
Vol. 48 No. SIG 5(TBIO 2) IPSJ Transactions on Bioinformatics Mar. 2007

Original Paper

Retrieving Functionally Similar Bioinformatics Workflows

Using TF-IDF Filtering

Junya Seo,
†
Shigeto Seno,

†
Yoichi Takenaka

†

and Hideo Matsuda
†

In bioinformatics, dealing with tools to analyze biological data becomes important. Those
tools are provided by various institutions and the number of the tools is rapidly increasing.
Recently many institutions have been offering those tools and access to databases with Web
service technologies. The workflow technology is one of the ways to manage those tools and it is
becoming available in bioinformatics. In order to compose workflows, several research groups
develop and provide workflow composing tools. And consequently, the concept “Workflow
Reuse” is also arisen in order to help workflow composition. Nevertheless it is still difficult to
search for the reusable workflows from the repository of workflows in the current situation.
In this paper, we propose a method to extract reusable workflows from the repository by
using currently available information. We could extract some functionally similar workflows
as reusable ones. By extracting reusable workflows efficiently, researchers can compose their
workflow more easily.

1. Introduction

In the field of bioinformatics, the tools to
analyze biological data have been provided by
various institutions. There are many types of
data and tools for biological analyses. Many
tools are developed for the same or similar anal-
yses. For example, BLAST 2) and FASTA 9)

are the tools to search DNA/Protein sequence
databases. The number of tools has been
increasing year by year and now it becomes
huge 3). Therefore how to deal with them be-
comes important.

Recently several institutions have started
to provide programmatic access to biological
databases and analysis tools based on Web ser-
vice technologies 15) (e.g., XEMBL 16), open-
BQS 12), Soaplab analysis services 13), XML
Central of DDBJ 7) and the KEGG API 5)).
With these publications of resources as Web
services, researchers are making a shift from
traditional navigation using hyperlinks through
a sequence of Web pages provided by those re-
sources to the use of distributed services such
as Web services for experimental design, data
analysis and knowledge discovery. Neverthe-
less it is still difficult to compose distributed
services with Web service technology, whether
manually or automatically. In order to compose
the services, researchers should be familiar with

† Graduate School of Information Science and Tech-
nology, Osaka University

some techniques such as programming.
When researchers use analysis tools, some of

them should be installed locally, others can be
utilized via Web browsers though the support
of Web services. Usually, these tools are not
used solely in the biological analysis, but used
in combination with each other. In the typi-
cal case of using tools sequentially, the output
data of a certain tool is supplied to an input of
another tool. However, particularly, the use of
the Web service requires the high leveled pro-
gramming skills. The hugeness of the number
of tools and various ways of using tools are also
become the barriers for using several tools to-
gether.

In order to solve the problems, workflow man-
agement arose as a method of handling analysis
tools 1). Although the workflows are not widely
used yet, they will be in the near future, which
can be predicted from the situations in the
business field, etc.14) Researchers can combine
Web services, local tools and some other re-
sources into workflows. They potentially allow
researchers to describe their experimental pro-
cesses in structured, repeatable and verifiable
ways. By using this technique, programming
technique is not needed so much. Figure 1
shows an example of workflow. The parenthe-
ses with “sequence” and “database” at the top
of the workflow are input terminals of the work-
flow and “multiple alignment” at the bottom
of the workflow is an output terminal. The
squares with “BLAST” and “ClustalW” are the

20



Vol. 48 No. SIG 5(TBIO 2) Retrieving Functionally Similar Bioinformatics Workflows 21

Fig. 1 An example of workflow.

tools used in this workflow and the parenthe-
ses with “seq”, “database” and “result” around
the tools are input/output ports of the tools.
In this case, workflow has two functions “Ho-
mology Search” and “Get multiple alignment”.
These functions are invoked sequentially on the
workflow.

The increasing of the number of bioinformat-
ics Web services makes management of work-
flows more important. When researchers com-
pose workflows, they choose some services for
their workflows. At this point, it becomes im-
portant factor to consider what service or com-
bination of the services suit for their purpose.
In order to help workflow composition, the con-
cept to store and reuse workflows arises 10). In
some repository of bioinformatics domain, re-
searchers are now starting to pile up the collec-
tions of workflows. Therefore how to utilize the
repository will become important.

As a related work on workflow search and
reuse, a vision for reuse of scientific workflows
is described by Medeiros, et al.6) for a closed
system. But the paper does not consider the
on-line workflows. Also in some workflow com-
posing tools, such as Taverna, implement only
search mechanism of tools on a workflow. Thus
users cannot search specific workflows from the
piled workflows by workflow function. Now
many workflow projects aim how to compose
a workflow easily. Thus few workflow reposito-
ries have been made publicly available and even
fewer have similar workflows in them which can
be used to evaluate search techniques. Some
projects, such as Kepler 4) and Taverna, are
building a platform with workflow reuse in
mind. Therefore searching and reusing work-
flow from the on-line repository are important
as a next stage.

In this paper, we propose an extraction

method of workflows from the piles of workflows
by focusing functional similarity. For this pur-
pose, our method uses data types of workflows
indicated by data names. By extracting func-
tionally similar workflows, researchers can use
them for composing a workflow for their target
analysis.

2. Workflow

In this section, we describe the composition,
reuse and search for workflows. In order to refer
to that, we also describe the current situations
around workflows.

2.1 Workflows in Bioinformatics
A workflow is a set of flows of operations and

data. It consists of local tools, Web services
and data flows. The local tools and Web ser-
vices are executed according as the description
in a workflow. In bioinformatics, workflow tech-
niques are spreading among researchers because
of increasing the variation of analysis tools and
developing of Web service technologies 8). Re-
searchers frequently use combinations of several
analysis tools on their researches. The connec-
tions between those tools are often managed
manually (e.g., copy and paste in web pages),
and manually management is often cumber-
some 1). Researchers can remove the burden of
this management by using workflows. Once re-
searchers have composed a workflow, they can
run it as many times as they want. They can
also make small changes such as input data or
thresholds to the workflow. Workflows run au-
tomatically from input to output on workflow
engines, therefore even if researchers change pa-
rameters on their research, it is easy to do whole
process again.

Figure 2 shows the basic composition of
workflows. A workflow basically consists of
“Workflow Input”, “Tool”, “Workflow Output”
(see the left side of Fig. 2). “Tool” includes local
tools and Web services. “Tool” also has “Input
port” and “Output port”. Those are connected
by the arrows. The arrows indicate data-flows.
Then right side of Fig. 2 shows an example. The
items at the top of workflow are “Workflow In-
put”. In this figure, “input”, “swiss option”
are the input terminals of workflow. Workflows
basically run by considering these input termi-
nals as the start points. The next items show
the input ports of the tool. “file direct data”
and “options” show input ports of the
“parse ddbj gene info”. The next item shows
the tool that is “parse ddbj gene info”. The



22 IPSJ Transactions on Bioinformatics Mar. 2007

Fig. 2 Workflow composition.

tools execute some operations on the workflow
and combinations of these tools construct the
workflow function. The item “output” below
the tool name represents the output port of the
tool. The tools make some data as results of
their work. Those are passed to next tools or
workflow output. The item at the bottom of
workflow is “Workflow Output”. “output” is
the output terminal of the workflow. The work-
flow outputs are equivalent to workflow results
and also those are the end points of the work-
flow.

2.2 Workflow Composition
When researchers make workflow, they have

to decide components used in the workflow such
as tools. There are two ways to compose work-
flows mainly. One is to use programming lan-
guages such as Java. Some programming lan-
guages can invoke local tools and Web services.
Researchers can compose workflows as they like
by using programming languages. However, in
order to use those programming languages, re-
searchers should have high programming skill.
Another way is to use workflow composing tools
such as Taverna 8). Workflow composing tools,
as its name indicates, help researchers with
workflow composition. Many workflow compos-
ing tools have GUI interface, thus researchers
can compose workflows intuitively. Researchers
can compose workflows with few or no scripts
by using workflow composing tools, because
those tools hide complex architectures such as
invoking of Web services. This is an easier way
of workflow composition.

If researchers compose their workflows with a
workflow composing tool, there is the problem
about assurance of their workflows. The work-
flow composing tools do not care whether a tool

Fig. 3 Image of workflow composition by reusing.

can receive the data correctly from the previous
tool, thus every tool can connect to every tool
on those workflow composing tools. But if there
is difference of data format between an output
of the former tool and an input of the latter
tool, data-flow does not run correctly. There-
fore researchers should check all data-flow on
their workflows strictly.

2.3 Workflow Reuse
For the difficulty of workflow composi-

tion, the concept “Workflow Composition by
Reusing Validated Workflows” arise 10). This
concept is to modify validated workflows when
researchers compose new workflows. Vali-
dated workflows are the workflows composed
by other researchers and those are confirmed
as work correctly. Figure 3 shows an im-
age of the concept. In this figure, the cylin-
der with “repository” shows the repository of
workflows, the repository holds many validated
workflows. “WF” shows validated workflows
extracted from the repository for the target
workflow. “tool” is a local tool or a Web ser-
vice. “TargetWorkflow” is a workflow which
researchers want to compose. A workflow can
include other workflows as sub-workflows. In
this concept, the validated workflows from the



Vol. 48 No. SIG 5(TBIO 2) Retrieving Functionally Similar Bioinformatics Workflows 23

repository are also used as components like
tools for the target workflow. By using vali-
dated workflows as components, researchers can
compose assured workflows easily, because val-
idated workflows should run correctly. Even if
researchers are not satisfied with the validated
workflows, they can improve those workflows
to compose target workflows. They improve an
existing workflow that is close enough to be the
basis of a new workflow for a different purpose,
and making small changes to it. Such an ap-
proach is the popular view in semantic Web ser-
vices 10). Actually researchers in bioinformatics
often use similar data-flows with small changes.
As described in section 1, collections of work-
flows are now starting to pile up in some insti-
tutions such as myGrid (http://workflows.
mygrid.org.uk/repository/). The workflow
reuse will be more important in near future.

However researchers cannot reuse workflows
easily. Because it is hard to search for reusable
workflows from the repository. The reason of
this issue is the lack of information on work-
flows. Workflows have only flows of tools and
simple names of tools, inputs or outputs. Thus
researchers can search for one tool within work-
flows by the tool name, but they cannot search
for the combination of tools from the repository
by query function such as “Gene Annotation”.
There are few hints on workflows to consider
that whether their functions are “Gene Anno-
tation”.

2.4 Search against Repository
In order to extract reusable workflows from

the repository, it is needed to extract workflows
having similar function to the query function.
When researchers want to search for workflows,
they have data types of input and output. Once
data types are decided, those data types indi-
cate their target function. Therefore it is neces-
sary to search for and extract functionally simi-
lar workflows from the repository by using data
types of input and output as query. Workflows
include one or more functions and one of them
can be a target function, thus part of workflows
also should be extracted. But there are ambi-
guities in descriptions on workflows. Thus we
should consider how to extract workflows with
tackling ambiguities of names and how to ex-
tract whole and a part of workflows based on
their functions.

3. Method

In this section, we propose a method for ex-

tracting workflows from the repository of work-
flows.

3.1 Overview
Our method extracts workflows from the

repository of workflows by a query. The query
consists of a virtual workflow. The virtual
workflow has names of input terminals, names
of output terminals and one virtual tool. This
virtual tool has no name and no ports. It
only has a function designed by a user and
our method predicts the function. Our method
judges whether workflows in the repository have
similar function to the function of the virtual
workflow. The workflows in the repository are
made with Taverna 8) that is one of the work-
flow composing tools. Taverna is the most
widely used workflow composing tool in bioin-
formatics. There are ambiguities on workflow
descriptions of Taverna, thus information that
we can use are restricted. Taverna workflow can
only use names of tools, input/output ports,
input terminals and output terminals on work-
flows without data types or data formats.

Our aim is to extract functionally similar
workflows by considering functions on work-
flows. We regard workflows having similar func-
tions hold similar types of input terminals and
output terminals. We also regard a combina-
tion of data types on the input terminals and
output terminals as a function of the workflow.
Especially we regard data types on output ter-
minals as important. If the output terminals of
two workflows have similar data types, we sup-
pose those are candidates of similar workflows
and use data types on input terminals to accur-
ize the similarity. Unfortunately workflows do
not have such data types at present. For this
problem, we consider names of input terminals,
output terminals, input ports and output ports
of tools are semantically similar to the data
types. For example, when an input terminal
has a name “sequence”, we consider “sequence”
represents a characteristic of the data on the in-
put terminal. In order to extract similar work-
flows with similarity of data types on input ter-
minals and output terminals, we use simple text
matching of their names. Some workflows are
still uncertain whether they have similar func-
tions to the function indicated by the query.
Thus we use Term Frequency - Inverse Doc-
ument Frequency (TF-IDF)11) weight. This
weight is a statistical measure used to evaluate
how important a word is to a document in a
collection. We implemented filtering algorithm



24 IPSJ Transactions on Bioinformatics Mar. 2007

Fig. 4 Functionally similar workflows.

with TF-IDF to screen out uncertain results.
Figure 4 shows the image of extraction by

our method. Our method receives a virtual
workflow, and then extracts workflows that are
considered as having similar function to the
function of the virtual workflow from the repos-
itory. For example, they input a virtual work-
flow having input terminals and output termi-
nals such as “sequence”, “database” and “mul-
tiple alignment” when researchers want to ex-
tracts workflows that invoke functions homol-
ogy search and multiple alignment. Then, in
Fig. 4, the combinations “BLAST”-“ClustalW”
and “FASTA”-“MEME” are extracted as the
combinations having similar function.

3.2 Algorithm
Input and output of our method are as fol-

lows:
Input:

a virtual workflow, repository of workflows
Output:

workflows
Our method consists of three steps.
Step1:

Extract the candidates of functionally sim-
ilar workflows from the repository by the
names of output terminals in the virtual
workflow.

Step2:
Screen out candidates by the names of in-
put terminals in the virtual workflow.

Step3:
Eliminate uncertain workflows with TF-

IDF.
In order to describe our method, we represent

workflows as labeled directed acyclic graph. We
define the graph with following notations.

V :
V indicates a set of nodes. The nodes rep-
resent tools, input terminals and output
terminals of the workflow. Labels of the
nodes mean names of the tools and the ter-
minals.

E = {e = (v1, v2)|v1, v2 ∈ V }:
E indicates a set of edges. The edges mean
the connectivity in workflows. v1 is the
source of an edge and v2 is the destina-
tion of the edge. The edges have two labels
at the source point and destination point.
Their labels mean name of the output port
and name of the input port respectively.

L = L(V ) ∪ Ls(E) ∪ Ld(E):
L indicates a set of labels. L(V ) means la-
bels of nodes. Ls(E) means labels of source
point on the edges. Ld(E) means labels of
destination point on the edges.

G = (V, E, L):
G indicates workflows.

For example, the workflow (a) in Fig. 4,
V = {v1, v2, v3, v4, v5} and E = {e1, e2, e3, e4}.
Then L(v3) = “FASTA”, Ls(e1) = “sequence”
and Ld(e1) = “seq”.

We also use notations Gquery as the virtual
workflow, Grepository as the set of workflows in
the repository and Grepository as a workflow in
Grepository. We use a following function in the



Vol. 48 No. SIG 5(TBIO 2) Retrieving Functionally Similar Bioinformatics Workflows 25

Fig. 5 Text matching.

algorithm.
match(s1, s2)

Receives text s1 and s2 and returns
truth-value by following condition. We
define length of s1 as s1len, length of s2

as s2len. Then we also define the max-
imum length of perfect matching be-
tween s1 and s2 as comlen. Figure 5
shows an example of the text matching.
Two strings “sequence” and “DNAse-
quence” are the arguments s1 and s2

respectively. In case of Fig. 5, comlen
is 8.
Without loss of generality, we regard
s1len ≥ s2len. When comlen/s1len ≥
0.5 and comlen/s2len ≥ 0.8, match re-
turns TRUE. When arguments do not
satisfy this expression, match returns
FALSE.
In order to calculate these thresh-
olds, we had an experiment with small
dataset from the repository. We chose
some extractable pairs of workflows
and checked extractable values of this
function respectively. We use the mini-
mum values in the experiment that can
extract correct workflows perfectly as
the thresholds of this function.

3.2.1 Step1: Similarity Search with
Output Names

In this step, we extract the candidates of the
functionally similar workflows that can be con-
sidered as functionally similar from the reposi-
tory by names of output terminals in the query.
We define functionally similar workflow as fol-
lows: the workflow receives one or several data
as inputs and results of workflow are the simi-
lar to the target workflow. Therefore we search
nodes from the workflows in the repository that
are similar to the names of output terminals on
the virtual workflows. Then we consider the
sub graph that consists of ancestors of extracted
nodes as candidates.

Our method extract nodes according to the
following conditions.

Fig. 6 Output example of Step1.

∃Grepository ∈ Grepository,
∃equery ∈ Equery, ∃erepository ∈ Erepository,

match(Ld(equery), Ld(erepository)) = TRUE
(1)

Then our method outputs ancestor sub graph
of

vrepository d as G′ = (V ′, E′, L′)
(erepository = (vrepository s, vrepository d))

In above equations, Equery is a set of edges of
a virtual workflow. Erepository is a set of edges
of a workflow in the repository. vrepository d is
a destination node of an edge and vrepository s

is a source node of an edge.
We extract the nodes satisfies the expression

(1). Then we output G′ that is a set of work-
flows G′ consists of the ancestors of the ex-
tracted nodes. G′ is a sub graph of Grepository.

For example, the equation (1) is calculated as
follows in the situation of Fig. 4.

equery = ec

erepository = e4

Ld(ec) = “multiple alignment′′

Ld(e4) = “multiple alignment′′

match(Ld(ec), Ld(e4)) = TRUE
e4 = (v4, v5)

Therefore ancestors of v5 are extracted as G′
like Fig. 6. In workflow (a’), v5 is an end node.

3.2.2 Step2: Similarity Search with
Input Names

In this step, we search nodes from workflows
extracted in Step1 that can be considered as
functionally similar with names of input termi-
nals in the query. Our method screens out the
candidates of Step1 and outputs survived can-
didates as G′′ by the following condition. G′′
is a set of G′′ = (V ′′, E′′, L′′). G′′ is a sur-
vived workflow in expression (2). In the fol-
lowing condition, v′ is a node does not have



26 IPSJ Transactions on Bioinformatics Mar. 2007

Fig. 7 Output example of Step2.

outbound.
∃equery ∈ Equery, ∃e′ ∈ E′,

match(Ls(equery), Ls(e′)) = TRUE (2)
For example, the equation (2) is calculated as

follows in the situation of Fig. 4 and Fig. 6.

equery = ea

e′ = e1

Ls(ea) = “sequence′′, Ls(e1) = “sequence′′

match(Ls(ea), Ls(e1)) = TRUE

equery = eb

e′ = e2

Ls(eb) = “database′′, Ls(e2) = “database′′

match(Ls(eb), Ls(e2)) = TRUE
v1 and v2 satisfy the condition. Therefore a

sub workflow (a”) is extracted as G′′ like Fig. 7.
3.2.3 Step3: Elimination of Uninfor-

mative Results with TF-IDF
In this step, we eliminate the uninformative

candidates with TF-IDF. The expression of TF-
IDF scoring is as follows.

w = tf × log(
N

df
),

where w is the score of a word, tf is the
number of occurrences of the word w in the
workflows in the repository, df is the number
of workflows containing the word w and N is
the total number of the workflows. We used
names of input ports, output ports and tools in
a workflow as target words for the TF-IDF.

First we calculate TF-IDF for all words in a
workflow from Gquery and G′′ and get a key-
word that has the highest score in a workflow
as follows.

KEY (data):
This keyword is obtained from Ls(e),
Ld(e), L′′

s (e) and L′′
d(e) with TF-IDF.

Therefore this keyword indicates a name of
input, output or ports in Gquery and G′′.

KEY (tool):
This keyword is obtained from L(v) and
L′′(v) with TF-IDF. Therefore this key-

Table 1 Correctness of querying.

　 correct incorrect correctness(%)
143 15 90.5

word indicates a tool name in Gquery and
G′′.

Second, we eliminate (or not) according to
following conditions.

if
match(KEY (data)query, KEY (data)′′)
or
match(KEY (tool)query, KEY (tool)′′)

then
DO NOT eliminate this work-
flow G′′.

else
eliminate this workflow G′′.

At match function, in above conditions, we
changed the thresholds as follows.

When comlen/s1len ≥ 0.5 and
comlen/s2len ≥ 0.5, match re-
turns TRUE.

The thresholds differ from Step2, because the
s1 and s2 is manipulated equivalently in Step3.
Finally we output the survived workflows in G′′

as the results of our method.

4. Experiment

4.1 Results
In order to evaluate our method, we imple-

mented and applied it to the workflow data
of Taverna. The data had 197 workflows and
the number of tools included in those workflows
was 1458. We got these workflows from reposi-
tories of myGrid (http://workflows.mygrid.
org.uk/repository/) and the examples dis-
tributed with Taverna.

We divide into our method to two parts,
querying with virtual workflow and TF-IDF fil-
tering. In order to validate our method, we had
some experiments for the querying, filtering and
combination of them.

4.1.1 Querying with Virtual Workflow
Table 1 shows the extraction result by query-

ing with virtual workflow. It consists of Step1
and Step2. “correct” and “incorrect” show the
correct/incorrect number in the extracted re-
sults. We had an experiment with leave-one-out
to the all workflows. We checked the extracted
result manually. When both virtual workflow
(query) and the extracted workflow receive sim-
ilar input data and generate similar output data
respectively, we considered two workflows are
candidates of the similar workflows. Then we



Vol. 48 No. SIG 5(TBIO 2) Retrieving Functionally Similar Bioinformatics Workflows 27

Table 2 Correctness of filtering.

　
correct incorrect correctness(%)

(a) 165 358 31.5
(b) 200 323 61.9

Table 3 Correctness of combination.　
correct incorrect correctness(%)

virtual 143 15 90.5
combination 128 1 99.2

checked whether the extracted workflow works
alternatively on some level in a biological pro-
cess. In this point, when we considered the ex-
tracted workflow as it generates almost same
data with small changes, we judged the result
is correct.

We could extract functionally similar work-
flows with 90.5% correctness. But there were
still 15 incorrect results. Whether TF-IDF fil-
tering can eliminate these incorrect results is
important point.

4.1.2 TF-IDF Filtering
It consists of Step3. In order to validate fil-

tering, we had an experiment with leave-one-
out to the all workflows. Then we checked the
extracted results manually. The criteria of the
functional similarity are same as in querying
with virtual workflow.

Result (a) in Table 2 shows that we could not
filter the workflows well with the keyword ob-
tained by TF-IDF. This problem was occurred
because of a difference between the sizes of two
workflows. There were many workflows that
have similar parts around the obtained key-
word. Therefore we changed criteria of the cor-
rect result in the result (b). When two work-
flows have similar parts around the keywords,
we counted the pair as a correct result. Then
the correctness improved to 61.9%. This result
shows that the correctness will be higher if we
compared similar size workflows. Therefore it is
necessary to cut out small part from a workflow
to use this filtering.

4.1.3 Combination
Table 3 shows the extraction results by

querying with virtual workflow and the com-
bination (our method). “virtual” indicates
the method “Querying with Virtual Workflow”.
This result is same as Table 1. “combination”
indicates the our method that is combination
of querying and filtering.

As a result, we could extract workflows in
terms of the function by names on workflow.
We extracted functionally similar workflows in

Step2. The correctness was 90.5% and there
were still 15 incorrect results. Then, in Step3,
we could eliminate 14 incorrect results with TF-
IDF. After Step3, the correctness was improved
to 99.2%.

4.1.4 Extraction Example
We show two examples of the result work-

flows. First we show a set of two workflows
(Fig. 8). The query workflow was composed of
the input and output terminals from the left
one. The right one was an extracted work-
flow by our method. It shows the correct
result extracted in Step2 and it also passed
the Step3 successfully. The query workflow
has a function to get MEDLINE ID by Probe-
set ID. The extracted workflow has a function
to get MEDLINE Record by Probeset ID. In
this case, name of input terminals have same
name between two workflows and name of out-
put terminals “medlineid” and “medline” are
similar. The query workflow gets “medlineid”
with “probesetid” and extracted workflow gets
“medline” with a tool “ProbeSetId”. Data
management on their workflow is almost same.
Therefore we considered two workflows as func-
tionally similar workflows, although two work-
flows do not have same function, extracted one
gets “medlineid” on its process after getting
“medline”.

Second, we also show the two workflows ex-
tracted by our method (Fig. 9). The query
workflow was composed of the input and out-
put terminals from the left one. The right
one was the extracted workflow. This result
shows the incorrect result extracted in Step2,
but the extracted workflow was eliminated in
Step3. The query workflow has a function to
merge two input strings. On the other hand,
the extracted workflow has a function to get
formatted BIND record and split it. BIND is
one of the biology databases. In this case there
were similar names of input terminals and out-
put terminals on workflow (in this case, there
were same names), but two workflows seemed to
have opposite function (Marge and Split). Then
the method checked TF-IDF keyword on work-
flows in Step3. Table 4 shows the keywords
extracted with TF-IDF filtering. There were
few similarity between those keyword, thus we
could eliminate this extracted workflow cor-
rectly from results (each KEYdata were little
bit similar, but matching ratio were lower than
threshold). This result was also a good result.

In order to help making new workflow, our



28 IPSJ Transactions on Bioinformatics Mar. 2007

Fig. 8 Query and extracted workflows (First result).

Fig. 9 Query and extracted workflows (Second result).

Table 4 TF-IDF keyword.　
query extracted

KEY (data) test input test output
KEY (tool) merge string list to string split

method outputs figures and workflow descrip-
tions of extracted workflows. As Taverna has a
mechanism to use a workflow as a component of
another workflow, users can build the extracted
workflows into new workflows.

4.2 Discussion
Our method could extract workflows from

the repository. Results were not limited to
whole workflow in the repository. Our method
extracted a part of whole workflow (sub-
workflow).

The correctness of the extracting seemed to
have enough high-ratio. Thus there were func-
tional meaning in the combination of names of
input terminals and output terminals on work-
flows. But there were also eliminated workflows
in spite of correct workflows. The correctness
of the elimination (Step3) was 48.2% (14/29).

This ratio was not so high. As a future work,
we have to improve elimination in Step3 with
TF-IDF or other algorithms.

5. Conclusion

We proposed a method to extract workflows
from their repository that are similar to a query
workflow. In order to extract the workflows,
we used text matching of the names and the
connection between tools. Then we improved
correctness of the extraction with TF-IDF. The
results seemed good enough for researchers to
use extracted workflow as a component or for
improvement to their research.

References

1) Addis, M., Ferris, J., Greenwood, M., Li, P.,
Marvin, D., Oinn, T. and Wipat, A.: Expe-
riences with e-Science workflow specification
and enactment in bioinformatics, Proc. UK e-
Science All Hands Meeting 2003, pp.323–337
(2003).

2) Altschul, S.F., Gish, W., Miller, W., Meyers,



Vol. 48 No. SIG 5(TBIO 2) Retrieving Functionally Similar Bioinformatics Workflows 29

E.W. and Lipman, D.J.: Basic local alignment
search tool, J. Mol. Biol., Vol.215, pp.403–410
(1990).

3) Bateman, A.: EDITORIAL, Nucleic Acids Re-
search, Vol.34 (2006). Database Issue.

4) Bowers, S., Ludascher, B., Ngu, A. H.H.
and Critchlow, T.: Enabling ScientificWork-
flow Reuse through Structured Composition of
Dataflow and Control-Flow, ICDEW ’06: Proc.
22nd International Conference on Data Engi-
neering Workshops (ICDEW’06 ), p.70 (2006).

5) Kawashima, S., Katayama, T., Sato, Y. and
Kanehisa, M.: KEGG API: A new web service
for accessing the KEGG database, ISMB 2003
(2003).

6) Medeiros, C.B., Perez-Alcazar, J.,
Digiampietri, L., G.Z.Pastorello, J., Santanche,
A., da Silva Torres, R., Madeira, E. R. M. and
Bacarin, E.: WOODSS and the Web: annotat-
ing and reusing scientific workflows, SIGMOD
Rec., Vol.34, No.3, pp.18–23 (2005).

7) Miyazaki, S. and Sugawara, H.: Develop-
ment of DDBJ-XML and its application to a
database of cDNA, Genome Informatics 2000,
Vol.11, pp.380–381 (2000).

8) Oinn, T., et al.: Taverna: A tool for the com-
position and enactment of bioinformatics work-
flows, Bioinformatics, Vol.20, No.17, pp.3045–
3054 (2004).

9) Pearson, W.R. and Lipman, D.J.: Improved
tools for biological sequence comparison, Proc.
Natl. Acad. Sci. US, Vol.85, pp.2444–2448
(1988).

10) Salton, G. and Buckley, C.: Seven Bottlenecks
to Workflow Reuse and Repurposing, Infor-
mation Processing and Management, Vol.24,
pp.513–523 (1988).

11) Salton, G. and Buckley, C.: Term-weighting
approaches in automatic text retrieval, Infor-
mation Processing and Management: an Inter-
national Journal, Vol.24, pp.513–523 (1988).

12) Senger, M.: Bibliographic query service
(2002). http://industry.ebi.ac.uk/openBQS/.

13) Senger, M., Rice, P. and Oinn, T.: SoapLab —
A unified Sesame door to analysis tools, Pro-
ceedings of the UK e-Science All Hands Meet-
ing, Vol.18 (2003).

14) Shefter, S.M.: Workflow Technology: The New
Frontier: How to Overcome the Barriers and
Join the Future, Lippincott’s Case Manage-
ment, Vol.11, pp.25–34 (2006).

15) Stein, L.: Creating a bioinformatics nation,
Nature, Vol.417, pp.119–120 (2002).

16) Wang, L., Riethoven, J.-J. and Robinson, A.:
XEMBL: Distributing EMBL data in XML

format, Bioinformatics, Vol.18, pp.1147–1148
(2002).

(Received December 7, 2006)
(Accepted January 19, 2007)

(Communicated by Shunsuke Uemura)

Junya Seo received the B.E.
degree from Osaka University in
2006. He is currently a student
of M.E. course at the Graduate
School of Information Science
and Technology, Osaka Univer-
sity. His research interests in-

clude Bioinformatics and Grid computing.

Shigeto Seno is an Assis-
tant Professor of the Graduate
School of Information Science
and Technology, Osaka Univer-
sity. He recieved his B.E., M.E.
and Ph.D. degrees from Osaka
University in 2001, 2003 and

2006 respectively. He is a member of IEEE and
IPSJ.

Yoichi Takenaka received
the M.E. and Ph.D. in 1997, and
2000 from Osaka University, re-
spectively. He worked for Osaka
Universitiy from 2000 to 2002 as
assistant professor, and now he
is associate professor at Grad-

uate School of Information Science and Tech-
nology, Osaka University. His research intersts
include Bioinformatics, DNA computing, and
Neural Networks.

Hideo Matsuda is Profes-
sor of the Department of Bioin-
formatic Engineering, Graduate
School of Information Science
and Technology, Osaka Univer-
sity. He received his B.S.,
M.Eng., and Ph.D. degrees from

Kobe University in 1982, 1984 and 1987, respec-
tively. His research interests include computa-
tional analysis of genomic sequences, integrated
biological databases, and data grid technology.
He is a member of JSBi, ISCB, IEEE CS and
ACM.


