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Abstract: Apache Spark is a parallel data processing framework that executes fast for iterative calculations
and interactive processing, by caching intermediate data in memory with a lineage-based data recovery from
faults. However, Spark still needs to load input data from a persistent storage at the beginning of main
analytics and store the final result on the storage at the end of the analytics. In this study, we use a memory-
based, tiered storage called Alluxio for the persistent storage of Spark and implement the active storage
concept, which utilizes processing resources on the storage side and reduces the amount of I/O between
Spark and Alluxio. As our first step, we implemented filtering on the Alluxio worker and examined perfor-
mance improvement of reading data. The results showed that the performance was worse than we expected,
due to inefficiency of storage-side filtering in our implementation.

1. Introduction

Apache Spark (Spark) [1] is an open source parallel data

processing framework and highly used in industry due to at-

tractive performance and capabilities for big data analytics

and processing for artificial intelligence. One of the biggest

advantages of Spark against Hadoop MapReduce [2,3] is that

Spark can hold intermediate data in memory which elimi-

nates the need to read and write the data on disks and fault

tolerance is supported by the lineage-based recovery mech-

anism. Thus Spark is suitable for data mining and machine

learning that require iterative calculation. However, Spark

still needs to load input data from a persistent storage at

the beginning of main analytics and store the final result

on the storage at the end of the analytics. Spark can use

local disks of execution nodes, where analytics are executed,

to store persistent data by using Hadoop DFS, etc. While

this architecture benefits data affinity, some resources such

as CPU, memory, network, etc. on the analytics environ-

ment are consumed and applications may have a negative

impact on performance. If the Spark environment is shared

by multiple applications, one application might be affected

by workloads of other applications.

Separating the execution nodes of Spark from the persis-

tent storage, that is having an external storage, is a solution

of the above problem. Although there is a network latency

between Spark nodes and the external storage, Spark appli-

cations can fully use the resources (CPU, memory, etc.) on
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the execution nodes. In addition, the applications can utilize

extra processing resources available on the external storage

for pre/post processing of the main analytics. This study

aims at achieving the concept, which is also well known as

“Active Storage” [4], in the Spark architecture, with a tired

memory/disk storage component called Alluxio [5]. As the

first step of the study, filtering function on the external stor-

age is implemented and evaluated in order to investigate

the feasibility of storage-side processing on external storage.

The following investigation is performed by using a synthetic

benchmark.

( 1 ) Investigate how the size and structure of different data

sets can affect read performance on the Alluxio client,

in the case of a data retrieve request with a query, when

filtering was implemented on the Alluxio worker nodes.

( 2 ) Compare the performance between when filtering was

applied on the Alluxio worker nodes and when filter-

ing was applied on the Spark executor level. The total

execution time including send of the request and data

return from the Alluxio worker node to the Spark node

was measured.

Based on these results, feasibility of storage-side process-

ing on the external storage and potential improvements of

efficiently using external storage in Spark was discussed.

2. Background

2.1 External Storage for Spark

Spark can perform distributed processing on a cluster con-

sisting of nodes having both compute and storage functions.

In a typical use case, Spark loads data from Hadoop DFS,

performs memory-based main analytics and then outputs
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Fig. 1 The position of Alluxio in the big data processing archi-
tecture.

Fig. 2 Alluxio’s distributed system design.

results to Hadoop DFS. In the main analytics, intermediate

data is usually hold in memory except in a few causes such as

shuffle operation, users’ intention to use disks, etc. As a re-

placement of HDFS, other storage systems or services which

provide the Hadoop-compatible interface are available.

2.2 Alluxio

2.2.1 Overview

Alluxio [5] is a middleware between the underlying dis-

tributed file system and the upper distributed computing

framework as Figure 1 shown. The primary responsibility

is to provide data in memory or other storage facilities as a

files access service. Alluxio is positioned between traditional

big data storage such as Amazon S3, Apache HDFS and

OpenStack Swift and big data processing frameworks such

as Spark and Hadoop MapReduce. The frameworks can di-

rectly read/write data from/to the storage but the storage is

a potential bottleneck when large amounts of data are read

or written. Because Alluxio works as a memory-based dis-

tributed storage system, it provides an order of magnitude

acceleration for big data applications and achieves storage

tiering. The file access interface to the underlying storage

through Alluxio is transparent but configurable for caching

options, etc.

2.2.2 Architecture

Alluxio has a master-slave architecture similar to the

HDFS implementation. The Alluxio master is responsible

for managing the global file system metadata, such as the

file system tree. The Alluxio worker is responsible for pro-

viding a data storage service. The Alluxio client provides

users with a unified file access service interface.

Figure Figure 2 shows Alluxio’s distributed system design.

Fig. 3 The system configuration diagram of running Spark with
Alluxio.

When the application needs to access Alluxio, the client first

communicates with the master to obtain the metadata of the

corresponding file, and then communicates with the corre-

sponding worker to perform the actual file access operation.

The file’s metadata maintained by the master contains infor-

mation about location (i.e., worker node) of divided blocks

of the file. All workers periodically send a heartbeat to

the master and maintain file system metadata information

with ensuring that they are aware of the master and the en-

tire storage service still works normally in the cluster. The

master does not actively initiate communications with other

components. Instead, it just communicates with them in its

reply for the requests from them.

2.3 Running Spark with Alluxio

When Spark is used with Alluxio as an external storage,

Alluxio mediates between Spark and the underlying storage

in general, as shown in Figure 3. Spark applications can load

and store any data on Alluxio including intermediate data,

but using Alluxio as a cache instead of the internal storage

such as local memory and/or disks causes large overhead

in I/O, which is confirmed in our preliminary experiment.

Therefore Alluxio is currently more suitable for load of the

input data before main analytics and store of the results

after the analytics.

It is possible to setup Spark and Alluxio on either same or

different node groups. When they are separately setup, the

Spark nodes has no storage memory consumption and more

execution memory is available for applications, as the data is

stored in the Alluxio nodes. The drawback is that the data

transfer between Spark and Alluxio might be a bottleneck

due to network delay, serialization/deserialization cost, etc.

and that system resources on the Alluxio nodes might not

be fully utilized, too.

The write/read operation for data in DataFrame and

RDD is programmed in Spark as follows.

Write operation:

• RDD:

saveAsTextFile(”alluxio://...”)

saveAsObjectFile(”alluxio:/...”)

• DataFrame:

write.format(”〈file format〉”).save(”alluxio://...”)
Read operation:

• RDD: sc.textFile(”alluxio://...”)
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Fig. 4 The difference between the row-based store and the
column-based store.

• DataFrame: sqlContext.read.text(”alluxio://...”)

2.4 Processing with Data Format

2.4.1 Columnar Storage

The columnar storage stores data like the relational ta-

ble in columns. The concept has already appeared in C-

Store [6]. Figure 4 shows the difference between the row-

based store and the column-based store. The columnar stor-

age can improve the query performance compared with row

storage because the columnar storage uses these optimiza-

tions:

• Compression to save storage space: Because the same

column has the same data type, more efficient compres-

sion coding, such as Run Length Encoding and Delta

Encoding, can be used to save larger storage space.

• Skip of non-conforming data: Only the required data

can be read to reduce storage I/O.

• Support of vector operation: The verctor operation

achieves better scanning performance.

2.4.2 Parquet Format

Apache Parquet (Parquet) [7] is a columnar storage for-

mat available to any project in the Hadoop ecosystem, re-

gardless of the choice of data processing framework, data

model and programming language. Parquet is just a stor-

age format and independent from languages and platforms.

Parquet does not require binding with any kind of data pro-

cessing frameworks, either. Currently, the Parquet format is

adapted by the query engine like Hive, Impala, Pig, Presto,

Drill, the computing framework like MapReduce, Spark, and

the data model like Avro, Thrift, Protocol Buffers. The data

generated by other serialization tools can be easily converted

to the Parquet format.

3. Big Data Analytics Platform with Ex-

ternal Active Storage

3.1 A Concept of Active Storage

As computer processing performance and data density be-

come higher and higher, large-scale computing is more and

more limited by I/O performance. The data transmission

technology can not keep up with the requirements of large-

scale distributed computing. In order to improve overall

performance, there is a way to move processing to the data

side to reduce unnecessary I/O and the data transfer be-

Fig. 5 Storage-side processing: Offload the request data for
Spark.

tween storage-side and main processing nodes. This will

also reduce the processing-side CPU resource consumption

and achieve better performance, which allows the processing

nodes to handle larger data.

3.2 Our Proposed Architecture and Current Im-

plementation

Based on the concept of the active storage, we assume the

separation architecture between the big data analytics plat-

form and the backend storage system and have proposed the

efficient data staging design [8]. Then we are trying to imple-

ment an external active storage for Spark by using Alluxio.

In this paper, off-loading of filtering unnecessary data on

the Alluxio storage side has been implemented as shown in

Figure 5. When the Alluxio client sends a data request with

a query to the Alluxio, the Alluxio worker filters the data

based on the query. Then the filtered data is returned to the

client. In the case of accessing the data from Spark applica-

tions, the Spark executor behaves as an Alluxio client. Due

to the off-loading of filtering, the amount of I/O from the

Alluxio worker to the client as well as the Spark executor

will be reduced. The data size that Spark needs to process

becomes lighter, which helps the Spark node save processing

resources.

In our implementation, a query can be speficied in

the format, “〈file path〉?〈column name〉:〈value〉”. For ex-

ample, “alluxio://foo.example.org/test.parquet?name:Ben”

reads data from the test.parquet file and only reads records

that match the value of the “name” column equals to “Ben.”

Internally, the filtering function is implemented with Par-

quet. More specifically, parquet-mr that consists of several

modules including the ability to read and write Parquet files

is used.

4. Evaluation

4.1 Experiments Setup

In order to evaluate our current implementation, how

much the data size and selectivity affect on performance

of read with a filtering query. At the first experiment, time

of reading was measured on the Alluxio client node and the

case with filtering was compared with the case without it. In

the former case, filtering was applied on the Alluxio worker

nodes. At the second experiment, time of reading was mea-
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Table 1 Machine specification used for the Alluxio system.

Master CPU AMD Opteron 6128 2.0GHz,
8 cores

Memory 32GB
Network 10 Gbps

Worker CPU Intel Xeon CPU E31230 3.20GHz,
4 cores

Memory 8 GB
Network 10 Gbps

Table 2 Machine specification used for the Alluxio client and the
Spark execution.

CPU Intel Xeon CPU E5-2620v3 2.40GHz,
6 cores x2

Memory 128 GB
Network 10 Gbps (for HDFS connection)
NVMe-SSD Intel SSD DC P3700
SSD OCZ Vertex3 (240GB, SATA6G I/F)
HDD Hitachi Travelstar 7K320 (SATA3G I/F)
OS Ubuntu 14.04 (Kernel v.3.13)
File System Ext4

Fig. 6 Structure of three different parquet format dataset.

sured on the Spark node. Then our implementation was

compared with the case where filtering was specified in the

Spark program. Spark provides a function called pushdown

filter but the function was implemented in the internal of

Spark.

Table 1 shows the machine specification used in our Al-

luxio system. The system consists of 1 master node and 2

worker nodes. Our implementation of storage-side filtering

was based on the Alluxio version 1.7.0. The Alluxio client

was executed in the machine shown in Table 2. At the sec-

ond experiment, the machine shown in Table 2 was also

used in our Spark node and Spark was executed in a local

mode. The version of Spark was 2.2.0. The version 1.9.0

of parquet-mr was used in both of our Alluxio and Spark

systems.

Three datasets were generated by Spark for our experi-

ments and all of the file formats were Parquet as mentioned

in Section 2.4.2. Each file has,

• 1 column of “key” + 1 column of “value”

• 1 column of “key” + 5 columns of “value”

• 1 column of “key” + 10 columns of “value”

and the number of rows is variant. As Figure 6 shown, the

“key” column is String type and the all “value” columns are

Double type.

4.2 Performance Effect of Filtering

In this experiment, time of sending a request and receiv-

ing data was measured on the Alluxio client node. Enabling

Fig. 7 Read time when the number of rows = 1024 * 1024. The
number of column = 1+1 (8.1 MB), 1+5 (41 MB) or 1+10
(81 MB).

Fig. 8 Read time when the number of rows = 1024 * 1024 * 4.
The number of columns = 1+1 (33 MB), 1+5 (161 MB)
or 1+10 (321 MB).

and disabling the query were tested. As explained in Section

4.1, each dataset has a different number of columns and a

different number of rows. In addition, the ratio of matched

data is controlled for the experiment. The ratios were 0%,

20%, 40%, 60%, 80% and 100%. When the maching ra-

tio is 0, an empty Parquet file which only contains schema

information is returned.

Figure 10 shows the results of read time, when the number

of rows was 1024 * 1024 and the number of column was 1+1

(8.1 MB), 1+5 (41 MB) or 1+10 (81 MB). In the figure, yes

indicates the query is enabled. From the results, we can see

that when disabling the query, the increase of the number

of columns in the dataset did not affect on its performance

because the extra query operation was not added. When en-

abling the query, the extra query operation was added and

the performance was gradually degraded with the increase

of the number of columns.

In order to investigate the filter performance as the

dataset size becomes larger, we increased the number of rows

in each dataset from the values in the previous experiment.

Figure 11 shows the results when the number of rows was

1024 * 1024 * 4 and the number of columns was 1+1 (33

MB), 1+5 (161 MB) or 1+10 (321 MB). Figure 11 shows

the results when the number of of rows was 1024 * 1024 *

4 and the number of columns was 1+1 (129 MB), 1+5 (643
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Fig. 9 Read time when the number of rows = 1024 * 1024 * 16.
The number of columns = 1+1 (129 MB), 1+5 (643 MB)
or 1+10 (1284 MB).
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Fig. 10 Read time when the number of rows = 1024 * 1024. The
number of columns = 1+1 (8.1 MB), 1+5 (41 MB) or
1+10 (81 MB). FilterPushdown = true / false.

MB) or 1+10 (1284 MB). These experiment results basically

have the same tendency as the previous experiment result.

We could also see that the performance of read without the

query was better than read with the query. As the size of the

dataset increased to nearly 1.3 GB, read with the query took

more than a minute. The overhead was caused by reading,

matching and writing operation on the Alluxio worker but

filtering cost in our implementation seems to be dominant

as far as we investigated.

4.3 Performance Comparison with Filtering on

Spark Executor

In the next experiment, time of sending a request and re-

ceiving data on the Spark node was measured. Then the

time was compared with the case where filtering was ap-

plied on the Alluxio worker. The case was estimated from

the experiment results in the previous section because our

implementation was incomplete with Spark at the time of

writing this paper. Here, we chose the same dataset as

the previous experiment. When using filtering in Spark,

“spark.sql.parquet.filterPushdown = true (default) or false”

was examined. The flag enables or disables the Parquet filter

push-down optimization.

Figure 10 shows the results when the number of rows

was 1024 * 1024 and the number of columns was 1+1 (8.1

MB), 1+5 (41 MB) or 1+10 (81 MB). Because DataFrame of
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Fig. 11 Read time when the number of rows = 1024 * 1024 * 4.
The number of columns = 1+1 (33 MB), 1+5 (161 MB)
or 1+10 (321 MB). FilterPushdown = true / false.

0

0.5

1

1.5

2

2.5

3

3.5

4

TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

0 20% 40% 60% 80% 100% 

Length	=	1024	*	1024	*	16	

Number	of		column	=	1	+	1 Number	of		column	=	1	+	5 Number	of		column	=	1	+	10

Fig. 12 Read time when the number of rows = 1024 * 1024 *
16. The number of columns = 1+1 (129 MB), 1+5 (643
MB) or 1+10 (1284 MB). FilterPushdown = true / false.

Spark has good compatibility with the Parquet file format,

Parquet files can be quickly converted to the DataFrame

data. The results show that filtering in Spark is clearly

faster than the estimation of filtering in Alluxio. Enabling

the filter push-down did not show the advantage, possibly

because of the dataset size was too small.

Figure 11 shows the results when the number of rows was

1024 * 1024 * 4 and the number of columns was 1+1 (33

MB), 1+5 (161 MB) or 1+10 (321 MB). Figure 12 shows

the results when the number of rows was 1024 * 1024 * 16

and the number of columns was 1+1 (129 MB), 1+5 (643

MB) or 1+10 (1284 MB). From these results, even when the

dataset increased from 12MB to 1284MB, the time cost in-

creased only 0.5 - 1 second. Compared with the experimen-

tal results of Section 4.2, which filters data on the Alluxio

worker, performance of filter with Parquet format data in

Spark is outstanding. Enabling the filter push-down shows

slightly better performance than disabling it in some results

but the advantage looks weak.

5. Discussion

We implemented the filter on the Alluxio worker node and

analyzed the performance effect of it, by comparing with fil-

tering on the Spark executor. The following were learned

from the results of our experiments.

• The proposed filtering on the Alluxio worker was not
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faster than filtering on the Spark side. The reason seems

to be that our implementation needs decoding and en-

coding by the parquet-mr library and they took much

time than we expected before the actual experiments.

• Filtering on the Spark side also maintained the perfor-

mance against the increase of the dataset size.

• DataFrame and Catalyst optimization of Spark were im-

plemented well with the Parquet file format. They are

fast and scalable to the data size. However, this also

means that our implementation could be improved with

the similar techniques adopted in Spark.

• The filter push-down of Spark did not show significant

performance improvement in our experiment. However,

additional experiments would be necessary with other

types of datasets which have different rows, columns

and data types.

For encoding of the Parquet format, “snappy” was used

for input datasets and “uncompressed” was used for tempo-

rarl data on the Alluxio worker. Using other encoding would

be one of our future works.

6. Related Work

The idea of adding more intelligence to storage system

to help processing system for better performance was men-

tioned by D. Slotnick in 1970 [9]. Then the concept of mov-

ing processing closer to memory or storage has been stud-

ied for decades. The active disk [10], the active storage [4]

and the intelligent disk (IDISK) for decision support on the

database server [11] were proposed and these concepts were

attentioned repeatedly as hardware was upgraded and the

processing power of the storage-side increased.

Diamond [12] aims at lowering the load on the processing-

side by reducing unnecessary data using domain-specific

knowledge and dynamically allocating computation to stor-

age devices to accommodate changes in the system and net-

work conditions. The processing task is mainly sent from the

processing-side in a form of the query. The query is trans-

lated into a set of machine executable tasks to filter data.

Then the filtered data was sent back to the processing-side.

The goal of Diamond is to discard irrelevant data items as

quickly and efficiently as possible at the storage-side rather

than close to the processing-side. Other studies [13–15] ad-

dress filtering out unnecessary data on the storage side as

much as possible, in order to reduce the processing load

before transferring data to the process side. These studies

are similar to our current effort in this paper but our study

targets other storage-side processing rather than filtering.

7. Conclusion

Our study aims at moving processing to the storage-side

to reduce unnecessary data transfer and reducing CPU re-

source consumption on the processing side to improve the

overall performance. In this paper, we showed our imple-

mentation and evaluation results for the filtering function on

the storage side, and faced the performance problem in han-

dling the Parquet format. Improvement and further evalua-

tion is our first priority in future works. As a long term goal,

we would like to implement other processing rather than fil-

tering, such as data conversion, encryption, repartition, etc.,

and apply the similar technique to write operation.
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