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Abstract: Efficient coupling of components in multi-component HPC workflows is a common issue especially if the
components are loosely coupled via files. A number of solutions have been proposed, mainly in the form of a coupling
software. However, such software usually requires the programmer to use its API, which would often mean rewriting
the I/O kernel code in case the original program used some other I/O library. We propose a coupling framework called
the DTF that replaces file I/O in components with direct sending of data transparently for the user. The DTF works for
applications which use the PnetCDF library for file I/O. In this work we present the evaluation of the latest version of
the DTF with improved scalability and faster data transfer.

1. Introduction
A common way of tackling a complex scientific problem is to

use a multi-component workflow approach where each compo-
nent performs a certain task and all components work together
to achieve a common goal. An example of such components can
be different physics models, in-situ data analytics or visualiza-
tion components and so on. Tuning High Performance Comput-
ing (HPC) systems so that they could efficiently run such multi-
component workflows is a topic of a number of studies [4], [11].

Often a multi-component workflow consists of independently
developed pieces of software that are stand-alone programs by
themselves. In this case, it is not rare to couple the components
via files rather than use a special coupling software: One com-
ponent outputs its result to a file and the file becomes the input
for the next component. However, as the amount of data to pass
between the components grows, the I/O quickly becomes a bot-
tleneck in such applications. This is particularly the issue in the
case when components are loosely coupled through files.

An example real-world application that experiences this prob-
lem is SCALE-LETKF [18]. SCALE-LETKF is a real-time se-
vere weather prediction application that combines weather simu-
lation with assimilation of weather radar observations. It consists
of two components — SCALE and LETKF — that are developed
independently. SCALE is a numerical weather prediction appli-
cation based on the ensemble simulation; LETKF performs data
assimilation of real-world observation data together with simula-
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tion results produced by SCALE. In one iteration SCALE passes
the results of its computations to LETKF via files written using
the Parallel NetCDF API [2]. The file output of LETKF, in its
turn, becomes the input for SCALE in the next iteration.

A particular feature of SCALE-LETKF is that it has a strict
timeliness requirement. The target execution scenario is to as-
similate the observations arriving at an interval of 30 seconds.
However, this requirement is hard to fulfill once the amount of
file I/O grows too big for a fine model resolution. One way to
overcome this would be to switch from file I/O to some coupling
software that would allow the components to exchange the data
directly. However, this would require rewriting the I/O kernels in
both components using the API of the coupler as such a software
usually requires. This can be a daunting task for a software as
large and complex as SCALE-LETKF.

We have previously proposed a framework called Data Trans-
fer Framework (DTF) [19] intended to be used in multi-
component workflows. The framework allows to silently bypass
file I/O and to send the data between the components directly
over network. The DTF assumes that the workflow components
use PnetCDF API for file I/O and it uses the Message Passing In-
terface (MPI) [17] to transfer the data. Applications like SCALE-
LETKF can benefit from DTF because it allows the developers of
the application to easily switch from file I/O to direct data transfer
without having to rewrite the I/O code.

In the current work we (i) present an evolved version of the
DTF in which we solved some scalability issues encountered in
the previous version; (ii) we show the results of the performance
evaluation of the latest version of DTF measured using a bench-
mark program.

The rest of this paper is organized as follows. In Section 2 we
revisit the design of our data transfer framework and discuss its
implementation and what have changed since the previous ver-
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sion in Section 3. The results of the performance evaluation are
presented in Section 4. In Section 5 we overview existing solu-
tions proposed to facilitate the data movement between the com-
ponents in multi-component workflows. Finally, we conclude
with Section 6.

2. Data Transfer Framework
In this section we briefly review the design of the DTF.
We note that from now on we will call the component that

writes the file and the component that reads it as the writer and
the reader components, respectively.

2.1 Parallel NetCDF Semantics
The DTF can be used in workflows in which the components

use the PnetCDF library for file I/O. PnetCDF is the parallel im-
plementation of the NetCDF [20] library that allows processes
to describe, write to a file and read from it array-based scientific
data. Because PnetCDF is built on top of the parallel MPI-IO, the
I/O can be performed on a shared file.

Before performing I/O, the user must first define the structure
of the file, that is, define variables, their attributes, variable di-
mensions and dimension lengths. Once the structure of the file is
defined, the user may call PnetCDF’s API to read or write vari-
ables. In a typical PnetCDF call, the user must specify the file id
and variable id, which were assigned by PnetCDF during the def-
inition phase, specify the start coordinate and block size in each
dimension for multi-dimensional variables, and pass the input or
output user buffer.

2.2 General Overview
DTF aims to provide users of multi-component workflows with

a tool that would allow them to quickly switch from file I/O to di-
rect data transfer without needing to cardinally change the source
code of the components.

First, the user must provide a simple configuration file that
describes the file dependency in the workflow (example in Fig-
ure 4). It only needs to list the files that create a direct depen-
dency between two components, i.e. if the components are cou-
pled through this file. The DTF intercepts PnetCDF calls in the
program and, if the file for which the call was made is listed in
the configuration file as subject to the data transfer, the DTF han-
dles the call accordingly. Otherwise, PnetCDF call is executed
normally.

In order to transfer the data from one component to another, we
treat every PnetCDF read or write call as an I/O request. The data
transfer is performed via what we call the I/O request matching.
First, designated processes, called I/O request matchers*1, collect
all read and write requests for a given file. Then, each matcher
finds out who holds the requested piece of data by matching each
read request against one or several write requests. Finally, the
matcher instructs the processes who have the data to send it to
the corresponding process who requested it. All the inter-process
communication happens using MPI.

*1 We note that in [19] the processes were called masters. We have changed
the naming in order to avoid association with the master-slave program-
ming paradigm.

The I/O patterns of the component that writes to the file and the
component that reads from it may be drastically different, how-
ever, dynamic I/O request matching makes DTF flexible and al-
lows it to handle any kind of I/O patterns transparently for the
user.

2.3 I/O Request Matching
When the writer component creates a file, matchers that will

be handling the I/O request matching are chosen among its pro-
cesses. The number of matchers can be configured by the user or
else a default value is set.

When a process calls a read or write PnetCDF function for a
file intended for data transfer, the DTF intercepts this call and in-
ternally creates an I/O request that stores the call metadata such
as the PnetCDF variable id, data type, pointer to the user buffer
and, in case the process writes a part of the variable, the corner
coordinate of the sub-block and the length of the block in each
dimension.

The request matching process can be divided in four steps (Fig-
ure 1). First, all the processes of the reader and writer component
send all their I/O requests posted so far to corresponding match-
ing processes (Step 1). Then, a matching process takes the next
read I/O request and, based on the corner coordinate start of
the requested array block and the block size count, searches for
matching write requests (Step 2). The I/O pattern of the reader
and writer components are not necessarily identical, therefore,
one read request may be matched with several write requests,
each of them - for a sub-block of the requested array block. Once
a match is found, the matcher sends a message to the writer pro-
cess holding the requested portion of data and asks it to send this
data to the corresponding reader process (Step 3). Finally, when
a writer process receives a data request from the matcher, it finds
the requested data in the memory, copies it to the send buffer
along with the metadata and sends it to the reader (Step 4). When
the reader receives the message, it parses the metadata and un-
packs the data to the user buffer.

For better performance, the requests are distributed among the
matching processes and each matcher is in charge of matching re-
quests for a particular sub-block of a multi-dimensional variable.
The size of the sub-block is determined by dividing the length
of the variable in the lowest (zeroth) dimension by the number of
matching processes. If there is a request that overlaps blocks han-
dled by different matchers, such a request will be split into several
requests for sub-blocks, and each matcher will match the corre-
sponding part. There is a trade-off in this approach: On one hand,
the matching happens in a distributed fashion, on the other hand,
if there are too many matchers the request may end up being split
too many times resulting in more communication between read-
ers and writers. Therefore, it is recommended to do some test
runs of the workflow with different number of matchers to find a
reasonable configuration for DTF.

3. Implementation
The Data Transfer Framework is implemented as a library pro-

viding API to user programs. To let the DTF intercept PnetCDF
calls, we also modified the PnetCDF-1.7.0 library. The modifica-
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Fig. 1: I/O request matching. Request matchers are marked with a red shape outline. For simplicity, only one reader process is showed
to have read I/O requests.

tions were relatively small and consisted of around 100 lines of
code.

The MPI library is used to transfer the data. To establish
the communication between processes in the reader and writer
components, we use the standard MPI API for creating an inter-
communicator during the DTF initialization stage in both compo-
nents. This implies that the coupled components must run con-
currently.

Current version of the DTF implements a synchronous data
transfer, meaning that all the processes in the two components
stop their computations to perform the data transfer and resume
only when all the data requested by the reader has been received.
Generally, it is preferable to transfer the data to the reader as soon
as it becomes available on the writer’s side so that the reader could
proceed with computations. However, because the I/O patterns of
the two components may differ significantly, it is hard to auto-
matically determine when it is safe to start the matching process.
Therefore, we require that the user signals to the DTF when to
perform a request matching for a given file by explicitly invoking
a special API function in both components.

Overall, to enable the data transfer, the user needs to modify
the source code of all the components of the workflow by adding
API to initialize, finalize the DTF, as well as explicitly invoke the
data transfer. However, we believe that these modifications are
rather minimal compared to what traditional coupling software
usually requires.

3.1 Handling of I/O Requests
Depending on the scale of the execution and the I/O pattern,

matching processes sometimes may have to handle thousands of
I/O requests. Using a suitable data structure to arrange the re-
quests in such a way that matching read and write requests can be
found fast is important.

Unless the variable is a scalar, an I/O request is issued for
a multi-dimensional block of data. In the previous version of
the DTF we used a flat representation of array coordinates and

0th dim 
(k=0)

1st dim 
(k=1)

2nd dim
(k=2)

Fig. 2: An example layout of a k-d tree to arrange sub-blocks of
a 3-dimensional variable.

described a multi-dimensional array block as a set of contigu-
ous one-dimensional arrays. These one-dimensional blocks were
then distributed between request matchers based on their start co-
ordinate. Matchers arranged the blocks in a binary tree and re-
quest matching consisted of finding overlapping one-dimensional
arrays. However, this approach proved to be infeasible as we
started to increase the scale of the experiments: The number one-
dimensional arrays grew so significantly that time to handle them
became unacceptable.

In the current version of the DTF we abandoned the ap-
proach of flat array representation and represent k-dimensional
data blocks as a set of k intervals. We use an augmented k-
dimensional interval tree [16] to arrange these blocks in such a
way that would allow us to find a block (write I/O request) that
overlaps with a quired block (read I/O request) in a reasonable
amount of time. Figure 2 shows an example layout of a tree that
stores write requests for a 3-dimensional variable. A tree on each
level (k=0,1,2) arranges intervals of the variable sub-blocks for
which a write request was issued in the corresponding dimension.
Each node of the tree links to the tree in the k+1 dimension. We
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note that only write I/O requests are stored as an interval tree.
Read I/O requests are stored as a linked list sorted by the rank

of the reader. Every time new requests metadata arrives, the
matcher updates the request database and goes through the read
I/O requests one by one and tries to match as many of them for a
given rank as possible.

3.2 User API
The three main API functions provided by the DTF are the fol-

lowing:
• dtf init(config file, component name) - initializes

the DTF. The user must specify the path to the DTF con-
figuration file and state the name of the current component
which should match one of the component names in the con-
figuration file;

• dtf finalize() - finalizes the DTF;
• dtf transfer(filename) - invokes the data transfer for

file filename;
All the API functions are collective: dtf init() and

dtf finalize() must be invoked by all processes in both com-
ponents, while dtf transfer() must be invoked only by pro-
cesses that share the file.

During the initialization, based on the DTF configuration file,
each component finds out all other components with whom it
has an I/O dependency and establishes a separate MPI inter-
communicator for every such dependency. All the further inter-
component communication happens via this inter-communicator.

A dtf transfer() call should be added after correspond-
ing PnetCDF read/write calls in the source code of both, reader
and writer components. The call will not complete until the
reader receives the data for all the read I/O requests posted be-
fore dtf transfer() was invoked, therefore, it is user’s respon-
sibility to ensure that the components call the function in the
correct place in the code, that is, that the writer does not start
matching I/O until all the write calls for the data that will be re-
quested in the current transfer phase have been posted as well.
dtf transfer() function can be invoked arbitrary number of
times but this number should be the same for both components.
We note that, because this function acts like a synchronizer be-
tween the reader and writer components, the recommended prac-
tice is to invoke it just once after all the I/O calls and before the
file is closed.

By default, the DTF does not buffer the user data internally.
Therefore, the user should ensure that the content of the user
buffer is not modified between the moment the write PnetCDF
call was made until the moment the data transfer starts. Oth-
erwise, data buffering can be enabled in the DTF configuration
file. In this case, all the data buffered on the writer’s side will be
deleted when a corresponding transfer function is completed.

3.3 Example Program
A simplified example of a writer and reader components is pre-

sented Figures 3a and 3b, as well as their common DTF config-
uration file (Figure 4). To enable the direct data transfer it was
enough to add three lines of code to each component — to ini-
tialize, finalize the library and to invoke the data transfer — and

/ ∗ I n i t i a l i z e DTF ∗ /
d t f i n i t ( d t f i n i f i l e , ” wr t ” ) ;
/ ∗ Cr ea t e f i l e ∗ /
n c m p i c r e a t e ( ” r e s t a r t . nc ” , . . . ) ;
< . . . >
/ ∗ W r i t e some da ta ∗ /

n c m p i p u t v a r a f l o a t ( . . . ) ;
/ ∗ W r i t e some more da ta ∗ /
n c m p i p u t v a r a f l o a t ( . . . ) ;
/ ∗ Perform I /O r e q u e s t match ing ∗ /
d t f t r a n s f e r ( ” r e s t a r t . nc ” ) ;
/ ∗ Close t h e f i l e ∗ /
n c m p i c l o s e ( . . . ) ;
/ ∗ F i n a l i z e DTF ∗ /
d t f f i n a l i z e ( ) ;

(a) Component writing to file

/ ∗ I n i t i a l i z e DTF ∗ /
d t f i n i t ( d t f i n i f i l e , ” r d r ” ) ;
/ ∗ Open t h e f i l e ∗ /
ncmpi open ( ” r e s t a r t . nc ” , . . . ) ;
< . . . >
/ ∗ Read a l l da ta a t once ∗ /
n c m p i g e t v a r a f l o a t ( . . . ) ;
/ ∗ Perform I /O r e q u e s t match ing ∗ /
d t f t r a n s f e r ( ” r e s t a r t . nc ” ) ;
/ ∗ Close t h e f i l e ∗ /
n c m p i c l o s e ( . . . ) ;
/ ∗ F i n a l i z e DTF ∗ /
d t f f i n a l i z e ( ) ;

(b) Component reading from file

Fig. 3: Sample code using the DTF API

provide a simple configuration file.

[INFO]

ncomp=2 ! number of components

comp_name=“rdr“  ! component name

comp_name=“wrt" 

ioreq_distrib_mode="range“  !divide by dim length

buffer_data=0

[FILE]

filename="restart.nc” 

writer=“wrt“   !component that writes to the file

reader=“rdr“  !component that reads from the file

iomode=“memory" !enable direct transfer

Fig. 4: DTF configuration file

4. Evaluation
We demonstrate the performance of DTF using the S3D-IO*2

benchmark program.
S3D-IO[14] is the I/O kernel of the S3D combustion simula-

tion code developed at Sandia National Laboratory. In the bench-
mark, a checkpoint file is written at regular intervals. The check-
point consists of four variables — two three-dimensional and two
four-dimensional — representing mass, velocity, pressure, and
temperature. All four variables share the lowest three spatial di-
mensions X, Y and Z which are partitioned among the processes
in block fashion. The value of the fourth dimension is fixed.

We imitate a multi-component execution in S3D-IO by run-
ning concurrently two instances of the benchmark: Processes of

*2 Available at http://cucis.ece.northwestern.edu/projects/PnetCDF/#Benchmarks

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-HPC-163 No.6
2018/2/28



IPSJ SIG Technical Report

the first instance write to a shared file, processes in the second
instance read from it. Each test is executed at least eight times
and an average value of the measured parameter is computed. To
determine the number of matchers necessary to get the best per-
formance for data transfer, we first execute several tests of S3D-
IO varying the number of matching processes and use the result
in the subsequent tests.

In the tests with the direct data transfer, the I/O time was mea-
sured in the following manner. On the reader side, it is the time
from the moment the reader calls the data transfer function to the
moment all its processes received all the data they had requested.
On the writer’s side, the I/O time is the time between the data
transfer function and the moment the writer receives a notifica-
tion from the reader indicating that it had got all the requested
data. The I/O time also includes the time to register the meta-
data of the PnetCDF I/O calls and to buffer the data, if this option
is enabled. In all the tests the writer component invokes the I/O
matching function before the reader and completes the matching
only after the reader has finished, therefore, by data transfer time
we hereafter assume the I/O time of the writer component unless
stated otherwise. The runtime of the workflow is measured from
the moment two components create an MPI inter-communicator
inside the dtf init() function and the moment it is destroyed
in dtf finalize() as these two functions work as a synchro-
nization mechanism between the reader and writer components.

All the experiments were executed on K computer [10]. Each
node has an 8-core 2.0 GHz SPARC64 VIIIfx CPU equipped with
16 GB of memory. Nodes are connected by a 6D mesh/torus net-
work called Tofu [1] with 5 GB/s x 2 bandwidth in each link.
Compute nodes in K computer have access to a local per-node
file system as well as a global shared file system based on Lustre
file system.

4.1 Choosing the Number of Matching Processes
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Fig. 5: Data transfer time for various test sizes and number of
matching processes per component.

To get the best performance, it is recommended that the user
chooses the number of matching processes that will perform
I/O matching instead of using the default configuration of one
matcher per 64 processes. This number is application-dependent.
The load on a matching process is determined by the number of
read and write I/O requests the process has to match. For exam-
ple, if all reader and writer processes perform I/O symmetrically

and the size of the variable in the zeroth dimension divides by
the number of matchers, the number of I/O requests one matcher
will have to match roughly equals the number of I/O requests one
process generates multiplied by the number of processes in both
components.

Depending on the I/O pattern, increasing the number of match-
ers does not always decrease the number of I/O requests per
matcher, but it generally improves the throughput of data trans-
fer. The reason is that rather than waiting for one matching pro-
cess to match requests for one block of a multi-dimensional array,
multiple processes can match sub-blocks of it in parallel. Conse-
quently, the reader may start receiving the data earlier.

To find an optimal number of matchers, we run tests of dif-
ferent sizes — from 32 processes per component up to 1024 —
with a problem size such that each process reads or writes 1 GB
of data. In each test we then vary the number of matchers and
measure the time to transfer the data. The results in Figure 5
show that increasing the number of matchers up to some point
improves the transfer time and then the performance starts de-
creasing. The reason for this is that an I/O request for a block
of data may be split into several requests for sub-blocks between
multiple matchers and, if the number of matchers is too big, the
request is over-split and it takes more smaller messages to de-
liver all the data to the reader. Based on this result, for our fur-
ther tests we use the following setting: for tests with up to 256
processes in one component, each writer process functions as a
matcher, for tests with 512 processes per component — four pro-
cesses in one work-group, i.e. 128 matchers in total. Finally, for
tests with 1024 processes per component the work-group size is
16, i.e. there are 64 matchers in total.

4.2 Scalability
We first demonstrate how the DTF scales compared to file I/O

(PnetCDF) by measuring the read and write bandwidth for weak
and strong scaling tests. In this test, processes write to a shared
file using non-blocking PnetCDF calls. To measure the I/O band-
width, we divide the total file size by the respective read or write
I/O time. The results for the strong and weak scaling are pre-
sented on Figures 6 and 7. The X axis denotes the number of
processes in one component. We point out that the Y-axis is loga-
rithmic in these plots. Figures 6a and 7a show the total execution
time of the coupled workflow.

In all tests each process executes a PnetCDF read or write func-
tion four times — one per variable, i.e. each process generates
four I/O requests.

In the strong scaling test, we fix the file size to 256 GB and vary
the number of processes in one component. We note that, due to
the node memory in K computer limited to 16 GB, the results in
Figure 6 start from the test with 32 processes per component. In
the weak scaling tests, we fix the size of the data written or read
by one process to 256 MB, thus, in the test with one process per
component the file size is 256 MB, in the test with 1024 processes
— 256 GB.

As we see, DTF significantly outperforms file I/O in all tests.
We also notice that the read bandwidth in all tests with the direct
data transfer is always higher than the write bandwidth. The rea-
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son for this is the timing when the matching starts in the reader
component. When the reader opens the file, it first inquires the
writer component about the list of the matcher ranks and waits
for the reply. The writer component often processes this inquiry
when it has already entered the data transfer function, so by the
time the reader initiates the data transfer, the writer has already
posted all write requests and is ready to do the matching and
transfer the data immediately. For this reason, from the reader’s
point of view, the matching finishes faster than from the writer’s
point of view, hence, the read bandwidth is higher.

The bandwidth using the data transfer does flatten eventually
in the strong scaling test (Figure 6b and 6c), because the size of
the data sent by one process decreases and the overhead of doing
the request matching and issuing data requests starts to dominate
the transfer time. In the weak scaling tests in Figure 7 the data
transfer time grows slower as the amount of data to transfer by
one process stays the same and the overhead of the I/O request
matching is relatively small. Hence, the total I/O bandwidth in-
creases faster than in the strong scalability test.

4.3 DTF Performance under I/O Load
Other major factors that impact the data transfer time apart

from the number of matching processes are the size of data to
transfer and the total number of I/O requests to be matched. To
measure the former we perform data transfer for files of vari-
ous sizes while the number of I/O requests per matcher stays the
same. To evaluate the impact of the number of I/O requests, we
fix the file size to 256 GB and increase the number of I/O re-
quests a matcher process matches by manipulating how the I/O
requests are distributed among matchers. By default, the size of
the variable sub-block for which a matcher process matches read
and write requests is defined by dividing the variable in the zeroth
dimension by the number of matchers. An I/O request is split
in the zeroth dimension based on this stripe size and distributed
among the matchers in a round robin fashion. In this experiment,
we vary the value of the stripe size which effectively changes the
number of I/O requests each matcher has to handle.

In both experiments there are 1024 processes per component
and there is one matcher per 16 processes. We also note that two
out of four variables in S3D-IO have the zero dimension length
fixed to 11 and 3, respectively. This is smaller than the number
of matchers (64) and results in asymmetrical distribution of work
among matchers. For this reason, in the two experiments, on top
of the average number of I/O requests per matcher, a small group
of matchers has to match approximately 4,000 more I/O requests.

Figure 8 shows the results of the first experiment. The file size
was gradually increased from 8 GB to 2 TB. Each matcher pro-
cess matched on average 576 requests in every test. We measured
the time for actual matching of read and write requests — it took
only around 2% of the whole data transfer time, thus, we con-
clude that most of the time was spent on packing and sending the
data to reader processes. Thanks to the fast torus network in K
computer, sending 2 TB of data over network took less than 3
seconds.

In the second experiment (Table 1) the file size is fixed, i.e.
in every test each process transfers the same amount of data. The

Table 1: DTF performance for different number of I/O requests
Average numer of I/O
requests per matcher

Data transfer
time (s)

Time to match read and
write requests (s)

576 1.799 0.041
1,088 1.498 0.031
2,144 2.107 0.046
4,224 2.061 0.045
8,448 2.108 0.058
16,832 1.777 0.085

matching processes handled from 576 to 16,832 I/O requests, plus
the additional requests for some matchers due to the imbalance.
We expect that in this experiment it is the request matching pro-
cess that will have the biggest impact on the data transfer time as
the number of requests grow. However, according to the Table 1,
the actual request matching took on average no more than 2-3%
of the data transfer time and only in the test with 16,832 requests
per matcher the matching took around 5% of the data transfer.

Moreover, we observe that despite the growing number of I/O
requests per matcher, the time to perform the data transfer actu-
ally decreases in some cases. One explanation for this could be
that, when we decrease the stripe size by which the I/O requests
are distributed, one matcher becomes in charge of several smaller
sub-blocks located at a distance from each other along the zeroth
dimension, rather than just one contiguous big sub-block. And
this striping may accidentally align better with the I/O pattern of
the program, so the matcher ends up matching requests for the
data that was written by it. Then, instead of having to forward a
data request to another writer process, the matcher immediately
can send the data to the reader.

Overall, we conclude that the DTF shows stable performance
under increased load of the amount of data that needs to be trans-
fered as well as the load on the matching processes.

5. Related Work
A number of works has addressed the data movement problem,

the file I/O bottleneck in particular, in multi-component work-
flows, and different coupling toolkits have been designed for such
workflows [7], especially in Earth sciences [12], [21], [22] appli-
cations. Such toolkits often provide not only the data movement
feature but also allow to perform various data processing during
the coupling phase, such as data interpolation or changing the
grid size.

For example, DART [6] is a software layer for asynchronous
data streaming, it uses dedicated nodes for I/O offloading and
asynchronously transferring the data from compute nodes to
I/O nodes, visualization software, coupling software, etc. The
ADIOS [15] I/O library is built on top of DART and provides ad-
ditional data processing functionality. However, both, DART and
ADIOS require to use a special API for I/O. In additional, ADIOS
uses its own non-standard data format for files.

Other coupling approaches include implementing a virtual
shared address space accessible by all the components [5], or us-
ing dedicated staging nodes to transfer the data from compute job
to post-process analysis software during the runtime [23]. In [3],
the authors propose a toolkit utilizing the type-based publisher/-
subscriber paradigm to couple HPC applications with their ana-
lytics services. The toolkit uses a somewhat similar concept to
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Fig. 6: Strong scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.
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Fig. 7: Weak scaling of S3D-IO. Y-axis is in logarithmic scale in all plots.
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inter-component data transferring as proposed in this work, how-
ever, they rely on the ADIOS library underneath which the cou-
pling toolkit was built which includes the description of the I/O
pattern of the components. Additionally, in our work the match-
ing process is simpler in a way that it takes fewer steps to perform
the data transfer.

Providing support to multi-component executions on a system-
level is another approach to facilitating the inter-component inter-
action[8], [9]. Current HPC systems usually do not allow over-
lapping of resources allocated for one executable file. Thus, each
component in a multi-component workflow ends up executing on
a separate set of nodes and, consequently, the problem of data
movement between the components arises. But, for example, in
cloud computing, several virtual machines can run on the same
node and communicate with each other via shared memory or
virtual networking. It has been previously proposed to use vir-
tualization techniques in HPC as well. For example, in [9], the
authors show that such virtualization can be used in an HPC en-
vironment to allow more efficient execution of multi-component
workflows with minimal costs. However, the virtualization is not
yet widely adopted in HPC systems.

The difference of our solution with the aforementioned ap-
proaches is that our goal was to provide a simple framework that
would allow to switch from file I/O to data transfer with mini-
mal efforts and without having to rewrite the I/O kernels of the
workflow components. The closest solution that we are aware
of is the I/O Arbitration Framework (FARB) proposed in [13].
However, the framework was implemented for applications us-
ing NetCDF I/O library, that is, it assumes the file-per-process
I/O pattern and a process-to-process mapping of data movement.
Moreover, during the coupling stage in FARB, contents of the
whole file were transferred to the other component’s processes re-
gardless of whether the process actually required the whole data
or not. In our work, we determine at runtime what data needs to
be transferred and only send this data.

6. Conclusion
Tackling of a large scientific task can be done using a multi-

component approach where each component solves a smaller sub-
task and exchanges the result with other components. Combined
with the computational power of modern HPC systems, this ap-
proach can help the scientists to solve sophisticated problems and
perform complex data processing. However, efficient exchange of
computation results between the components in such workflows
is a common issue, especially when components are loosely cou-
pled via files. A number of solutions has been proposed, each of
them having its pros and cons.

In this work we proposed a data transfer framework called
DTF that can be used as a coupling solution for multi-component
workflows that use PnetCDF API for file I/O. The DTF intercepts
the PnetCDF calls and bypasses the file system by sending the
data directly to the corresponding processes that require it. It au-
tomatically detects what data should be sent to which processes
in the other component through a process of, what we call, I/O re-
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quest matching. The DTF requires minimal modifications of the
program and, more importantly, does not require the modification
of component’s original I/O code that uses PnetCDF.

We demonstrated that the DTF shows stable performance un-
der different conditions and that the latest version scales better
compared to the previous version thanks to the improved I/O
matching process. In the future we plan to improve the load bal-
ancing of the I/O request matching by finding a better way to dis-
tribute I/O requests among the matchers. However, the results we
obtained so far are promising and should help multi-component
workflows to cut on I/O time without having to significantly mod-
ify them.
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