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Pushing the Limits for 2D Convolution Computation
On CUDA-enabled GPUs

Peng Chen1,3,a) MohamedWahib2,b) Shinichiro Takizawa3,c) SatoshiMatsuoka1,3,d)

Abstract: The 2D convolution operator is the computational bottleneck in a variety of image processing and machine
learning applications. We propose an algorithm to compute convolution by employing register files to cache image data
(known as register cache), rather than using the user-managed scratch-pad memory. We take advantage of CUDA’s
warp shuffle functions to accelerate the intra-warp communication of partial results. Unlike the GEMM-based, FFT-
based or Winograd method, our algorithm executes the convolution computation without using any GPU memory as
a workspace, and is general to all filter shapes. Our algorithm performs better than state-of-the-art 2D convolution
implementations. Using a single TitanXp GPU, it is in average 4.7x faster than NPP (Nvidia Performance Primitives),
and 1.8x faster than the highly-optimized ArrayFire library.

1. Introduction
Convolution-based operators, namely filtering, are of funda-

mental importance to a vast range of digital signal and image
processing applications. For example, the Gaussian-filter and
Laplace-filter are widely used to enhance image visibility. More
specifically, Difference of Gaussian (DOG) is commonly applied
for Scale-Invariant Feature Transform (SIFT) [1] to detect robust
local-features in images. In the domain of artificial intelligence,
convolution is also a core technology of Deep Neural Networks
(DNN) [2]. Extracting sparse features by multiple convolutions,
Convolutional Neural Networks (CNN) [3] achieves outstanding
performance in many challenging tasks, such as text indexing,
voice recognition, and image classification. Due to the huge
amount of input data and high compute intensity, convolutions
easily become the bottleneck of the computation in many appli-
cations. Hence, it is significant to improve the performance for
convolution to meet low latency demand.

Many effective ways have been introduced to speed-up the 2D
convolution computations. FFT-based approaches [4] [5] reduce
the computation complexity from O(N4) to O(N2 log2 N) regard-
less of the variance in filter sizes; it is particularly suitable for
convolutions with larger filters. As for some filters with special
sizes, Winograd’s algorithm [6] can also reduce the computation
to some extent. Another popular approach is that of unrolling
the input data and filter coefficients to two matrices [7], which
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are stored by the workspace buffer, then applying the highly opti-
mized General Matrix-Matrix Multiplication (GEMM) [8] func-
tion to accelerate the convolution computation. All of those meth-
ods have been incorporated as parts of the cuDNN’s [9] convolu-
tion functions.

With respect to computational efficiency, Graphics Processing
Units (GPUs) provide a huge computing capability over conven-
tional CPUs, and have been successfully used in High Perfor-
mance Computing (HPC) [10] applications. In addition, GPUs
are also widely used to accelerate the Deep Learning (DL) work-
loads [11] [12]. Hence, GPUs, especially CUDA-enabled GPUs,
are well-suited many-core accelerators for computing convolu-
tions with high throughput.

According to the memory hierarchy of CUDA architec-
ture [13], caching data by explicitly managed scratch-pad mem-
ory is effective in hiding the latency of accessing global memory.
Naturally this technology is widely used to optimize the applica-
tion’s performance (including convolution) by many state-of-the-
art libraries, such as ArrayFire [14].

In this work, we propose an algorithm that directly computes
convolution without relying on scratchpad or cache memory.
More specifically, we manually cache data by register files di-
rectly, accumulate the partial correlation results, and communi-
cate the partial results via shifting register files with CUDA’s shuf-
fle up instruction. Results show that our algorithm achieves the
highest efficiency for computing 2D convolution, compared to ex-
isting state-of-the-art libraries.

The rest of this paper is organized as follows. In Section 2, we
review GPU technology with CUDA. In Section 3, we analyze
linear convolution algorithms. Section 4 introduces the proposed
parallelized algorithm in detail. Section 5 evaluates the proposed
algorithm. Section 6 discusses related works, and finally we con-
clude in Section 7.
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2. Parallel Computing with CUDA
2.1 CUDA Architecture

Fig. 1: Streaming Multiprocessors (SM) Architecture On Nvidia
GPUs

CUDA (Compute Unified Device Architecture) [15] is built
around a scalable array of multi-threaded Streaming Processors
(SMs), as shown in Fig. 1. Massive thread-level parallelism is
abstracted into a hierarchy of threads running in a SIMT (single
instruction multi-thread) fashion [16]. The threads in CUDA are
grouped into warps, blocks and grids [17]. Thousands of threads
are managed, created, scheduled and executed within SMs ef-
ficiently. In comparison to latency-optimized CPUs, GPUs are
throughput-optimized processors.

In all generations of CUDA architecture [15], multi-threads ex-
ecute in groups of threads, namely warp. The total thread count in
a warp, called WarpSize, has not changed throughout GPU gen-
erations (shown in Equ. 1). Each thread in a warp is assigned an
ID, called LaneId, which ranges from 0 to 31 (WarpSize-1).

WarpS ize = 32 (1)

2.2 CUDA Memory Hierarchy
GPUs supports different memory types: global, local, texture,

constant, shared and register [17]. Because convolution algo-
rithms tend to be bandwidth bound, it is essential to design and
implement algorithms that efficiently utilize this complex mem-
ory hierarchy in order to achieve the best performance.

Global memory is a GPU’s largest off-chip memory with the
highest R/W (Read/Write) latency and throughput. Global mem-
ory is typically used to store input and output data. Furthermore,
only in a coalesced access fashion (i.e. unit-strided contiguous
memory access), can the global memory achieve throughput that
approaches the peak memory bandwidth.

Constant memory and texture memory are cache-optimized
read-only on-chip memories. Local memory is a private storage
for an executing thread, and is invisible outside the scope of the
thread.

Shared memory is a fast on-chip scratchpad memory. It shares
space with L1 cache as shown in Fig. 1, and its scope is restricted
to CUDA threads blocks. Like banks in Dynamic Random Access
Memory (DRAM) modules, shared memory is similarly divided
into banks (32 banks in modern GPUs). Each bank may process
only one R/W request at a time. Bank conflicts results in lower
throughput for CUDA kernels [13].

Register files are the fastest on-chip memory available. Regis-
ters are private to the executing thread, and could be exchanged
within a warp using the shuffle intrinsic.

2.3 Register files Vs. Shared memory
Register cache, is an approach in which a single warp builds

a virtual cache layer on top of register files as a mechanism for
low-latency data R/W [18]. More specifically, the large amount of
register memory available in modern GPUs can be used to store
some data arrays like the shared memory. To our knowledge, the
register cache is difficult to use, mainly due to its scope consider-
ations in addition to the SIMT-fashion execution of the threads in
a warp [17].

A SM has up to 96KB available shared memory in mod-
ern GPUs, however the aggregate register memory is up to
65535×4B=256KB, which is up to 2.7 times larger than shared
memory. Hence, caching data by registers becomes a practical
and effective approach to improve many applications’ through-
put. Furthermore, in recent years, the gap between the total
amount of shared memory vs. registers files is becoming larger
and larger (Table 1),

Avoiding bank conflicts is an important issue for high perfor-
mance computation when using shared memory. Accordingly,
applications are required to avoid access patterns that can cause
bank conflicts. In addition, reducing the use of shared memory
releases more L1 cache capacity and contributes to the through-
put of CUDA applications [19].

Table 1: Shared Memory and Register Files
GPU Shared Memory

/ SM
Max 32-bit
Registers / SM

SMs

GTX Titan X 48 KB 65536 24
Tesla M40 96 KB 65536 24

GTX Titan Xp 48 KB 65536 30
Tesla P100 64 KB 65536 56
Tesla V100 Configurable

up to 96 KB
65536 80

2.4 Efficient Intra-Warp Communication
Shuffle is an intra-warp communication mechanism for a

CUDA-enabled GPU. It allows the exchange of data between
threads directly within a single warp. It opens the door, so to
speak, for fast data communication between intra-warp threads.

Threads in a kernel can exchange data through global mem-
ory. Threads in the same thread block may exchange data through
shared memory (plus a synchronization barrier). Threads in the
same warp are also able to communicate with each other by shuf-
fle instructions, which is not only fast but also a direct communi-
cation method requiring no global memory or shared memory.

Like shared memory, bank conflicts that occur when accessing
register files is a challenge to algorithm design. To make matters
more complicated, there are few Nvidia official documents about
this issue. To our understanding, shuffle up and shuffle down,
which perform differently from the shuffle instruction, tend to
solve the conflict problem easily. This is because threads are or-
chestrated to request data from the independent bank (or thread)
in a single warp.

2.5 Register Spilling
Registers are a limited resource for GPUs. If the required num-

ber of registers per thread is too large, the compiler (nvcc) may
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spill parts of them to L1 cache (or shared memory). In the case
that the L1 cache is insufficient, the compiler may end up spilling
them to global memory. Avoiding register spilling to global mem-
ory is necessary, or else performance dramatically drops.

3. Computing 2D Convolution
3.1 2D Convolution

Mathematically, convolution combines two linear functions to
a third one [20], which measures the correlation of overlap be-
tween two functions. Equ. 2 shows the canonical form of a two-
dimensional convolution. In the equation, f(x, y) denotes a 2D
matrix (or image) with size (W, H), while w(x, y) is a filter with
size (M, N), where M=b-a+1, N = d-c+1. The filter is often cen-
trosymmetric, where b=-a, b ≥ 0, d=-c, d ≥ 0. As a special case,
a=0, b=0, d=-c, d ≥ 0 means a 1D convolution in Y direction; a
≥ 0, b=-a, d=0, c=0 is a 1D convolution in X direction.

f (x, y) ∗ w(x, y) =

d∑
t=c

b∑
s=a

f (x − s, y − t)w(s, t) (2)

Where ∗ is the convolution operator.

3.2 Convolution Theorem and Fourier Transform
The convolution theorem [21] provides an efficient way for

computing convolution, particularly with larger filter sizes. As
the theorem stated within the fourier transform [22], the convolu-
tion operator becomes the point-wise dot product. In other words,
the spatial domain convolution equals point-wise inner produc-
tion in the frequency domain (Equ. 3, 4); ultimately the benefit
is that the complexity of the point-wise multiplication is consid-
erably less than original convolution at the price of computing
FFT (Fast Fourier Transform) [23] [24] and Inverse FFT. In addi-
tion, cuFFT [17], a state-of-the-art library for computing Fourier
transform on CUDA-enabled GPUs, provides great scalability to
compute FFT workload.

F( f (x, y) ∗ w(x, y)) = F( f (x, y))F(w(x, y)) (3)

f (x, y) ∗ w(x, y) = F−1(F( f (x, y))F(w(x, y))) (4)

Where F means Fourier transform, F−1 is inverse Fourier trans-
form, and ∗ is the convolution operator.

4. Proposed 2D Convolution By CUDA
Our proposed method is implemented in CUDA. As shown in

Algorithm 1, the steps are as follows:
( 1 ) All of the filter weights are stored into shared memory (lines

7∼12).
( 2 ) A subset of the image data residing in global memory is

cached into registers (lines 13∼14). Note that we use a reg-
ister cache array for each thread as well (shown as T data[C]
array in line 6). The indices of the register cache array could
be determined as constant quantities by the compiler at com-
pile time. Therefore, the nvcc compiler could utilize register
files rather than global memory for holding the values of the
data array. Since registers are a limited resource, the regis-
ter cache is managed with careful consideration (as will be
discussed in more detail later).

( 3 ) As shown in Fig. 2, according to the sliding window posi-
tion and filter height, we fetch both sub-vector v and w from
register cache and filter coefficients, respectively. Next, we
compute the sum of their inner products (lines 24∼26) and
shift the partial sum to the neighbor thread via shuffle up
function (line 22).

( 4 ) Repeat (3) M times for all of the sub-vectors (w1, w2......wM),
then store the final partial sum (i.e. convolution result) to the
register cache again (line 28)

( 5 ) We move the sliding window step by step as shown in Fig. 1.
Next, we repeat the convolution computation, namely (3)
and (4), P times (line 17)

( 6 ) Finally, the convolution results which are managed by regis-
ter cache are stored back to global memory (lines 30∼31)

Algorithm 1 Our CUDA kernel. P and C are defined in Equ. 10
and Equ. 11, respectively

1 template <typename T, int BLOCK_SIZE , int P, int

FILTER_WIDTH , int FILTER_HEIGHT >

2 __global__ void kernel_convolution2D (

3 const T* src, T* dst, int width, int widthStride , int

height, const T* weight) {

4 const int C = P + FILTER_HEIGHT - 1;

5 //register files

6 T data[C];

7 __shared__ T smem[FILTER_HEIGHT][FILTER_WIDTH];

8 T* psmem = &smem[0][0];

9 //1, Load filter weights to shared memory

10 if (threadIdx.x < FILTER_HEIGHT*FILTER_WIDTH)

11 psmem[threadIdx.x] = weight[threadIdx.x];

12 __syncthreads();

13 //2, Load data from global memory to registers

14 data[...] = src[...];

15 //3, Compute the colleration result

16 #pragma unroll

17 for (int i = 0; i < P; i++) {

18 T sum = 0;

19 #pragma unroll

20 for (int m = 0; m < FILTER_WIDTH; m++) {

21 if (m > 0)

22 sum = __my_shfl_up(sum, 1);

23 #pragma unroll

24 for (int n = 0; n < FILTER_HEIGHT; n++) {

25 sum = MAD(data[i + n], smem[n][m], sum);

26 }

27 }

28 data[i] = sum;

29 }

30 //4, Store Result to Global Memory

31 dst[...] = data[...];

32 }

The following sections elaborate on the steps of the algorithm.

4.1 Caching the Filter Using Shared Memory
The number of filter weights is often tens of bytes (e.g. 3×3,

5×5). Since the weights are shared by all of the threads in a
CUDA block, it is reasonable to access the weights via shared
memory. It is also possible to use other kinds of memory, such
as constant memory, texture memory and global memory. How-
ever, considering performance and scalability, we adopt shared
memory for our implementation.

In is worth mentioning that in our algorithm all of the threads
in a thread block access the same address of the shared memory,
which results in a broadcast read pattern to shared memory. In
other words, there is no bank conflict problem (Sec. 2.2) in our
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implementation when using shared memory.
Additionally, when using a float32 type 3×3 filter (M=3, N=3),

for example, we only use 3×3×4=36 bytes of shared memory
space, which is a relatively small fraction of the shared memory
space (48K∼96K). The rest of shared memory could be used as
L1 cache, which further improves the utilization of global mem-
ory, to some extent.

4.2 Caching Data Using Register Files
As shown in Algorithm 1, in order to make full use of GPU’s

cache line, all of the threads in a warp read data from global
memory contiguously (one element per thread). The operation
is repeated in order to cache multiple lines of data from global
memory into register files line by line. As illustrated in Fig. 2,
each thread in a single warp caches C elements (Equ. 5). Each
thread will then generate an output of P elements using a sliding
window. The sliding window is designed such that a portion of
the data in the register cache can be reused when computing the
neighboring output points. More specifically, computing the con-
volution of point p in a thread can reuse the data in the register
cache loaded when computing the convolution of point p−1. Us-
ing this scheme, at any given point, a WarpSize×C register matrix
is loaded in the register cache.

C = N + P − 1 (5)

Fig. 2: The left side of the figure illustrates how to build the reg-
ister cache for a warp. In a single warp, each thread reserves C
registers for storing data. The register cache size in each warp is
equal to 32×C (32 is the warp size). The right side of the figure
shows how to cache the filter matrix. We store the filter coeffi-
cients in shared memory, then compute the convolution by mov-
ing the sliding window step by step (C-N+1=P times). At each
step we compute the inner products of [vi, vi+1, ... vi+N−1] with
w1, w2, ... wM as detailed in Fig 3. Next we shift the partial inner
product to neighbor threads as detailed in Fig. 4

4.3 Parallel Inner Product
It is essential to access the filter weights in the same order as

the data is stored in the cache register: namely unit-strided ac-
cess in the vertical direction as shown in Fig. 3. As mentioned in
section 4.1, the shared memory is accessed without bank conflict.

The partial sum requires N multiplications and N-1 addition op-
erations. The multiplication and addition operations are typically
optimized to fused-multiply-add (FMA) instructions [17]. For the
M×N filter, inner products are done M times (Fig. 2) to compute
an element of convolution results (Algorithm 1 line 20∼27).

Fig. 3: Parallel Inner Product. Simultaneously all threads in a
warp compute the inner product between a register vector v ([vi,
vi+1, ..., vi+N−1]) and a column of filter w1, w2, ... or wM . The vec-
tor v is held by each thread and w is managed by shared memory.
The inner product (sum) is computed by a CUDA thread.

4.4 Shuffle Registers Holding the Partial Sum
As shown in Fig. 2, M × N filter is decomposed into M vec-

tors, namely w1, w2, ......, wM . Each partial sum is computed
between register vector v ([vi, vi+1, ..., vi+N−1]) and filter vec-
tor w. Next, all of inner products, namely partial sums, are
shifted to the right side neighbor thread within a single warp us-
ing the CUDA primitive shuffle up function (function arguments
: delta=1, width=WarpS ize) [17]. As shown in Fig. 4, all of reg-
isters are shifted only once at each step (Algorithm 1 line 22).
Next, the shifted partial results are added to the accumulated re-
sults by each thread (Algorithm 1 line 25). This process is re-
peated M-1 times (Algorithm 1 line 20∼27). Finally a row of
convolution results could be attained from a group of threads,
namely whose laneIds (Sec. 2.1) range from M-1 to WarpSize-
1. By moving sliding window once, each group of threads com-
putes (WarpSize-1)-(M-1)+1=33-M convolution results.

Fig. 4: Shifting partial results: ei is a partial result computed by
thread i. Threads(1 ∼ 32) represent all threads in a warp. The
indicator #i points to the ith time of shuffle up of partial sum reg-
isters in a warp. ⊕ is an add operator.

The sliding window moves step by step, as shown in Fig. 2, be-
tween v1 and vC elements in the register cache. At each step, the
above computation scheme is repeated C-N+1 times in order to
obtain the convolution results, with size (33-M)×(C-N+1)=(33-
M)×P.
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Finally, the convolution results (from v1 to vC−N+1) are stored
back to global memory in a coalesced pattern (Algorithm 1 line
30∼31).

4.5 Number of CUDA Blocks Required
It is crucial to answer the question when given an image matrix

with size (W, H) (W means the image width, H is height): what is
the optimized cache count C, and CUDA block size (namely B)?
Given that we use a one dimensional block in our implementa-
tion, B is equal to blockDim.x, both blockDim.y and blockDim.z
are 1. In each CUDA block, its warp count is defined as:

WarpCount = B/WarpS ize (6)

The required CUDA grid dimensions (namely GridDimX and
GridDimY) could be defined as Equ.7 and Equ.8, respectively.

GridDimX =
W

WarpCount ∗ (WarpS ize − M + 1)
(7)

GridDimY = H/P = H/(C − N + 1) (8)

In this study, we only focus on discussing the scenario that a
GPU’s compute capability is larger than 3.5. Accordingly, the
maximum count of threads in a CUDA block becomes 1024 [17].
In order to achieve the highest SMs occupancy, we require as
many resident active threads as possible in a block. Finally, Grid-
Size is defined as:

GridS ize = GridDimX ∗GridDimY

=
W ∗ H ∗WarpS ize

B ∗ (WarpS ize − M + 1) ∗ (C − N + 1)

=
32 ∗W ∗ H

B ∗ (33 − M) ∗ (C − N + 1)

(9)

4.6 Block Size B & Cache Count C
In our convolution CUDA kernel, the number of active warps

that can processed in parallel on SMs largely depends on the
amount of register files available on the SMs. In other words,
B and C tend to be determined mainly by the amount of register
files.

On one hand, we want to make the GridSize (Equ. 9) as large
as possible to improve the kernel’s occupancy, hence, the B and
C require to be as small as possible. On the other hand, as shown
in Fig. 2, the larger cache count (C) means caching more orig-
inal data from global memory and increasing register file reuse
while computing. This improved locality improves the algo-
rithm’s throughput. To conclude, it is crucial to find the balance
between B, C and register files for a given GPU architecture.

The choice of B affects the computing performance only
slightly, so we emphasize our discussion on how to decide the
value of C. We empirically choose B = 512, 368, and 256, re-
spectively in experiments at lower SMs occupancy without low-
ering implementation’s throughput. Additionally, our empirical
evaluation suggests that when the P is equal to 8 (Equ. 10), we
could achieve the peak of computing performance as illustrated
in Fig. 5. Then C is defined as in Equ. 11.

P = 8 (10)

C = P + N − 1 = N + 7 (11)

Fig. 5: The correlation between cache count P and execution time

4.7 Thread Divergence and Synchronization
In a single warp, threads execute in an SIMT fashion, hence the

performance of CUDA programs is often significantly degraded
by branch divergence. We carefully designed our algorithm to
avoid any divergence when computing the partial sums and shift-
ing register files, which are the heaviest and most complex parts
of computing the 2D convolution. Further, unrolling the com-
puting loop not only eliminates the negative effect of functional
divergence, but also helps in improving IPL (Instruction Level
Parallelism) [25] .

It is important to note the inevitability of using the synchro-
nization primitive when caching filter weights to shared memory.
In our kernel function, only one synchronization is applied. Em-
pirical analysis revealed that the synchronization penalty is in-
significant to the overall throughput.

5. Evaluation
5.1 Software & Hardware Setup

We evaluate our system with Nvidia GPUs, namely TitanX and
TitanXp. For comparison, we choose software libraries, such as
Nvidia’s NPP [17], Nvidia’s cuDNN [9], Nvidia’s cuFFT [17],
and the ArrayFire [14] library. We use CUDA 9 Toolkit in all the
experiments. The OS-independent cudaEvent functions are used
to measure the computing time, and Nvidia’s nvprof profiler is
used for the performance analysis [17].

5.2 Filter Size Limitations
In our algorithm, the supported filter size is limited by the total

number of registers in a GPU. We examined a series of profiled
runs. In our experiments P=8 is fixed, where W≤10 & H≤10,
B=512; where W≤20 & H≤20, B=368; where W632 & H632,
B=368. As Fig. 6 shows, when the filter sizes are larger than
20×20, our application’s performance suddenly degrades. This is
due to reaching the register limits of the GPU. In conclusion, em-
pirically the acceptable limitation filter size is about 20×20 for
both TitanX and TitanXp. It is important to note that this limit
would increase with GPUs that have more aggregate register files
(e.g. Volta V100 GPU).
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Fig. 6: Filter size limitation evaluation on TitanXp. Four kinds
of image sizes are evaluated. When the filter size become larger
than 20×20, the performance degrades dramatically

5.3 Results
A substantial part of this section is focused on understand-

ing the achieved performance of our algorithm. We experi-
mented with 2D convolutions for various input image sizes (e.g.
1024×1024, 2048×2048, 4096×4096, 8192×8192) and filter
sizes (e.g. 2×2∼16×16) using Nvidia TitanXp (Fig. 7a, 8a, 9a
and 10a) and Nvidia TitanX (Fig. 11a, 12a, 13a and 14a) GPUs.
Nvidia’s NPP library performs well with smaller images and fil-
ters, particularly for the filter sizes of 3×3 and 5×5. The execution
time of FFT-based convolutions has a constant value for any filter
size applied to a given size of the input image. We also evaluated
the GEMM-based convolution of Nvidia’s cuDNN for filter sizes
with odd numbers (cuDNN limitation). We also compare to the
highly optimized ArrayFire library. We emphasize the compari-
son with ArrayFire in (Fig. 7b, 8b, 9b, 10b, 11b, 12b, 13b, 14b).
ArrayFire uses shared memory to cache data, resulting in out-
standing performance. Note however that its filter size is limited
from 2×2 to 15×15.

For larger sizes of input image data and filters, our algorithm
demonstrably outperfroms Nvidia’s libraries and ArrayFire.

Finally, it is worth mentioning that although all our discussed
experiments are for square-shaped filters (i.e. M=N), in fact,
our system is capable of computing 2D convolution for any fil-
ter shape (M,N) as well.

5.4 Verification of Accuracy
To verify the accuracy of our algorithm, for every experiment,

we compared the differences of the convolution results between
the standard library CPU version and our GPU version. Our GPU
implementation computation consistently achieved the same ac-
curacy as the CPU, for both float32 and int32 data types.

6. Related Work
Due to the importance of 2D convolution, there has been a

plethora of research on improving the computational efficiency
in the past few decades.

Algorithm strength reduction based methods, such as the
Cook-Toom algorithm [26], and Winograd algorithm [27], are
traditionally and practically fast convolution methods by em-
ploying fewer multiplication operations. Recently, the modified
Winograd method has been implemented by cuDNN to success-
fully speed up DNNs. However, it is not a general convolution
method due to many requirements, such as small filter sizes and

workspace buffer [6]. FFT-based [23] method is another way to
reduce compute convolutions. The FFT-based convolution com-
putational cost is constant for any given filter size. Hence the
performance gain from using FFT increases as the filter size in-
creases.

Another line of research is to accelerate convolution compu-
tation by specialized hardware such as LSIC (Very Large Scale
Integration Circuit) [28] and FPGA (Field-Programmable Gate
Array) [29]. However, the development cost for specialized hard-
ware is too high for wide adoption. Another hardware approach
are DSPs (Digital Signal Processors) [30]. DSPs are cheaper
and easier for software programming. Powered by its efficient
SIMD instructions, many embedded systems achieve impressive
real-time performance by optimizing the convolution computa-
tion [31].

With the rapid growth of many-core and parallel computing
technologies over the last few years, GPUs are becoming more
and more prevalent in adoption as the go-to accelerator for speed-
ing up a variety of complex computations (including convolu-
tion computation). Highly optimized GEMM kernels enable high
computational efficiency on GPUs for 2D convolution. At the
cost of using a large amount of temporary GPU memory to un-
roll the image data to large matrix, GEMM-based convolution
achieves high computing efficiency.

To the best of our knowledge, our proposed algorithm is the
first to directly compute 2D convolution that uses register cache
and shuffle instruction to accelerate 2D convolution computation
without using workspace memory on CUDA-enabled GPUs.

7. Conclusion
The 2D convolution operation is widely used in many applica-

tions. Its computational efficiency is critical to the overall perfor-
mance of those applications. We accelerate 2D convolution com-
putation on CUDA-enabled GPUs using a combination of register
cache technology and a novel parallel computing scheme. Unlike
the prevalent methods that cache image data by shared memory,
our system not only uses a virtual register cache layer to improve
the data access efficiency, but also computes convolution without
using workspace buffer.

We evaluate the performance of our implementation on a sin-
gle Nvidia GPU using a variety of image and filter sizes. Perfor-
mance evaluation demonstrates that on average our implemen-
tation is up to 4.7× faster than NPP, and 1.8× faster than the
highly-optimized ArrayFire library. To the best of our knowl-
edge, our implementation achieves state-of-the-art performance
for computing 2D convolution.

In addition to convolution computation, our proposed register
cache technique and parallel inner product computation method
can be applied to speed up other problems, such as stencil com-
putation [32], which resemble convolution. It is also a promising
approach to improve the computing performance for training and
inference in CNNs, which rely on a large amount of 2D convo-
lution to compute feature maps with some small filters, such as
3×3, 5×5, and 7×7 [33] [34] [35]. Those kinds of filters are well-
suited to the computational pattern of our algorithm.
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(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 7: 1024×1024 TitanXp

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 8: 2048×2048 TitanXp

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 9: 4096×4096 TitanXp

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 10: 8192×8192 TitanXp
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(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 11: 1024×1024 TitanX

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 12: 2048×2048 TitanX

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 13: 4096×4096 TitanX

(a) Performance evaluation on ours, ArrayFire, NPP,
cuDNN, and cuFFT-based method

(b) Performance evaluation on ours and ArrayFire

Fig. 14: 8192×8192 TitanX
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