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A model based on a set of differential equations can effectively capture various dynamics.
This type of model is therefore ideal for describing genetic networks. Several genetic network
inference algorithms based on models of this type have been proposed. Most of these inference
methods use models based on a set of differential equations of the fixed form to describe genetic
networks. In this study, we propose a new method for the inference of genetic networks. To
describe genetic networks, the proposed method does not use models of the fixed form, but
uses neural network models. In order to interpret obtained neural network models, we also
propose a method based on sensitivity analysis. The effectiveness of the proposed methods is
verified through a series of artificial genetic network inference problems.

1. Introduction

The mathematical modeling of biochemical
networks, such as genetic networks, metabolic
networks, and signal transduction cascades, is a
central theme in systems biology and a point of
intensifying focus in the post-genomic era 24).
Many recent studies have sought to develop
computational methods for inferring genetic
networks from gene expression data obtained by
DNA microarrays 4). The inferred model of the
genetic network is conceived as an ideal tool to
help biologists generate hypotheses and facili-
tate the design of their experiments. It may also
shed light on the biological functions of genes.

Numerous models to describe biochemical
networks have been proposed 1),5),7),13),17),22),26),

28). Among them, we focus on the models based
on a set of differential equations in this study
because these models have an ability to capture
the dynamics. In a genetic network inference
problem based on a set of differential equations,
the genetic network can be described as

dXi

dt
=Gi(X1, X2, · · · , XN ), (i=1, · · · , N),

(1)
where Xi is the expression level of the i-th gene,
N is the number of genes in the network, and Gi

is a function of an arbitrary form. The purpose
of the genetic network inference problem based
on a set of differential equations is to identify
the function Gi from the observed gene expres-
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sion data.
When we try to infer genetic networks, the

function Gi is generally approximated using a
set of differential equations of the fixed form.
One of well-studied models based on a set of dif-
ferential equations of the fixed form is a linear
model 6),28). The computational time for infer-
ring linear models of genetic networks is short.
However, the linear model is not suitable for
analyzing time-series of gene expression data
because the model requires that the system
is operating near a steady state 28). Another
well-studied model based on a set of differen-
tial equations of the fixed form is an S-system
model 23). This model possesses a rich structure
capable of capturing various dynamics, and can
be analyzed by several available methods. Be-
cause of these advantages, a number of methods
for the inference of S-system models of genetic
networks have been proposed 2),8),10),11),20),21).
However, these methods are time-consuming
because they require to solve a set of differential
equations many times.

In this paper, we propose a new method for
the inference of genetic networks. The proposed
method uses a neural network model to approx-
imate the function Gi. As the neural network
model is a powerful function approximator, it
has an ability to provide a good approximation
of the function Gi. Moreover, as it is not neces-
sary for the learning of the neural network mod-
els to solve a set of differential equations, the
proposed method requires the shorter computa-
tional time. For the interpretation of the neural
network models obtained, this study also pro-
poses a method based on sensitivity analysis.
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Finally, we verify the effectiveness of the pro-
posed inference methods by applying them to
several artificial genetic network inference prob-
lems.

2. Genetic Network Inference Prob-
lem

The purpose of the genetic network inference
problem is to find a good approximation of the
function Gi (i = 1, · · · , N), as mentioned in
the previous section. This problem can be de-
fined as a function approximation problem 12).
The function approximation problem is a prob-
lem where an unspecified function f is approx-
imated only on the basis of observations at T
points

(x1, f(x1)) , (x2, f(x2)) , · · · , (xT , f(xT )) .
When we try to infer genetic networks in this
study, we approximate the function Gi on the
basis of observations at T points(

X|t1 ,
dXi

dt

∣∣∣∣
t1

)
, · · · ,

(
X|tT

,
dXi

dt

∣∣∣∣
tT

)
,

where X|tk
=
(
X1|tk

, X2|tk
, · · · , XN |tk

)
is the

gene expression levels of all of the genes at time
tk, and dXi

dt

∣∣
tk

is the differential coefficient of
the expression level (rate of transcription) of
the i-th gene at time tk.

As described just above, our approach re-
quires both the gene expression levels and their
differential coefficients to solve the genetic net-
work inference problem. Though DNA microar-
ray technologies allow us to measure the lev-
els of gene expression, we have yet to find a
biological technique capable of measuring the
differential coefficients of gene expression lev-
els. As an alternative, the data we obtain by
measuring the time-series of the gene expres-
sion levels allow us to estimate the differen-
tial coefficients using interpolation techniques,
such as the spline interpolation 15) or the lo-
cal linear regression 3). Taking basically the
same approach, Voit and Almeida 25) proposed
a method that uses the estimated differential
coefficients of gene expression levels to infer the
S-system model of a genetic network. Their
method used a neural network to estimate the
differential coefficients.

3. Learning of Neural Network Model

Several techniques should be available for
solving the function approximation problem de-
fined above. In this study, however, as a neural

Fig. 1 Three-layer feed-forward neural network
model.

network is known to be a powerful function ap-
proximator, we use it to approximate the func-
tion Gi

12). We should note here that one neural
network in this study corresponds to one gene.
When we try to solve a genetic network infer-
ence problem consisting of N genes, we there-
fore must obtain N neural networks, each cor-
responding to one of the genes.

In the remainder of this section, we will ex-
plain the method to obtain the neural network
corresponding to the i-th gene.

3.1 Model Description
We obtain our function approximation using

a typical multi-layer feed-forward neural net-
work. The neural network used here consists of
three layers (the input, hidden and output lay-
ers), each containing several neurons (the input,
hidden and output neurons) (Fig. 1).

The input layer contains N neurons, where N
is the number of genes in the genetic network.
Each input neuron works as an input for the ex-
pression level of each gene. The input neurons
connect only with the hidden neurons.

The hidden layer consists of nH neurons. The
k-th hidden neuron (k = 1, · · · , nH) receives the
values from the input neurons, and its output
yH

k is calculated as

yH
k = f


 N∑

j=1

wIH
j,k Xj − θH

k


 , (2)

where Xj is the expression level of the j-th gene,
wIH

j,k is the weight parameter between the j-th
input neuron and the k-th hidden neuron, θH

k
is the threshold parameter of the k-th hidden
neuron, and f(x) = 1

1+exp(−x) .
The output layer has one neuron that receives

the outputs of the hidden neurons. This neuron
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calculates its output yO
1 through

yO
1 = g

(
nH∑
k=1

wHO
k,1 yH

k − θO
1

)
, (3)

where wHO
k,1 is the weight parameter between

the k-th hidden neuron and the output neu-
ron, θO

1 is the threshold parameter of the output
neuron, and g(x) = x. yO

1 is the final output of
this neural network and the differential coeffi-
cient of the expression level of the i-th gene.

3.2 Problem Definition
When trying to obtain a neural network that

outputs Yt (t = 1, · · · , T ) against a correspond-
ing input xt, we formulate the learning of the
neural network as a function optimization prob-
lem. Our object in this problem is to find
the model parameters (wIH

j,k , θH
k , wHO

k,1 and θO
1 )

which minimize the function

E =
1
2

T∑
t=1

[
yO
1 (xt) − Yt

]2
, (4)

where yO
1 (xt) is the output of the neural net-

work against the input xt. The variable xt

in the genetic network inference problem rep-
resents the observed expression levels of all of
the genes at time t (i.e., X|t). The variable
Yt represents the differential coefficient of the
expression level of the i-th gene at time t (i.e.,
dXi

dt

∣∣
t
), estimated from the observed time-series

data. We seem to find, however, that this func-
tion optimization problem has multiple optima.
This drawback stems from the high degree-
of-freedom of the neural network model and
the generally insufficient amounts of time-series
data observed. To increase the probability of
finding a reasonable solution, we introduce a
priori knowledge about the genetic network into
the objective function (4).

Genetic networks are known to be sparsely
connected 19). When the i-th gene is unaffected
by the j-th gene, the weight parameters asso-
ciated with the j-th input neuron, i.e., wIH

j,k

(k = 1, · · · , nH), should be zero. When this
condition holds, the sum of the squared weight

parameters ωj =
∑nH

k=1

(
wIH

j,k

)2

will also be
zero. We incorporate this knowledge into the
objective function (4) using a penalty term, as
shown below.

F =
1
2

T∑
t=1

[
yO
1 (xt) − Yt

]2
+c

N−I∑
j=1

Wj , (5)

where Wj is given by rearranging ωj in descend-
ing order of their values (i.e., W1 ≤ W2 ≤ · · · ≤

WN ). The variable c is a penalty coefficient and
I is a maximum indegree. The maximum inde-
gree determines the maximum number of genes
that directly affect the i-th gene.

The penalty term is the second term on the
right-hand side of Eq. (5). When the penalty
term is applied, most of the genes are dis-
connected from each other. When the num-
ber of genes that directly affect the i-th gene
is smaller than the maximum indegree I, this
penalty term, however, will not actually pe-
nalize. Here, we use Eq. (5) as an objec-
tive function to be minimized. Several earlier
studies have used penalty terms to reduce the
degree-of-freedom in the genetic network infer-
ence problem 8),10),11).

3.3 Learning Algorithm
Though any type of function optimizer can

be applied to the neural network learning prob-
lem, the back-propagation is by far the most
popular algorithm. The back-propagation algo-
rithm optimizes the objective function (4) using
the computed gradient values 16). As the new
objective function (5) is also differentiable, we
can design an algorithm similar to the back-
propagation even when trying to optimize the
function (5).

The back-propagation algorithm has been
successfully applied in various areas, but its use
of gradient descent has drawbacks 27). Most
importantly, the algorithm often gets trapped
into a local optimum of the objective func-
tion and fails to find a global optimum when
the objective function is multimodal. To over-
come the shortcomings of the gradient-descent-
based learning algorithms, evolutionary algo-
rithms have been often used 27).

Evolutionary algorithms generally use no gra-
dient information of the objective function.
However, when it is available, we should use
it for the effective search. Therefore, our group
uses an evolutionary algorithm, GLSDC 9), for
the learning of the neural network model.
GLSDC applied here uses the back-propagation
algorithm as its search operator in order to uti-
lize the gradient information. The detailed in-
formation on GLSDC is given in Refs. 9), 12).

4. Model Refinement

As the obtained neural network models ap-
proximate the function Gi’s given in Eq. (1), we
can simulate the gene expression of the target
system by solving the following set of differen-
tial equations.
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dXi

dt
=Ĝi(X1, X2, · · · , XN ), (i=1, · · · , N),

(6)
where Ĝi is the obtained neural network model
corresponding to the i-th gene, and N is the
number of genes in the network. The computed
time-courses of the gene expression levels, how-
ever, do not always resemble the observed data
because of the training errors of the neural net-
work models. Therefore, we refine the obtained
neural network models by solving function op-
timization problems described below.

Since the high-dimensionality makes it diffi-
cult to refine all of the obtained neural network
models simultaneously, we utilize the problem
decomposition strategy 10),14). This strategy
divides the refinement problem into N func-
tion optimization problems, each of which cor-
responding to each gene. In the i-th refine-
ment problem corresponding to the i-th gene,
we search for the model parameters of the i-th
neural network model, which minimize

fi =
T∑

k=1

(
Xi|exp

tk
− Xi|cal

tk

)2

+ d

N−I∑
j=1

Wj ,

(7)
where the second term on the right-hand side
is the same penalty term as that we intro-
duced into Eq. (5), and d is a penalty coefficient.
Xi|exp

tk
is an experimentally observed gene ex-

pression level at time tk of the i-th gene, and
Xi|cal

tk
is a numerically calculated one. In this

study, Xi|cal
tk

is obtained not by solving the set
of differential Eq. (6), but by solving the follow-
ing differential equation.

dXi

dt
= Ĝi(Y1, Y2, · · · , YN ), (8)

where

Yj =
{

Xj , if j = i,

X̂j , otherwise,
(9)

and X̂j is an estimated time-course of the j-
th gene’s expression level acquired by making a
direct estimation from the observed time-series
data. Two methods are used to estimate X̂j ’s
in this study. When the data are assumed to
be observed with no measurement error, X̂j ’s
are estimated using the spline interpolation 15).
When the absence of measurement error can-
not be confirmed, the local linear regression 3)

is used to estimate the values.
We used the modified Powell’s method 15) to

solve the function optimization problems de-

fined here. These problems require to solve the
differential Eq. (8) many times, in contrast to
the neural network learning problem described
in the previous section. These computational
costs are, however, not high because the mod-
ified Powell’s method is a sophisticated local
search method.

5. Model Interpretation

When working on the genetic network infer-
ence, we must know whether the i-th gene is
affected by the j-th gene. In this study, we
propose a method based on sensitivity analy-
sis to extract this information from the neural
network model obtained 12).

The change in Xi is unaffected by Xj when
the i-th gene is unaffected by the j-th gene.
Thus, on this condition, the following equations
always hold.

∂

∂Xj

(
dXi

dt

)
=

∂Gi(X1, · · · , XN )
∂Xj

= 0,

(10)

where Gi is the function that gives the mapping
from the expression levels of all of the genes
to the differential coefficient of the expression
level of the i-th gene, as described in the sec-
tion 1. ∂Gi

∂Xj
is generally called the sensitivity

coefficient. The absolute value of the sensitiv-
ity coefficient represents the impact of the j-th
gene upon the i-th gene. The large absolute
value of the sensitivity coefficient indicates that
the j-th gene strongly affects the i-th gene. We
can also know, from the sign of the sensitivity
coefficient, whether the regulation of the i-the
gene from the j-th gene is positive or negative;
when the sign is positive (negative), the j-th
gene positively (negatively) regulates the i-th
gene.

As the sensitivity coefficient generally varies
according to time, we use the positive and neg-
ative sensitivity coefficients averaged over time,
Sp

i (j) and Sm
i (j) respectively, to infer interac-

tions between genes. To cope with the difficulty
of calculating these values precisely, this paper
approximates them as

Sp
i (j) =

1
tT − t1

∫ tT

t1

p

(
∂Gi

∂Xj

)
dt

� 1
T

T∑
k=1

p

(
∂Ĝi

∂Xj

∣∣∣∣∣
tk

)
, (11)

and



Vol. 48 No. SIG 5(TBIO 2) Function Approximation Approach to the Inference of Genetic Networks 13

Sm
i (j) =

1
tT − t1

∫ tT

t1

m

(
∂Gi

∂Xj

)
dt

� 1
T

T∑
k=1

m

(
∂Ĝi

∂Xj

∣∣∣∣∣
tk

)
, (12)

where

p(x) =
{

x, if x > 0,
0, otherwise, (13)

m(x) =
{

x, if x < 0,
0, otherwise, (14)

T is the number of sampling points of the mea-
sured time-series data, and ∂Ĝi

∂Xj

∣∣∣
t

is the esti-
mated sensitivity coefficient at time t calculated
from the neural network model. As the neural
network model is differentiable, we can calcu-
late ∂Ĝi

∂Xj

∣∣∣
t

analytically.
The large absolute values of Sp

i (j) and Sm
i (j)

suggest the existence of the positive and nega-
tive regulations of the i-th gene from the j-th
gene, respectively. Therefore, we conclude that
the i-th gene is positively regulated by the j-th
gene when |Sp

i (j)|+|Sm
i (j)| exceeds a threshold

Thresh(i) and
|Sp

i (j)|
|Sp

i (j)| + |Sm
i (j)| > α, (15)

where α is a constant parameter. Similarly,
when |Sp

i (j)| + |Sm
i (j)| > Thresh(i) and

|Sm
i (j)|

|Sp
i (j)| + |Sm

i (j)| > α, (16)

the proposed method infers the negative regu-
lation of the i-th gene from the j-th gene. As
the threshold, we use

Thresh(i) = β max
j

(|Sp
i (j)| + |Sm

i (j)|) .

(17)
We set the threshold parameters α and β to
0.3 and 0.05, respectively. When α is set to
less than 0.5, our method has an ability to infer
both positive and negative regulations of the
i-th gene from the j-th gene simultaneously.

6. Numerical Experiments

To confirm its effectiveness, we applied the
proposed approach to two genetic network in-
ference problems. Artificial genetic network
problems were used in each case.

6.1 S-system Network
In this experiment, we confirmed that our ap-

proach has an ability to infer a genetic network
model correctly.

6.1.1 Experimental Setup
As a target network that we attempt to in-

fer, we used an S-system model consisting of 30
genes (N = 30). The S-system model 23) is of-
ten used to describe biochemical networks (see,
e.g., Refs. 2), 11), 18), 20), 25)). The model
is structured as a set of non-linear differential
equations of the form

dXi

dt
= αi

N∏
j=1

X
gi,j

j − βi

N∏
j=1

X
hi,j

j ,

(i = 1, 2, · · · , N), (18)
where Xi is the expression level of the i-th gene,
αi and βi are multiplicative parameters called
rate constants, and gi,j and hi,j are exponen-
tial parameters called kinetic orders. The net-
work structure and the S-system parameters of
the target network are shown in Fig. 2 and Ta-
ble 1, respectively 13).

15 sets of time-series data, each covering
all 30 genes, were given as the observed gene
expression patterns. The sets began from
randomly generated initial values in [0.0, 2.0]
and were obtained by solving the differential

Fig. 2 The network structure of the target model.

Table 1 S-system parameters of the target model.

αi 1.0
βi 1.0

g1,14 =−0.1, g5,1 =1.0, g6,1 =1.0, g7,2 =0.5,
g7,3 =0.4, g8,4 =0.2, g8,17 =−0.2, g9,5 =1.0,
g9,6 =−0.1, g10,7 =0.3, g11,4 =0.4, g11,7 =−0.2,
g11,22 =0.4, g12,23 =0.1, g13,8 =0.6, g14,9 =1.0,
g15,10 =0.2, g16,11 =0.5, g16,12 =−0.2,

gi,j g17,13 =0.5, g19,14 =0.1, g20,15 =0.7, g20,26 =0.3,
g21,16 =0.6, g22,16 =0.5, g23,17 =0.2,
g24,15 =−0.2, g24,18 =−0.1, g24,19 =0.3,
g25,20 =0.4, g26,21 =−0.2, g26,28 =0.1,
g27,24 =0.6, g27,25 =0.3, g27,30 =−0.2,
g28,25 =0.5, g29,26 =0.4, g30,27 =0.6,
other gi,j =0.0

hi,j 1.0 if i=j, 0.0 otherwise.
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Eq. (18) on the target model. In a practical
application, these sets of time-series data were
obtained by actual biological experiments un-
der different experimental conditions. 11 sam-
pling points for the time-series data were as-
signed on each gene in each set. Thus, the ob-
served time-series data for each gene consisted
of 15 × 11 = 165 sampling points. We esti-
mated neural network models solely from these
time-series data and their estimated differen-
tial coefficients. As the data contained no mea-
surement noise, the spline interpolation 15) was
used to estimate the differential coefficients of
the gene expression levels from the given time-
series data.

As described before, our most important task
in solving this genetic network inference prob-
lem was to obtain N neural networks, each cor-
responding to one gene. Each neural network
consisted of N input neurons, nH hidden neu-
rons and one output neuron. Given the condi-
tion nH = 5 applied in this study, the learning
problem of each neural network was defined as
a N × nH + nH × 1 + nH + 1 = 161 dimen-
sional function optimization problem. 10 runs
were carried out by changing the seed for the
pseudo random number to solve each function
optimization problem. Each run was continued
until the number of generations reached 300 or
the best candidate solution in the population
had not been improved in the last 30 genera-
tions. The method described in the section 4
was then applied to refine the obtained neural
network models. The search regions of the pa-
rameters were [−10.0, 10.0], the maximum inde-
gree I was 5, and the penalty coefficients c and
d were 0.1. The following recommended param-
eters were used in GLSDC applied; the popula-
tion size np is 3n, where n was the dimension of
the search space, the number of children gener-
ated by the crossover per selection nc was 10,
and the number of applied the converging op-
erations N0 was 2np.

6.1.2 Result
We extracted regulations from the obtained

neural network models using the sensitivity co-
efficients Sp

i (j) and Sm
i (j), as described in Sec-

tion 5. Figure 3 shows a typical genetic net-
work inferred from obtained models. As the fig-
ure illustrates, most of the regulations were cor-
rectly inferred by the proposed methods. The
inferred networks, however, contained several
unnecessary regulations that were absent in the
target network, i.e., false-positive regulations.

Fig. 3 A sample of the network structure inferred by
the proposed approach.

The averaged numbers of the false-negative and
false-positive regulations were 5.5 ± 2.1 and
12.9 ± 4.0, respectively, where the values sub-
sequent to the ‘±’ signs are the standard devi-
ations. As the target network contains 68 reg-
ulations, the sensitivity and the specificity of
the proposed approach were 0.919 ± 0.030 and
0.993± 0.002, respectively. The sensitivity and
the specificity are defined as

sensitivity =
TP

TP + FN
,

specificity =
TN

FP + TN
,

where TP , FN , TN and FP are the numbers
of true-positive, false-negative, true-negative
and false-positive regulations, respectively. The
sensitivity increases from 0 to 1 with decreas-
ing the number of false-negative regulations,
and the specificity increases from 0 to 1 with
decreasing the number of false-positive regula-
tions.

Even when the model refinement was not ap-
plied, the inference ability of the proposed ap-
proach was not degraded. The sensitivity and
the specificity calculated from the neural net-
work models without the model refinement were
0.919 ± 0.030 and 0.993 ± 0.002, respectively.
Therefore, the application of the model refine-
ment may be omitted when we are interested
only in a network structure of the target system.
The use of the model refinement, however, im-
proved the sum of the squared error between the
time-courses produced by the obtained model
and the given time-series data, i.e., the value
of the objective function (7). The averaged ob-
jective values (7) with and without the model
refinement were 4.108×10−3±9.112×10−3 and
6.215 × 10−3 ± 1.421 × 10−2, respectively. The
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model refinement should be applied only when
we try to perform the computational simula-
tion.

When the method based on the S-system
model 10) was applied to the same prob-
lem, the numbers of the true-positive, false-
positive, true-negative and false-negative regu-
lations were reportedly 68.0, 225.0, 1507.0 and
0.0, respectively. The number of the false-
positive regulations inferred by the proposed
approach was smaller than that of the S-system
approach. However, most of the false-positive
regulations inferred by the S-system approach
were omissible because the absolute parameter
values of these regulations were much smaller
than those of the correct regulations 10). Thus,
the inference ability of the proposed approach
was not always better than that of the S-
system approach. The proposed approach, on
the other hand, required shorter computational
time. Our approach running on the single-
CPU personal personal computer (Pentium IV
2.8GHz) required about 47.1 and 46.2 min-
utes for the learning and the refinement of
each neural network model, respectively. The
proposed approach therefore required about
(47.1 + 46.2) × 30 minutes � 47 hours to solve
this genetic network inference problem while
the S-system approach took about 73.8 × 30
hours on a single-CPU personal computer (Pen-
tium III 1 GHz) 10). When the linear model is
used to infer the genetic network, much shorter
computational time is expected. The linear
model is not, however, suitable for analyzing
the time-series data of this study because the
model requires that the system is operating
near a steady state 28).

We can change the function approximation
capability of the neural network model using
the number of hidden neurons nH . When us-
ing a larger nH , the neural network obtained
should provide a model with a better fit to the
observed data. However, an unduly large nH

produces a neural network model which over-
fits into the observed data. This is a result to
be avoided at all costs, especially when the ob-
served data are polluted by the measurement
noise. An unduly small nH , on the other hand,
makes it difficult to infer a reasonable genetic
network. Therefore, we must carefully choose
nH when we use the proposed approach. In or-
der to determine the number of hidden neurons
nH , a k-fold cross-validation that estimates the
generalization error of a neural network model

Fig. 4 The training error and the generalization er-
ror of the neural network models with different
numbers of hidden neurons.

is often used. This method divides the training
data into k subsets first. Then, a neural net-
work model is trained k times, each time leaving
out one of the subsets from the training data,
but using only the omitted subset to estimate
the generalization error.

As the given data consisted of 15 sets of time-
series data in this study, we applied the 15-
fold cross-validation. The averaged training er-
ror and the averaged generalization error of the
neural network models are plotted against the
number of hidden neurons nH in Fig. 4. The
training error and the generalization error are
the values of the function (5) for the training
data (14 subsets) and the test data (one subset),
respectively. Although an excessively large nH

generally makes the generalization error worse,
the figure shows that it decreases with increas-
ing nH . As the penalty term introduced into
the objective function (5) works to reduce the
degree-of-freedom of the neural network mod-
els, the generalization error should be hard to
get worse in this study. On the other hand,
the learning of the neural network models with
the large nH requires high computational effort.
Therefore, we used nH = 5 in this study.

We performed an additional experiment with-
out applying the penalty terms introduced into
the objective functions (5) and (7) in order to
confirm the effectiveness of them. When the
penalty terms were omitted, the values of the
objective function (7) averaged about 1.663 ×
10−4 ± 8.290 × 10−5. Though these objective
function values were certainly smaller, network
structures inferred were not always reasonable.
While the number of false-negative regulations
slightly decreases to an average of 3.2±1.2, the
number of false-positive regulations increased
dramatically, reaching as many as 945.3 ± 17.0
on average. The sensitivity and the specificity
without applying the penalty terms were there-
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fore 0.953±0.018 and 0.454±0.010, respectively.
Our findings indicate that the penalty terms are
necessary to obtain reasonable genetic networks
when using the proposed methods.

6.2 Random Genetic Network
In the second experiment, we checked the per-

formance of our approach in a noisy real-world
setting by conducting the experiment with sets
of noisy time-series data.

6.2.1 Experimental Setup
We used the following set of differential equa-

tions to describe target networks 28).
dXi

dt
= −λiXi

+
αi +

∑
j∈Ai

X
γi,j

j

1+
∑

j∈Ai
X

γi,j

j +
∑

k∈Ri
X

βi,k

k

,

(i = 1, 2, · · · , N), (19)
where λi is the degradation rate of the i-th
mRNA, αi is the synthesis rate of the i-th
mRNA, γi,j is the activation cooperativity of
the j-th gene on the i-th gene, and βi,k is the
repression cooperativity of the k-th gene on the
i-th gene. The sets Ai and Ri specify the genes
that activate and repress, respectively, the i-th
gene.

As the target networks, we randomly con-
structed the systems of 10, 20 and 30 genes
(N = 10, 20, 30). As the inference ability
of the proposed approach may depend on the
structure of the target network, we changed
the network structure on every trial. We gen-
erated target networks of different structures
by changing the model parameters described
above. In order to construct the sets Ai and
Ri, we randomly picked an integer m from a
power-law distribution with a cutoff 5. Then,
m genes were randomly selected from all of the
genes contained in the network. Finally, the in-
dices corresponding to the selected genes were
added to the set Ai or the set Ri with the prob-
ability 0.5. The rate parameters (λi and αi) and
the cooperativity parameters (γi,j and βi,k) are
randomly selected from [0.0, 1.0] and [1.0, 2.0],
respectively.

The performances of inference methods gen-
erally depend on the amount of given time-
series data. Therefore, we performed the exper-
iments with different numbers of sets of time-
series data. We obtained the sets of time-series
data by solving the set of differential Eq. (19).
Each set of time-series data began from ran-
domly generated initial values in [0.0, 2.0], and

consisted of the expression levels of all of the
genes at 11 time points. The measurement
noise was simulated by adding 10% Gaussian
noise to the computed time-series data. As
the given time-series data were polluted by the
noise, we used the local linear regression 3) to
estimate the differential coefficients of the gene
expression levels. All of the other experimental
conditions were the same as those used in the
previous experiment.

6.2.2 Result
Figure 5 (a), (b) and (c) show the sensitivity

and the specificity of the proposed approach on
the experiments of the random genetic networks
consisting of 10, 20 and 30 genes, respectively.
As the figures illustrate, the specificity is almost

Fig. 5 Performances of the proposed approach on the
experiments of random genetic networks con-
sisting of (a) 10 genes, (b) 20 genes, and (c) 30
genes, respectively. Solid line: the sensitivity.
Dotted line: the specificity.
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Fig. 6 The amount of time-series sets required by the
proposed approach to achieve a certain sensi-
tivity. Data points are estimated from the ex-
perimental results of the section 6.2, and lines
are obtained by least-squares fitting applied to
the data points.

independent of the amount of given time-series
data. In order to improve the specificity, we
must reduce the number of false-positive regu-
lations. The number of false-positive regula-
tions is, however, difficult to be reduced be-
cause of the maximum indegree I used in the
penalty terms of the objective functions (5) and
(7). Therefore, it should be difficult for our ap-
proach to enhance the specificity even when a
larger number of time-series sets are available.

The figures also show that the sensitivity im-
proves as the amount of given time-series data
increases. When we try to achieve a certain
sensitivity in a larger-scale problem, we should
give a larger amount of observed data. The
number of required time-series sets, however,
seems not to be proportional to the number of
genes contained in the network. From the ex-
perimental results, we estimated the numbers
of time-series sets that are required to make the
sensitivity 0.4, 0.6 and 0.8 (Fig. 6). The figure
suggests that, when we try to achieve a cer-
tain sensitivity, the amount of time-series sets
required by our approach was O(log N). Ye-
ung and his colleagues 28) revealed that their
inference method also requires O(log N) mea-
surements to infer genetic networks consisting
of N genes correctly. Although their method
is based on a linear model, our experimental
results were consistent with their findings.

7. Conclusion

In this study, we defined the genetic net-
work inference problem as a function approx-
imation problem. On the basis of this problem
definition, we proposed a new method to in-
fer neural network models of genetic networks.
As the obtained models are not always suit-

able for computational simulation, we also pro-
posed a method for the refinement of them.
Then, we proposed a method based on sensi-
tivity analysis for the interpretation of the ob-
tained neural network models. Numerical ex-
periments proved that our approach is capable
of inferring genetic networks correctly. The pro-
posed approach analyzed the gene expression
data that cannot be analyzed by the methods
based on the linear model, and its computa-
tional time was much shorter than those of the
methods based on the S-system model. How-
ever, as the experimental results show, the pro-
posed approach requires a large number of time-
series sets of gene expression levels to infer a
genetic network correctly. Therefore, our ap-
proach may be still impractical for analyzing
actual genetic networks because biological ex-
periments generally provide us with few sets
of noisy time-series data. In a future work,
we must reduce the amount of observed data
needed to obtain a reasonable result.

There is probably no perfect model for the
inference of genetic networks. Therefore, in or-
der to extract reliable information from the ob-
served gene expression patterns, it may be im-
portant to describe the genetic network using
many different models. The neural network is
one of the promising models for this purpose.
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