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A Biclustering Method for Gene Expression Module Discovery

Using a Closed Itemset Enumeration Algorithm
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A gene expression module (module for short) is a set of genes with shared expression be-
havior under certain experimental conditions. Discovering of modules enables us to uncover
the function of uncharacterized genes or genetic networks. In recent years, several bicluster-
ing methods have been suggested to discover modules from gene expression data matrices,
where a bicluster is defined as a subset of genes that exhibit a highly correlated expression
pattern over a subset of conditions. Biclustering however involves combinatorial optimization
in selecting the rows and columns composing modules. Hence most existing algorithms are
based on heuristic or stochastic approaches and produce possibly sub-optimal solutions. In
this paper, we propose a novel biclustering method, BiModule, based on a closed itemset enu-
meration algorithm. By exhaustive enumeration of such biclusters, it is possible to select only
biclusters satisfying certain criteria such as a user-specified bicluster size, an enrichment of
functional annotation terms, etc. We performed comparative experiments to existing salient
biclustering methods to test the validity of biclusters extracted by BiModule using synthetic
data and real expression data. We show that BiModule provides high performance compared
to the other methods in extracting artificially-embedded modules as well as modules strongly
related to GO annotations, protein-protein interactions and metabolic pathways.

1. Introduction

DNA microarray technology has made it pos-
sible to simultaneously analyze expression lev-
els for thousands of genes under a number of
different conditions. Gene expression data is
usually arranged in the form of a matrix, in
which each row corresponds to a gene, each col-
umn corresponds to a condition and each ele-
ment represents an expression level of a gene
under a condition. The typical approach to an-
alyze gene expression data is clustering such as
hierarchical clustering and k -means clustering.
Clustering divides genes into mutually exclusive
groups with similar expression patterns across
all conditions. However, one would expect that
many gene groups might exhibit similar expres-
sion patterns only under a specific set of con-
ditions. We refer to such a group as a gene
expression module, or simply module.

Recent studies have focused on the problem
of discovering hidden module structures in large
expression matrices. This involves simultane-
ous clustering of genes and conditions and is
thus an instance of biclustering. Using that
terminology, the modules we seek can be re-
ferred to as biclusters. The aim of biclustering
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is to identify subset pairs (each pair consisting
of a subset of genes and a subset of conditions)
by clustering both the rows and the columns
of an expression matrix. This is a combina-
torial search problem in an exponentially large
search space. Hence most existing biclustering
algorithms are based on greedy or stochastic
heuristic approaches and produce possibly sub-
optimal solutions. Cheng and Church 1) gave a
greedy algorithm that searches biclusters with
a mean squared difference less than δ. Tanay,
et al. 2),3) identified biclusters based on a bi-
partite graph-based model and using a greedy
approach to add/remove vertices to find max-
imum weight sub-graphs. Ben-Dor, et al. 4)

proposed a randomized algorithm to find the
order-preserving sub-matrix (OPSM) in which
all genes have same linear ordering. Ihmels, et
al. 5) proposed a random Iterative Signature Al-
gorithm (ISA) which uses gene signatures and
condition signatures to find biclusters with both
up and down-regulated expression values. Mu-
rali and Kasif presented a random algorithm
xMotif 6).

Our goal is to develop a fast biclustering
method for enumerating every interesting bi-
cluster within a reasonable time. We conjec-
ture that interesting biclusters (or at least their
cores) can be obtained by enumerating max-
imal biclusters which have identical condition
label and discretized expression values; a prob-
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lem which can be solved in polynomial time.
By exhaustive enumeration of such biclusters,
it is possible to select only biclusters satisfy-
ing a certain criterion such as a user-specified
bicluster size, an enrichment of functional an-
notation terms, etc. Here, we propose a new
biclustering method, BiModule, that enumer-
ates biclusters in polynomial time based on a
closed itemset mining algorithm that has been
actively studied in data-mining. Comparative
experiments with salient biclustering methods
are performed to test the validity of biclusters
extracted by BiModule using synthetic data
and real expression data. We show that Bi-
Module provides high performance compared
to the other methods in extracting artificially-
embedded modules as well as modules strongly
related to GO annotations, protein-protein in-
teractions and metabolic pathways.

2. Closed Itemset Mining and Biclus-
tering

2.1 Bicluster types
We aim to discover three types of biclusters

(modules) introduced by Prelic, et al. 7): con-
stant, additive and overlapping. As shown in
Fig. 1 (a), a constant bicluster is a bicluster
with a single constant expression value for all
the elements of the matrix. Figure 1 (b) gives
an example of an additive bicluster, where ex-
pression values vary over the conditions but all
genes share the same value for any given condi-
tion. If two constant or additive biclusters share
cells in d rows and d columns, such biclusters
are called an overlapping biclusters with the
overlap degree d. Figure 1 (c) is an example of
overlapping biclusters with d=2, where 25% of
the cells in the smaller bicluster Y are included
in the larger bicluster X. We consider extracting
these three types of biclusters from discretized
expression data matrices. For this formulation,
biclustering can be reduced to a data mining
problem called closed itemset mining. In next
section, we describe the relationship between
closed itemset mining and biclustering.

2.2 Closed Itemset and Bicluster
First, we define the closed itemset more for-

mally. Let I be a set of items. A transaction
database is a subset of the power set of I. In
other words, it is a set of sets Ti={t1, t2,...,tm}
of items from I. Each Ti is called a transac-
tion. A subset of I is called an itemset. For an
itemset P, a transaction which contains (i.e., is
a superset of) P is called an occurrence of P.

Fig. 1 Examples of the three types of biclusters: con-
stant, additive, and overlapping are shown. In
the overlapping bicluster example (c), the over-
lap degree d=2, and bicluster Y overlaps in 25%
of cells with bicluster X.

Fig. 2 Transaction database.

The set of occurrences of P is denoted T (P).
The size of T (P) is called the support of P, de-
noted by supp(P). Given a constant θ, called
a minimum support, itemset P is frequent if
supp(P)� θ. A closed itemset is maximal for its
set of occurrences. In other words, an itemset
P is a closed itemset if there exists no itemset
P’ such that P⊂P’ and supp(P)=supp(P’). For
example, in the transaction database in Fig. 2,
the itemset {A, G, I } is a closed itemset be-
cause this is the maximum set of items shared
by transactions {1, 3, 4}. For a minimum sup-
port of 2, the itemset {A, G, I } is a frequent
closed itemset because supp(A, G, I )> 2. {A,
G} is not a closed itemset since all of the trans-
actions including items A and G also include
the item I.

Next we describe how we apply the closed
itemset problem to biclustering gene expression
matrices. For simplicity, suppose each gene ex-
pression value is represented by 0 or 1 (up or
down regulation). In this context, Fig. 2 can be
transformed to a table such as Fig. 3. This is
the same form as a typical gene expression ma-
trix, where a gene (row) corresponds to a trans-
action and a condition (column) corresponds to
an item. If a condition activates a specific gene,
the corresponding element takes a value of 1. A
set of conditions in a bicluster is a maximal set
of conditions in which a certain set of genes ex-
hibit common expression values. For example,
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Fig. 3 Gene expression table.

the condition set {A, G, I } is a set of conditions
composing a bicluster because this is a maxi-
mal set with a value of 1 for genes {1, 3, 4}.
In this way, closed itemset mining corresponds
to extracting condition sets composing biclus-
ters under the restriction of using discretized
expression values. However, the above formu-
lation can deal with only binary states, such as
up or down regulation. Prelic, et al. and Tanay,
et al. proposed a biclustering algorithm based
on binary discretization of gene expression ma-
trices 2),3),7). Such a rough discretization may
blur the original structure of gene expression
matrices and consequently obscure biologically
meaningful modules. In contrast, our method
can deal with multi-valued discretization levels
(see Section 3.2 Itemization Table and Trans-
action Data).

2.3 Closed Itemset Enumeration Algo-
rithm

To date, several efficient algorithms have
been proposed to enumerate every closed item-
sets from a transaction database 8)∼11). We
chose to use LCM (Linear time Closed item-
set Miner), which received the best imple-
mentation award in the data-mining contest
FIMI’04 11). LCM achieves a fast enumera-
tion of closed itemsets using a unique tech-
nique called prefix preserving closure extension
(ppc extension for short), which is an extension
from a closed itemset to another closed item-
set. The extension induces a search tree on the
set of frequent closed itemsets, thereby enabling
the completely enumeration of closed itemsets
without duplication. Because of this efficient
traversal of itemsets LCM can avoid redundant
calculation without keeping a list of previously
obtained closed itemset. Hence, the memory
use of LCM does not depend on the number
of frequent closed itemsets. The computational
time of LCM is theoretically linear in the num-
ber of frequent closed itemsets. (cf., 10) for a
detailed description of LCM). The LCM pro-
gram is available from Ref. 12).

3. Methods

Figure 4 is the procedure of BiModule. Bi-
Module consists of the four parts: 1) normalize
and discretize gene expression data, 2) generate
a transaction database, 3) enumerate biclusters
(closed itemsets) and 4) filter out unnecessary
biclusters.

3.1 Normalization and Discretization
In our procedure expression data from each

microarray condition are linearly normalized to
have mean 0 and variance 1, and this normal-
ized data is discretized. Figure 4 (a) illustrates
an example of a discretized data matrix, where
the number of levels is set to 3, namely (−1, 0,
1), for simplicity. ‘M’ in this matrix denotes a
missing value. The interval for each expression
level is given by uniformly dividing the differ-
ence between the maximum and the minimum
in the normalized data. However, if the max-
imum or the minimum takes an extreme value
(outlier), most of the data will be unevenly as-
signed to a few levels because unduly large in-
tervals are needed to include the outlier. Hence,
we perform the following processing for out-
liers before discretization. Data farther than a
threshold (3 standard deviations in this work)
are regarded as outliers and are temporarily re-
moved. The rest of data are renormalized and if
the renormalized data contains new outliers the
procedure is repeated until no outliers remain.
At this point the temporarily removed outliers
are given values equal to the corresponding ex-
treme value of the final normalized data (mini-
mum for outliers below the mean, maximum for
outliers above the mean). The discretization is
performed on this data.

3.2 Itemization Table and Transaction
Data

We prepare an itemization table that contains
IDs representing each discretization level in
each condition. Figure 4 (b) shows the itemiza-
tion table for the discretized data in Fig. 4 (a).
In this figure, for example, discretization level
‘1’ in condition ‘B’ is specified by ID ‘7’. Sub-
sequently, the discretized data are converted to
a transaction database as shown in Fig. 4 (c) by
reference to the itemization table. The trans-
action data for a gene is represented by a set
of IDs, where IDs for missing value are not in-
cluded. An ID can be regarded as an item that
indicates a combination of a condition and a
discretized expression value. Thus, closed item-
set mining in such a transaction database en-
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Fig. 4 The procedure of BiModule.

ables us to extract biclusters with multi-valued
expression levels.

3.3 Enumeration of Biclusters
We use LCM to enumerate closed itemsets

and their corresponding biclusters. The input
to LCM is a transaction database and a mini-
mum support value, i.e., the minimum number
of genes in extracted biclusters. The output is
closed itemsets with IDs as shown in Fig. 4 (d).
In this figure, an example of a closed itemset
enumerated by LCM is shown. We can convert
the IDs to the condition names and discretized
values by reference to the itemization table. In
Fig. 4 (d), it is shown that the closed itemset 3,
10, 13, 19 can be converted to the conditions A,
C, D and E taking discretized values 1, 0, −1
and 1, respectively. Corresponding biclusters
can be completed by selecting the genes which
match the required discretized value for each
condition.

3.4 Selection of Biclusters
In most cases, a large number of biclusters

are enumerated, e.g., 115,737 for a 2000 × 200
matrix with the parameters L=7, Mg=40 and
Mc=5 (see Section 3.5 Implementation). How-
ever, most of them are small biclusters and most
of their elements overlap with larger biclusters.
We filter out such small biclusters by the follow-
ing procedure. First, the enumerated biclusters
are sorted using the following score F :

F (B) = A × log2(g) × log2(c).

In this function, B is a bicluster, A represents
the average of the absolute values of the dis-
cretized values in the conditions included. A
gives high priority to biclusters with strongly
induced or repressed genes. g and c are the
number of genes and the number of conditions,
respectively. After sorting, biclusters whose
cells overlap by more than 25% with a higher
scoring bicluster are filtered out and the re-
maining biclusters are output to the user.

3.5 Implementation
We implemented the procedure above in Java

except for the closed itemset enumeration by
LCM. The LCM program is implemented in
the C language 12). The input to BiModule is
a pre-normalized gene expression matrix and
three parameters: L, Mg and Mc, where L is
the number of discretization levels, Mg is a min-
imum number of genes and Mc is a minimum
number of conditions. As for the number of dis-
cretization levels, users can choose from L=3, 5
and 7. In this study, we use L=7 because Bi-
Module shows the best performance with this
setting, both in terms of extraction accuracy
of modules and running time as shown in Sec-
tion 4.3.

4. Results

We compare the performance of BiModule
with those of other prominent biclustering algo-
rithms on synthetic data and a real gene expres-
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sion data. The test platform is a desktop PC
with Pentium 4, 3GHz CPU and 2 GB RAM
running the Linux operating system.

4.1 Other Biclustering Algorithms
The selected algorithms are Bimax 7), Itera-

tive Signature Algorithm (ISA) 5), Samba 2),3),
Cheng and Church algorithm (CC) 1), Order
Preserving Submatrix Algorithm (OPSM) 4),
and xMotif 6). These are all based on greedy
search strategies. We downloaded the software,
BicAt developed by Barkow, et al. 13) and EX-
PANDER developed by Shamir, et al. 14). Bi-
cAt implements Bimax, ISA, CC, OPSM and
xMotif in Java. In EXPANDER, Samba is
available. In our comparative test, the param-
eters for these algorithms were set to the val-
ues recommended in the corresponding publi-
cations.

4.2 Datasets
4.2.1 Synthetic Data
A comparative test was performed using a

synthetic dataset provided by Prelic, et al. 15).
This dataset includes data matrices with three
types of artificially-implanted modules: con-
stant, additive and overlapping. In Prelic’s
dataset, an up-regulated constant module is
considered. For the constant and additive mod-
ule data, 10 modules, each a 10× 5 matrix, are
implanted into a 100 × 50 background matrix
without overlap. As for the overlapping mod-
ule data, 10 modules are implanted into a back-
ground matrix. In this study, we consider 11
different overlap degrees (d=0, 1,...,10), where
the size of background matrix and modules vary
from 100 × 100 to 110 × 110 and from 10 × 10
to 20 × 20, respectively.

Evaluation Measure
To assess the validity of biclusters extracted

by the different programs, we use the following
gene match score, proposed by Prelic, et al. Let
M1, M2 be two sets of biclusters (or modules).
The gene match score of M1 with respect to M2

is given by

SG(M1, M2)=
1

|M1|
∑

(G1,C1)∈M1

max
(G2,C2)∈M2

|G1 ∩ G2|
|G1 ∪ G2| ,

where G and C are a set of genes and a set of
conditions included in a bicluster, respectively.
This measure reflects the average of the maxi-
mum match scores for all biclusters in M1 with
respect to the biclusters in M2. Let Mopt be
the set of implanted modules (true modules)
and let B be the set of biclusters obtained by
a biclustering method. S (B, Mopt) represents

to what extent the generated biclusters match
with true modules in the gene dimension. In
contrast, S (Mopt, B) reflects how well each of
the true modules are recovered by the biclus-
tering method. Hereafter, we call these per-
formance scores relevance and recovery, respec-
tively. Both scores have a maximum value of 1,
achieved when Mopt = B.

Evaluation Test
The parameters for BiModule were set to

L=7, Mg=8 and Mc=4. We evaluated the per-
formance of BiModule and other programs in
the following two settings: 1) sensitivity against
noise in non-overlapping modules, and 2) ex-
traction accuracy on overlapping modules with-
out noise. In the first setting, the constant and
additive module matrices are used to test the ef-
fects of noise on the performance of the respec-
tive biclustering methods. Noise was modeled
by adding random values derived from a nor-
mal distribution to all elements in each matrix.
We generated 10 input matrices for each of sev-
eral noise levels (different magnitude standard
deviation used for generating Gaussian noise).
The performance for each noise level was ob-
tained by averaging over the 10 matrices. In
the second setting, the performance was calcu-
lated using an overlapping module matrix for
each overlap degree.

Figure 5 (a) and Fig. 5 (b) depict the per-
formance on the constant modules and the ad-
ditive modules, respectively. From these figs,
we can see that ISA shows the best perfor-
mance for each noise level in both relevance
and recovery. BiModule also generally gives
superior performance compared to the other
methods, although with the additive modules
there is a substantial decrease in recovery for
high noise levels. Figure 5 (c) shows the re-
sults on the overlapping modules. As shown
in this figure, BiModule gives the best scores in
both the relevance and recovery. In particular,
concerning recovery, we can see that BiMod-
ule perfectly identifies implanted modules over
all tested overlap degrees. In contrast, for the
other methods a low accuracy or a substantial
decrease with noise is observed for both perfor-
mance scores. In particular, the performance of
ISA, which is most robust against noise, rapidly
decreases with increasing overlap degree. From
these results, we can see that BiModule has
relatively stable performance against noise and
can discover overlapping modules with high ac-
curacy.
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Fig. 5 The relevance (upper) and the recovery (lower) for (a) constant, (b)
additive and (c) overlapping biclusters.

4.2.2 Real Data
Following the approach of Prelic, et al., we

test the biclustering methods on a real dataset.
The real dataset used here is the S. cerevisiae
dataset containing 2,993 genes and 173 condi-
tions provided by Gasch, et al. 16), which in-
cludes gene expression data for several con-
ditions under the 13 different environmental
stresses such as heat shock, nitrogen depletion
etc. The extracted biclusters are evaluated
based on GO annotations, protein-protein in-
teraction networks and metabolic pathway.

Gene Ontology (GO)
Similar to the approach used by Tanay, et al.

and Prelic, et al., we investigate whether the set
of genes obtained by the biclustering methods
shows significant enrichment with respect to
a specific Gene Ontology (GO) annotation 17).
We utilize a web tool FuncAssociate 18) to eval-
uate the discovered biclusters. FuncAssociate
computes the hypergeometric functional score
of a gene set using Fisher’s Exact Test, and
then the resulting scores are adjusted for mul-
tiple testing based on the Westfall and Young
procedure 19). In this test, we use parameters
L=7, Mg=40 and Mc=5. For all of the biclus-
tering methods, we filtered out biclusters over-
lapped more than 25% with a larger bicluster

Fig. 6 Proportion of biclusters significantly enriched
by any GO biological process category (S. cere-
visiae). α is the adjusted significant scores of
the biclusters.

and output the resultant biclusters up to 100
in descending order of size. The adjusted sig-
nificant scores (the adjusted p-values) of each
discovered bicluster were computed by FuncAs-
sociate. The result of BiModule was compared
with those of Bimax, ISA, Samba, CC, OPSM
and xMotif obtained from Fig. 3 in Prelic, et
al. Figure 6 is the histogram of proportion
of biclusters for one or several over-represent
GO categories at different significance levels. In
this figure, all biclusters discovered by BiMod-
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Table 1 Relevance of biclusters with protein-protein interaction networks.

BiModule Bimax ISA Samba CC OPSM xModif

Discovered Biclusters 26 100 66 100 100 12 100
Significant Biclusters 24 50 50 30 71 8 0
Proportion (%) 92.3 50 75.8 30 71 33.3 0

Fig. 7 Biclusters discovered by BiModule are shown. The square(s) to the
right of the heat maps show the KEGG metabolic pathways assigned
to the indicated genes.

ule contain significantly over-represent GO cat-
egories (α ≤ 0.001%). This is the best score
among the compared methods.

Protein-protein Interaction Network
In addition to the GO enrichment test, we

investigate the relationship between the discov-
ered biclusters and protein-protein networks on
the S. cerevisiae dataset. The protein-protein
interaction data was obtained from the DIP
database 20). For each pair of genes, we checked
whether the two genes are connected in the
protein-protein interaction data. The number
of disconnected gene pairs is expected to be
significantly smaller for the discovered biclus-
ters than for random gene groups. We gen-
erate 1,000 random gene groups of the same

size as each bicluster and perform the Z-test
to check whether the proportion of discon-
nected pairs in each bicluster is significantly
smaller than the expected values for random
gene groups. Table 1 shows the proportion of
biclusters with significantly smaller disconnect-
edness scores (α ≤ 0.1%). In this table, BiMod-
ule finds over 90% significant biclusters (24 out
of 26) which is the best result among all meth-
ods. This suggests that BiModule can work
successfully for discovery of potential protein-
protein interactions.

Discovered Biclusters and Mapping to
Metabolic Pathway
Figure 7 (a) and Fig. 7 (b) are two example

of biclusters (one additive and one constant)
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discovered by BiModule. We mapped the genes
in each bicluster to their KEGG pathways 21).
Almost all of the genes in the additive bicluster
(Fig. 7 (a)) produce proteins composing a ribo-
somal subunit, and the remaining two genes are
also related to ribosome synthesis. Figure 7 (b)
shows a bicluster for co-expressed genes spe-
cific for nitrogen depletion conditions. This
bicluster includes some characteristic genes re-
lated to nitrogen metabolism. The gene ASP3
is induced under nitrogen depletion and has 4
copies (ASP3-1, ASP3-2, ASP3-3 and ASP3-4 )
in genomic DNA. This bicluster includes all of
them. In addition, we can see that it contains
genes participating in amino acid metabolism
pathways such as “Tyrosine metabolism” and
“Arginine and proline metabolism”, which are
important biological processes in utilizing nitro-
gen as a nutrient source. ATG8, involved in au-
tophagy under nutrient source starvation is as-
signed to the “Regulation of autophagy”. Fur-
thermore, some genes which are not assigned
to any pathway also have intriguing biological
meaning, such as genes for vacuolar protease
inhibitors (PAI3, PBI2, TFS1 and YHR138c)
which have been found to be up-regulated in
nitrogen depletion by Unno, et al. 22).

In the same way, we investigated biclusters
obtained by the other methods. Samba, OPSM,
CC and xMotif discovered only biclusters with
many conditions in multiple stresses, that is,
these methods generated no biclusters with
gene set specific for certain single environmen-
tal stress as described above. In contrast, ISA
and Bimax generated biclusters for single envi-
ronmental stress, and biclusters specific for ni-
trogen depletion stress were contained in both
methods. As for Bimax, most genes were not
mapped to any pathway and also have no sig-
nificant GO annotation. The bicluster gener-
ated by ISA also had ASP3 genes as well as
genes assigned to amino acid metabolism path-
way. Thus, no clear differences for metabolic
pathways between BiModule and ISA were ob-
served. As discussed in Prelic, et al. 7) the in-
completeness of the metabolic pathway data
may be the reason for such unclear result.
However, as for GO annotations, two methods
show a somewhat clear difference; the biclus-
ter obtained from BiModule contained genes
with detailed GO annotations for a nitrogen
metabolism such as “Cellular response to ni-
trogen starvation”, in contrast, no genes with
such GO annotations were present in the bi-

cluster found by ISA.
4.3 The Accuracy and Running Time

of BiModule
We evaluated the influence of the input pa-

rameters on the accuracy and the running time
of BiModule. We performed the evaluation us-
ing synthetic data generated by the following
steps: 1) generate a 2000 × 200 matrix (back-
ground) with in all elements set to 0, 2) gener-
ate 20 50 × 10 biclusters which have 1’s in all
elements, 3) implant the 20 biclusters into the
background matrix without overlap, and 4) add
the random noise derived from normal distribu-
tion N(0, σ) to all the elements in the matrix.
The noise level σ was set to 0.2. As discussed in
section 3.5, BiModule requires the three param-
eters, L, Mg and Mc. L is relevant to how well
the discretized data reflect the structure of real
gene expression data. Mg is used as an input
data to the LCM algorithm that is the core part
of the computation process of BiModule. Mc is
used only for filtering out biclusters with too
few conditions after enumerating closed item-
sets. This parameter has little influence on the
performance unless a user specifies a extremely
large value. Thus, we focus on the parameters
L and Mg that are expected to have critical in-
fluence on extraction accuracy of biclusters and
running time. Figures 8 and 9 depict the ex-
traction accuracy (the relevance and recovery)
and running time of BiModule, respectively, in
the cases of L=3, 5 and 7, versus the value of
Mg. As can be seen in these figures, L=7 dis-
covers the implanted modules with the highest
accuracy and fastest time over all values of Mg.
In contrast, L=3 requires much computational
time compared to the other two settings and

Fig. 8 The relevance (upper) and the recovery
(lower) for L=3, 5 and 7.
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Fig. 9 The running time (logarithmic scale) for L= 3,
5 and 7, is plotted versus the value of Mg.

shows a substantial degradation in relevance.
L=5 gives a performance between that of L=3
and 7. Therefore, to obtain good performance
in a short time, we recommend setting L to 7.
On the other hand, it is generally difficult to
define the optimal Mg size. Large values of Mg
give fast running time without rapid decrease of
extraction accuracy. Therefore, we recommend
trying large Mg values first.

5. Conclusions

In this study, we proposed and implemented a
new biclustering method, BiModule, for discov-
ering gene expression modules based on a fast
closed itemset enumeration algorithm. We per-
formed comparisons with six prominent biclus-
tering methods using both real and synthetic
data. For the synthetic dataset, we confirmed
that BiModule works successfully for discov-
ering noisy modules and overlapping modules.
The robustness against noise seems to be second
only to ISA. Moreover, BiModule overwhelm-
ingly outperformed the other methods when ex-
tracting overlapping modules. As for the real
dataset, BiModule exhibited the most signifi-
cant enrichment among the methods according
to GO annotations and protein-protein inter-
action data: all the biclusters extracted were
functionally enriched and indicated a strong
correspondence with the known protein-protein
interactions. Some of the discovered biclusters
were composed of conditions under a single en-
vironmental stress and reflected the metabolic
pathways known to be induced by the environ-
mental stress. In addition, we evaluated the
influence of the input parameters on the per-
formance. As a result, we determined that L=7
for the number of discretization levels had the
best performance in both the extraction accu-
racy of implanted modules and running time.
The running times were less than 1 minute for
Mg>30.

BiModule does have some limitations. Bi-
Module searches for biclusters in which the

rows in each bicluster are completely identical.
Therefore, if a large amount of noise is included
in some elements of a true module, the observed
expression value may not fall into the desired
interval during the discretization process. In
such case, true modules will be subdivided into
some smaller biclusters. Furthermore, since Bi-
Module cannot extract biclusters with a gene
size smaller than Mg, such small biclusters are
ignored by the process of the closed itemset enu-
meration. Consequently, with Mg set to an ex-
cessively large value, BiModule may not be able
to properly detect small biologically meaningful
biclusters. In order to tackle this problem we
are currently developing an itemizing method
for interpolating values in a neighborhood of a
boundary between two discretization levels.
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