) Amano, K.: Clustering DNA sequences us-
ing self-organizing method, Abstracts of the 5th
Meeting of Japan Society for Information and
Media Studies, pp.5–8 (2003).

2) Amano, K., Nakamura, H. and Ichikawa,
H.: Self-organizing clustering: A novel non-
hierarchical method for clustering large amount
of DNA sequences, Genome Informatics,
Vol.14, pp.575–576 (2003).

3) The C. elegans Sequencing Consortium:
Genome sequence of the nematode C. elegans:
A platform for investigating biology, Science,
Vol.282, pp.2012–2018 (1998).

4) Wicky, C., Villeneuve, A.M., Lauper, N.,
Codourey, L., Tobler, H. and Müller, F.: Telom-
eric repeats (TTAGGC)n are sufficient for
chromosome capping function in Caenorhabdi-



Vol. 48 No. SIG 5(TBIO 2) Self-organizing Clustering 53

tis elegans, Proc. Natl. Acad. Sci. USA, Vol.93,
pp.8983–8988 (1996).

(Received October 18, 2006)
(Accepted January 12, 2007)

(Communicated by Ken Kurokawa)

Kou Amano is a member
of Chem-Bio Informatics Soci-
ety, Information Processing So-
ciety of Japan, Japan Society for
Information and Media Studies,
Japan Society of Library and In-
formation Science, and Japanese

Society for Bioinformatics.

Hiroaki Ichikawa is a mem-
ber of American Society of Plant
Biologists, The Genetics Society
of Japan, Japanese Society of
Breeding, and The Japanese So-
ciety of Plant Physiologists.

Hidemitsu Nakamura is
a member of Japan Society
for Bioscience, Biotechnology,
and Agrochemistry, Japanese
Society of Breeding, and The
Japanese Society of Plant Phys-
iologists.

Hisataka Numa is a member
of Information Processing Soci-
ety of Japan. He is a researcher
at National Institute of Agrobi-
ological Sciences. He has been
working in the field of bioinfor-
matics.

Kaoru Fukami-Kobayashi
is a member of The Genetics So-
ciety of Japan, The Molecular
Biology Society of Japan, and
Society of Evolutionary Studies,
Japan.

Yoshiaki Nagamura is the director of Rice
Genome Resource Center, National Institute of
Agrobiological Sciences.

Natsuo Onodera is a mem-
ber of The American Society for
Information Science and Tech-
nology, The Chemical Society of
Japan, Information Science and
Technology Association, Japan,
Japan Society for Information

and Media Studies, and Japan Society of Li-
brary and Information Science.


