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Hardness Results on Local Multiple Alignment

of Biological Sequences
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This paper studies the local multiple alignment problem, which is, given protein or DNA
sequences, to locate a region (i.e., a substring) of fixed length from each sequence so that
the score determined from the set of regions is optimized. We consider the following scoring
schemes: the relative entropy score (i.e., average information content), the sum-of-pairs score
and a relative entropy-like score introduced by Li, et al. We prove that multiple local alignment
is NP-hard under each of these scoring schemes. In particular, we prove that multiple local
alignment is APX-hard under relative entropy scoring. It implies that unless P = NP there
is no polynomial time algorithm whose worst case approximation error can be arbitrarily
specified (precisely, a polynomial time approximation scheme). Several related theoretical
results are also provided.

1. Introduction

Multiple sequence alignment is one of the well
studied problems in computational molecular
biology and has many applications. For ex-
ample, it is useful for locating binding sites,
finding conserved regions, and building phylo-
genetic trees 6),17),18). This problem is divided
into global multiple alignment and local mul-
tiple alignment 14). The goal of global multi-
ple alignment is to align complete sequences,
whereas the aim of local multiple alignment is
to locate relatively short patterns shared by se-
quences. This paper focuses on local multi-
ple alignment 9),10),13)∼15),17),18). Local multi-
ple alignment is useful for finding binding sites,
conserved regions and motifs of sequences.

Local multiple alignment is a problem of,
given n sequences, locating a region (i.e., a
substring) of fixed length from each sequence
so that the score determined from the set of
regions is optimized. So far, several scoring
schemes have been proposed. Local multiple
alignment is also known as the global consensus
patterns problem 15).

Many studies have been done on local multi-
ple alignment. Stormo and Hartzell proposed
the score based on relative entropy (average
information content) and developed a heuris-
tic iterative algorithm for finding an optimal
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score 17),18). Since this scoring scheme is based
on an appropriate statistical model of biologi-
cal sequences, it has been widely used in prac-
tice along with variants 6),9),10),13),14). Under
this scoring scheme, Lawrence and Reilly de-
veloped an EM (expectation maximization) al-
gorithm 13), Lawrence, et al. developed a Gibbs
sampling algorithm 14), and Horton developed
branch-and-bound algorithms 9),10). However,
these algorithms except Horton’s algorithms are
not guaranteed to find an optimal alignment
(i.e., an alignment with the maximum score).
Any theoretical guarantee is not given for the
scores of the computed alignments. Although
Horton’s algorithms always find optimal align-
ments, they are not efficient (i.e., they are not
polynomial time algorithms). Li, Ma and Wang
developed a polynomial time approximation al-
gorithm (we call it the LMW algorithm) for lo-
cal multiple alignment under relative entropy
scoring along with algorithms for some other
scoring schemes 15). The most important fea-
ture of the algorithm is that it has a theoretical
guarantee on the error (the difference between
the optimal score and the score of the computed
alignment). And also, the algorithm was proven
to be a polynomial time approximation algo-
rithm whose worst case approximation error
can be arbitrarily specified as an auxiliary pa-
rameter (precisely, a polynomial time approxi-
mation scheme) under a scoring scheme called
the #LOG#-scoring in our paper. However,
the running time of the algorithm depends ex-
ponentially on that parameter, and so in prac-
tice a huge amount of time is needed to keep
the approximation error to be small.
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In this paper, we consider local multiple
alignment under the following scoring schemes:
the relative entropy score 13),14),17),18), the
#LOG#-score introduced in Ref. 15), and
the SP-score (the sum-of-pairs score) 5),8),20).
Though SP-score has not been used for local
multiple alignment in practice, a lot of theo-
retical and practical studies have been done on
global multiple alignment under SP-scoring and
it variants (e.g., the weighted sum-of-pairs scor-
ing) 6),8),19). Thus, it is interesting to study lo-
cal multiple alignment under SP-scoring at least
from a theoretical viewpoint though it is not
relevant from a practical viewpoint. We prove
that local multiple alignment is NP-hard under
each of these scoring schemes. In particular, we
prove that local multiple alignment under rela-
tive entropy scoring is APX-hard, which implies
that no polynomial time approximation scheme
(PTAS) exists unless P = NP 2),4). Although
NP-hardness results were proven for global mul-
tiple alignment under SP-scoring 20) and related
problems 15), to our knowledge, there had been
no known non-approximability results on local
multiple alignment under relative entropy scor-
ing ☆.

Also, we have developed a new, extremely
simple PTAS under #LOG#-scoring, though
the LMW algorithm is conceptually simple.
Compared with this PTAS, we have made
an observation that #LOG#-scoring is by no
means adequate for evaluating the quality of lo-
cal multiple alignment. Furthermore, we show
that a technique used in an approximation algo-
rithm for global multiple alignment under SP-
scoring 8) can also be used for designing an ap-
proximation algorithm for local multiple align-
ment under SP-scoring.

2. Problem and Scoring Schemes

In this section, we define the local multiple
alignment problem and the scoring schemes for-
mally. We use notations similar to those in
Ref. 15).

Let Σ be an alphabet of size A. Usually,
Σ = {A,C,G,T} or Σ consists of letters denot-
ing amino acid residues (i.e., A = 4 or A = 20).
For a string s over Σ, |s| denotes the length of s.
s[i] is the i-th character of s. Thus, s = s[1]s[2]
. . . s[|s|]. We define the local multiple alignment
problem as follows (see also Fig. 1).

☆ Preliminary results were included in our previous
conference paper 1).

Fig. 1 Example of local multiple alignment. In this
case, f1(A) = 1.0, f2(A) = 0.75, f2(T) = 0.25,
f3(A) = 0.25, f3(T) = 0.75, f4(C) = 0.75,
f4(G) = 0.25, f5(G) = 1.0, and fj(a) = 0.0
for other a, j.

Local Multiple Alignment: Given a set
S = {s1, s2, . . . , sn} of sequences, and an in-
teger L, find a substring ti of length L from
each si, maximizing the score of (t1, · · · , tn).
We call (t1, . . . , tn) a local multiple alignment,
a local alignment, or simply an alignment.

Although each input string must be of the
same length in Ref. 15), strings with different
lengths are input in practice and thus we em-
ploy this definition.

Let #j(a) be the number of the appear-
ances of letter a in the j-th column of ti’s (i.e.,
#j(a) = |{ti|ti[j] = a}|). Let fj(a) be the fre-
quency of letter a in the j-th column of ti’s
(i.e., fj(a) = #j(a)

n ). Let p(a) denote the fre-
quency of letter a in the whole genome (i.e.,
background probability of a). We consider the
following three scoring schemes ☆☆.

#LOG#-score: 15)

score(t1, . . . , tn) =
L∑

j=1

∑
a∈Σ

#j(a) log #j(a),

Relative entropy score: (average informa-
tion content) 9),10),13)∼15),17),18)

score(t1, . . . , tn)=
1
L

L∑
j=1

∑
a∈Σ

fj(a) log
fj(a)
p(a)

,

SP-score: (sum-of-pairs) 5),8),20)

score(t1, . . . , tn) =
L∑

j=1

∑
i<i′

dist(ti[j], ti′ [j]),

where dist(x, y) is the distance between letter x
and letter y. As in Refs. 5), 8), 20), we consider
an arbitrary distance satisfying the triangle in-
equality and thus the problem in this case is
defined as the minimization problem instead of
the maximization problem.

Given an instance I of the problem, OPT (I)
denotes the score of an optimal solution of
☆☆ In this paper, log x means log2 x and we define

0 log 0 ≡ 0.
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I. For a maximization problem, an algorithm
A is called a PTAS if, for any instance I of
the problem and for any constant 0 < ε <
1, A always outputs a solution X satisfying
score(X ) ≥ (1 − ε) · OPT (I) in polynomial
time (for a minimization problem, we replace
score(X ) ≥ (1 − ε) · OPT (I) with score(X ) ≤
(1 + ε) · OPT (I)) 4).

3. Results on #LOG#-score

Li, Ma and Wang dealt with Local Multi-
ple Alignment under #LOG#-scoring over a
fixed alphabet 15). Here, we show that Local
Multiple Alignment under #LOG#-scoring
is APX-hard if an alphabet Σ is unbounded.
This implies that if we allow arbitrarily many
kind of symbols in inputs then there is no PTAS
even under #LOG#-scoring. The proof is not
difficult, but the technique employed here will
be also applied to prove the APX-hardness for
relative entropy score.

Theorem 3.1 Local Multiple Align-
ment under #LOG#-scoring is APX-hard if
an alphabet Σ is unbounded.
Proof. We show an L-reduction 16) from Max
Cut. Recall that Max Cut is, given an
undirected graph G(V, E), to find a partition
(V1, V2) of V (i.e., V1∪V2 = V and V1∩V2 = ∅)
maximizing the number of edges between V1

and V2. It is known that Max Cut is APX-
hard 3),16).

Let V = {v1, . . . , vn} and E = {e1, . . . , em}.
From this instance, we construct n sequences
s1, . . . , sn each of length 3m. For each edge
ek = {vi, vj} ∈ E (i < j), we let

si[k] = ak, si[2m + k] = bk,
sj [k] = bk, sj [2m + k] = ak,

where ak �= ak′ for all k �= k′, bk �= bk′ for all
k �= k′, and ak �= bk′ for all k, k′. For each
position not defined by the above rule, we put
a unique character which appears only once at
the position. Finally, we let L = m.

Here we briefly show that this reduction is an
L-reduction. Let I be an instance of Max Cut.
Let I ′ be the instance produced by the above
reduction from I. The score of I ′ is given by

2 · |{(ti[k], tj [k])| i < j, ti[k] = tj [k]}|
because each character can appear at most
twice, each character appearing at most once
in the same column does not contribute to the
score (since 1 log 1 = 0), and each character ap-
pearing twice in the same column contributes
to the score by 2 log 2 = 2.

Then, we can see that, given a cut (V1, V2)

with the score (i.e., the number of edges be-
tween V1 and V2) x, we can obtain a solution
(i.e., an alignment) of I ′ with the score 2x by
letting

ti = si[1] . . . si[m] if vi ∈ V1,
ti = si[2m + 1] . . . si[3m] otherwise.

Moreover, the maximum score of I ′ is attained
by the solution obtained from the max cut in
this way. Therefore, OPT (I ′) = 2OPT (I)
holds.

Given a solution of I ′, we can obtain a cut
by the following rule: if si[k] appears in ti for
some k such that 1 ≤ k ≤ m, then put vi in V1,
otherwise put vi in V2. Then, the score of the
obtained cut is at least half of the score of the
solution of I ′.

Since all the construction can be done in poly-
nomial time, the reduction is an L-reduction
and thus the theorem follows. �	

Although the LMW algorithm is conceptually
simple, we can develop a much simpler PTAS.
First note that the maximum #LOG#-score is
at most Ln log n, where this case is attained
when t1 = t2 = . . . = tn. On the other hand,
the minimum #LOG#-score is at least

Ln log(n/A) = Ln(log n − log A) ,
where this case is attained when fj(a) = 1

A for
all j and for all a ∈ Σ. Here, we can see that

Ln(log n − log A)
Ln log n

> 1 − ε

holds if n > A(1/ε). This leads to the following
PTAS:

If n < A(1/ε), then find an optimal local
alignment by exhaustive search.
Otherwise, select an arbitrary substring of
length L from each si.

Since if n ≥ A(1/ε) an arbitrary substring is
chosen from each string, solutions obtained by
this algorithm may be far from one which cap-
tures any feature of sequences. This suggests
that #LOG#-score is not adequate to evaluate
the local alignment.

4. Results on Relative Entropy Score

Li, Ma and Wang showed in Ref. 15) an up-
per bound of the difference between the optimal
score and the score of the approximate solution
that can be found by the LMW algorithm under
the relative entropy scoring. However, there is
no known result for the worst case ratio of a
score of an approximate solution to that of the
optimal solution. Here, we prove that Local
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Fig. 2 Example of si and sl such that ek = (i, l) and i < l.

Multiple Alignment under relative entropy
scoring is APX-hard even for the binary alpha-
bet.

Theorem 4.1 Local Multiple Align-
ment under relative entropy scoring is APX-
hard even for the binary alphabet.
Proof. We use a PTAS-reduction 3),4) from
Max Cut-B. Max Cut-B is a restriction of
Max Cut in which the maximum degree of
vertices of the input graph is bounded by B.
Max Cut-B is known to be APX-hard even
for B = 3 3),16). We use a reduction similar to
that in Theorem 3.1. But, in this case, a more
elaborated reduction is required.

Let G(V, E) be an input graph of Max
Cut-B where V = {v1, . . . , vn} and E =
{e1, . . . , em}. We assume w.l.o.g. (without loss
of generality) that m > n. Let Σ = {0, 1} and
let p0 = p1 = 0.5.

From G(V, E), we construct 2n + 2 strings
s1, . . . , s2n+2. Each of s1, . . . , sn has length 3L
and each of sn+1, . . . , s2n+2 has length L, where
L is to be determined later. As in the proof of
Theorem 3.1, si (1 ≤ i ≤ n) corresponds to vi.
sn+1, . . . , s2n+2 are constructed by:

sn+1[j(α + k)] = sn+1[j(α + m + k)] = 0
for j = 1, . . . , β and

for k = 1, . . . , 2m,
sn+1[h] = 1

otherwise,
sn+2[j(γ + k)αβ] = 1

for j = 2, . . . , δ + 1 and

for k = 1, . . . , n,
sn+2[h] = 0

otherwise,
si[h] = 1

for all h and for i = n+3, . . . , 2n+2,

where α, β, γ, δ are integers to be determined
later. Since each of sn+1, . . . , s2n+2 has length
L, si = ti should hold for i = n + 1, . . . , 2n + 2.
We construct s1, . . . , sn by the following rules
(see also Fig. 2):

si[j(α + k)] = si[2L + j(α + m + k)] =
sl[j(α + m + k)] = sl[2L + j(α + k)] = 1

for j = 1, . . . , β if ek = {vi, vl} ∈ E
and i < l,

si[j(γ + i)αβ] = si[2L + j(γ + i)αβ] = 1
for j = 2, . . . , δ + 1,

si[h] = 0
otherwise,

where L = 2 · αβγδ. For each si (i = 1, . . . , n),
si[1] . . . si[2αβγ] and si[2L+1] . . . si[2L+2αβγ]
are called region R1, and the other parts are
called region R2. In the above construction,
si[j(α + k)] = 1, si[2L + j(α + m + k)] = 1,
sl[j(α + m + k)] = 1 and sl[2L + j(α + k)] =
1 correspond to si[k] = ak, si[2m + k] = bk,
sl[k] = bk and sl[2m+k] = ak in Theorem 3.1 ☆,
respectively. si[j(γ+i)αβ] = 1 and si[2L+j(γ+
i)αβ] = 1 are used so that either si[1] . . . sL[i] or
si[2L+1] . . . si[3L] corresponds to a motif region

☆ In Theorem 3.1, j is used in place of l.
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for each i = 1, . . . , n in the optimal alignment.
Let I denote an instance of Max Cut-B and
let I ′ denote the instance of Local Multiple
Alignment constructed from I as above.

Here, we let α = 10mβ, β = 10n4, γ = 10δn,
δ = 100Bn4, where much smaller values might
suffice. Then,

(j′ − j)(α + k) �= (j′′′ − j′′)(α + k′)
holds for all j, j′, j′′, j′′′ such that j �= j′ and
j′′ �= j′′′ if k �= k′ (0 < k, k′ ≤ 2m). This
can be seen as follows. Let j2 = j′′′ − j′′ and
j1 = j′ − j. If j1 = j2, we have

j2(α + k′) − j1(α + k) = j1(k′ − k) �= 0.
Otherwise, we assume w.l.o.g. that j2 > j1
holds. Then, we have

j2(α + k′) − j1(α + k)
= (j2 − j1)α + j2k

′ − j1k

≥ α + j2k
′ − j1k

≥ α − 2βm
> 0.

This property guarantees that if si[h] = 1 is
aligned with sl[h′′] = 1, then si[h′] = 1 cannot
be aligned with sl[h′′′] for any h′′′, where 1 ≤
i �= l ≤ n holds and either 1 ≤ h, h′, h′′, h′′′ ≤
2αβγ or 2L + 1 ≤ h, h′, h′′, h′′′ ≤ 2L + 2αβγ
holds.

Similarly,
(j′ − j)(γ + i)αβ �= (j′′′ − j′′)(γ + i′)αβ

holds for all j, j′, j′′, j′′′ > 1 such that j′ �= j
and j′′′ �= j′′ if i �= i′. Furthermore,

j′(γ + i)αβ − j(α + k)
�= j′′′(γ + i′)αβ − j′′(α + k′)

holds for all j, j′′ > 0 and j′, j′′′ > 1 if i �= i′,
and

j′(γ + i)αβ − j(α + k)
�= j′′′(γ + i′)αβ − j′′(γ + i′)αβ

holds for all j > 0 and j′, j′′, j′′′ > 1 if i′ �= i.
From these inequalities, we can see the follow-
ing.

Observation 1 For any i �= l such that 1 ≤
i, l ≤ n and {vi, vl} /∈ E, ti[h] = tl[h] = 1 holds
for at most one column h.

Observation 2 If neither ti =s1[1] . . . s1[L]
nor ti = s1[2L + 1] . . . s1[3L] holds, ti[h] =
sn+2[h] = 1 holds for at most one column h.

Given a cut (V1, V2), we consider the follow-
ing alignment:

ti = si[1] . . . si[L] if vi ∈ V1,
ti = si[2L + 1] . . . si[3L] otherwise.

Let C(V1, V2) denote the score of the cut (i.e.,
the number of edges between V1 and V2). Then,

the score of this alignment is given by (see also
Table 1)

1
L

· (2β · C(V1, V2) · E(1) + n · δ · E(2)) ,

where

E(x) =
(

n + 1 − x

2(n + 1)

)
log

(
n + 1 − x

n + 1

)

+
(

n + 1 + x

2(n + 1)

)
log

(
n + 1 + x

n + 1

)

for x ≤ n + 1, otherwise E(x) = 1. Note that

E(x) ≈
(

1
ln 2

)
·
(

x2

(n + 1)2

)

if x � n, and E(x) ≤ 1 for all x.
Next we assume w.l.o.g. that either ti =

si[1] . . . si[L] or ti = si[2L + 1] . . . si[3L] holds
for i = 1, . . . , n − x, but does not hold for
i = n − x + 1, . . . , n. From these ti’s, we make
a partition of V into V ′

1 , V ′
2 , V ′

3 as follows: put
vi in V ′

1 if ti = si[1] . . . si[L], put vi in V ′
2 if

ti = si[2L + 1] . . . si[3L], put vi in V ′
3 other-

wise. We say that ti is type j if vi ∈ V ′
j . Then

score(t1, . . . , tn, sn+1, . . . , s2n+2) is at most
1
L

·
(

x2 · E(x + 2) + x · 2B · β · E(1)

+x · 2δ · E(1) + x(n − x) · E(3)
+2β · C(V ′

1 , V ′
2) · E(1)

+(n − x) · δ · E(2)
)

.

Each term in the above comes from the fol-
lowing reason (see Table 1 for the types of
columns).
[2β · C(V ′

1 , V ′
2) · E(1) + (n − x) · δ · E(2)]

score corresponding to the cut between V ′
1

and V ′
2 ,

[x2 · E(x + 2)]
multiple ‘1’s from ti’s of type 3 appear in
each of at most x2 columns (more precisely,
at most x(x − 1)/2 columns),

[x · B · β · E(1)]
‘1’ from R1 of each ti of type 3 appears in
at most B · β columns of types III, IV and
VI,

[x · B · β · E(1)]
‘1’ from R1 of each ti of type 3 is missing
in at most B · β columns of types III and
IV,

[x · δ · E(1)]
‘1’ from R2 of each ti of type 3 appears in
at most δ columns of type VI,
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Table 1 Score for each column h in the alignment constructed from a cut C.

ek ∈ C ek /∈ C
type I II III IV V VI

h j(α + k) j(m + α + k) j(α + k) j(m + α + k) j(γ + i)αβ others
t1[h] 0 0 0 0 0 0
...

...
...

...
...

...
...

ti[h] 1 0 1 0 1 0
.
..

.

..
.
..

.

..
.
..

.

..
.
..

tl[h] 1 0 0 1 0 0
.
..

.

..
.
..

.

..
.
..

.

..
.
..

tn[h] 0 0 0 0 0 0
sn+1[h] 0 0 0 0 1 1
sn+2[h] 0 0 0 0 1 0
sn+3[h] 1 1 1 1 1 1
...

...
...

...
...

...
...

s2n+2[h] 1 1 1 1 1 1

score (1/L)E(1) (1/L)E(1) 0 0 (1/L)E(2) 0

[x · δ · E(1)]
‘1’ from R2 of each ti of type 3 is missing
in at most δ columns of type V,

[x(n − x) · E(3)]
‘1’ from each ti of type 3 appears in at most
n − x columns of types I and V.

Here, we replace each of ti’s for i =
n − x + 1, . . . , n with t′i = si[1] . . . si[L]. Then
score(t1, . . . , tn−x, t′n−x+1, . . . , t′n, sn+1, . . . ,
s2n+2) is at least

1
L

· (2β · C(V ′
1 , V ′

2) · E(1) + n · δ · E(2)) .

Since

δ · E(2) > x · E(x + 2) + 2B · β · E(1)
+ 2δ · E(1) + (n − x) · E(3)

holds (recall that E(2) ≈ 4 · E(1), δ = 10Bβ,
δ � x · (n + 1)2), we have

score(t1, . . . , tn, sn+1, . . . , s2n+2)
≤ score(t1, . . . , tn−x, t′n−x+1, . . . ,

t′n, sn+1, . . . , s2n+2),

where we assume that n is sufficiently large.
From this, we have the following:
• OPT (I ′) = 1

L · (2β ·OPT (I) · E(1) + n · δ ·
E(2)),

• Given an alignment t1, . . . , t2n+2 with the
score at least 1

L · (2β · y · E(1) + n · δ · E(2)),
we can construct a cut (V ′

1 ∪ V ′
3 , V ′

2) with
score at least y in polynomial time.

Since OPT (I) ≥ m
2 ≥ n

2 , δ = 10B · β, and
E(2) ≈ 4 · E(1) hold, we have

n · δ · E(2) < 81 · B · β · OPT (I) · E(1).
Suppose that there exists an approximation

algorithm for Local Multiple Alignment

which always outputs a solution with score y′ >
(1 − ε)OPT (I ′) for some ε > 0. Let

y = (L · y′ − n · δ · E(2))/(2β · E(1)).
Then, y′ ≥ (1 − ε)OPT (I ′) means

2β · y · E(1) + n · δ · E(2)
> (1− ε) (2β ·OPT (I)· E(1) + n·δ · E(2))

and thus we have

y >
(1−ε)(2β ·OPT (I)·E(1)+n·δ ·E(2))−n·δ·E(2)

2β · E(1)

>
(1 − ε) (2β · OPT (I) · E(1)) − ε · n · δ · E(2)

2β · E(1)

>
(1 − ε(2 + 81B))) · β · OPT (I) · E(1)

2β · E(1)

= (1 − ε(1 + (81B/2))) · OPT (I).

Therefore, the reduction presented above is a
PTAS-reduction and thus the theorem follows.

�	
Corollary 4.2 Local Multiple Align-

ment over the binary alphabet under #LOG#-
scoring is NP-hard.

Although we proved a hardness result, we do
not yet succeed to develop an approximation
algorithm with guaranteed approximation ra-
tio. We comment here that the LMW algorithm
outputs a good approximate alignment when
the input sequences have a strong consensus
pattern. We say that an instance I of Local
Multiple Alignment has a strong consensus
pattern if OPT (I) > c holds, where c is a con-
stant not depending on instance (c may be given
by users and may depend on Σ and p(a)’s). For
example, if fi(1) > 0.6 for at least 0.1L posi-
tions where Σ = {0, 1} and p(0) = p(1) = 0.5,
then the score is always greater than a con-
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stant 0.1 · (0.6 log 0.6
0.5 + 0.4 log 0.4

0.5 ) ≈ 0.02866.
It seems that it suffices to find strong consen-
sus patterns in most practical cases. Li, Ma and
Wang proved that the LMW algorithm always
outputs an alignment whose score is less than
the optimal score by at most O(( log r

r )
1
3 ), where

r is any fixed (sufficiently large) positive inte-
ger. Therefore, the LMW algorithm is a PTAS
for instances with strong consensus patterns.

5. Results on SP-score

Many theoretical and practical studies have
been done based on SP-score 5),8),20) though
there exists some criticism on SP-score 6).
Therefore, we consider Local Multiple
Alignment under SP-scoring.

Gusfield developed an approximation algo-
rithm for global multiple alignment under SP-
scoring 8). Slightly modifying his algorithm, we
obtain the following approximation algorithm
for Local Multiple Alignment under SP-
scoring.

( 1 ) For all substrings ti of si and for
all substrings tj of sj where |ti| =
|tj | = L, compute d(ti, tj) =∑L

k=1 dist(ti[k], tj [k]).
( 2 ) For all i and for all substrings ti of

si, find t′1, . . . , t
′
i−1, t

′
i+1, . . . , t

′
n min-

imizing
∑

j �=i d(ti, t′j), where t′j is a
substring of sj .

( 3 ) Output (t′1, . . . , t
′
i−1, ti, t

′
i+1, . . . , t

′
n)

minimizing the above value.

We call it the 1-STAR algorithm as in Ref. 5).
The following proposition can be proved in the
same way as in Ref. 8).

Proposition 5.1 The SP-score of a local
alignment obtained by the 1-STAR algorithm
is at most the twice of the minimum.

On the other hand, we can prove an NP-
hardness result as follows.

Theorem 5.2 Local Multiple Align-
ment under SP-scoring is NP-hard.
Proof. We reduce MIN-2SAT to Local Mul-
tiple Alignment under SP-scoring with Σ =
{0, 1, a}. Recall that MIN-2SAT is, given a set
of clauses C = {c1, . . . , cm} over a set of vari-
ables X = {x1, . . . , xn} where each ci consists
of at most two literals, to find a truth assign-
ment to X which satisfies the minimum number
of clauses 7).

From an instance of MIN-2SAT, we construct
2n − 3 sequences si having the following form

si = A · Bi · A · Di · A,

where x · y denotes the concatenation of x and
y, |A| = |Bi| = |Di| = m, and A[i] = a for all
i = 1, . . . , m. For i = 1, . . . , n, Bi is defined by

Bi[j] =




1, positive literal xi appears
in cj ,

0, otherwise.

For i = n + 1, . . . , 2n − 3, Bi is defined by
Bi[j] = 1, j = 1, . . . , m.

Similarly, for i = 1, . . . , n, Di is defined by

Di[j] =




1, negative literal xi appears
in cj ,

0, otherwise.

For i = n + 1, . . . , 2n − 3, Di is defined by
Di[j] = 1, j = 1, . . . , m.

Here, we let L = 3m and define the dis-
tance function by dist(x, x) = 0 for x = 0, 1, a,
dist(a, x) = dist(x, a) = n2m for x = 0, 1, and
dist(x, y) = 1 for the other x �= y. By consid-
ering the correspondence:

xi = 1 ⇐⇒ A · Bi · A is selected as ti,
xi = 0 ⇐⇒ A · Di · A is selected as ti,

we can see the following property:
• There exists a local multiple alignment

with score at most K(n− 2)(n− 1) + (m−
K)(n − 3)n if and only if there exists a
truth assignment which satisfies at most K
clauses.

Since the reduction can be done in polynomial
time, we have the theorem. �	

6. Concluding Remarks

In this paper, we studied theoretical aspects
of Local Multiple Alignment. We proved
that Local Multiple Alignment under rela-
tive entropy scoring is APX-hard, whereas there
exists a PTAS under #LOG#-scoring 15). Al-
though these scoring schemes are closely re-
lated, there is a large gap on the approxima-
bility. The result suggests that the scoring
schemes greatly influence the approximability
and thus, should be considered as an important
factor in approximation algorithms.

Although we proved that Local Multiple
Alignment under relative entropy scoring is
APX-hard, we do not yet succeed to develop an
algorithm with a constant factor approximation
ratio. Therefore, development of such an algo-
rithm is an open problem. We employed a pure
relative entropy score in this paper. However,
pseudocounts are usually introduced in prac-
tice 6),14). Therefore, the effect of pseudocounts
on the approximability should also be studied.
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In practice, the search for non-gapped mo-
tifs in biological sequences usually involves mo-
tifs of length 5∼25 or so. If longer motifs are
needed, gaps should be introduced. On the
other hand, the length of motifs used in the
proof of Theorem 4.1 is quite large (it is Ω(n18)
where n is the number of input sequences).
Thus, the result is not important from a practi-
cal viewpoint. If the length of a motif is short,
we might be able to develop a polynomial time
algorithm or a polynomial time approximation
scheme. Indeed, it is known that Local Mul-
tiple Alignment can be solved in linear time
if the motif length is bound by a constant 10),11).
Furthermore, Horton and Fujibuchi derived a
non-trivial upper bound on the factor depend-
ing on motif length and alphabet size in the
time complexity 11). They posed an interesting
open problem which asks the time complexity
of Local Multiple Alignment under a gen-
eral scoring scheme (including relative entropy
scoring) when motif length is O(log n).

We have also studied Local Multiple
Alignment under SP-scoring. Though it is
not useful or important in practice, it is in-
teresting from a theoretical viewpoint since
there exists a simple approximation algorithm
as shown in this paper. For this problem, there
remains a gap between the positive result (ap-
proximation factor 2) and the negative result
(NP-hardness). Thus, it is also left as an open
problem to shorten the gap.
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