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GroupAdaBoost: Accurate Prediction and Selection of Important Genes

Takashi Takenouchi,† Masaru Ushijima†† and Shinto Eguchi†††

In this paper, we propose GroupAdaBoost which is a variant of AdaBoost for statistical
pattern recognition. The objective of the proposed algorithm is to solve the “p � n” problem
arisen in bioinformatics. In a microarray experiment, gene expressions are observed to extract
any specific pattern of gene expressions related to a disease status. Typically, p is the number
of investigated genes and n is number of individuals. The ordinary method for predicting the
genetic causes of diseases is apt to over-learn from any particular training dataset because of
the “p � n” problem. We observed that GroupAdaBoost gave a robust performance for cases
of the excess number p of genes. In several real datasets which are publicly available from
web-pages, we compared the analysis of results among the proposed method and others, and
a small scale of simulation study to confirm the validity of the proposed method. Additionally
the proposed method effectively worked for the identification of important genes.

1. Introduction

Microarray technology allows us to monitor
several thousand gene expressions related to
a disease status in a single experiment. This
technology leads us beyond the usual assump-
tions of conventional statistical analysis and
this poses a serious problem. There are two
main objectives with microarray analysis. One
is discriminant analysis (supervised learning),
which aims to predict the unknown class la-
bel of a new individual from a monitored gene
expression profile. The other is the identifica-
tion of those marker genes (variable selection)
that characterize the different disease classes.
For the discriminant analysis, there are many
proposed methods such as Fisher discriminant
analysis, support vector machine and machine
learning methods as bagging or Boosting.

Boosting method constructs a classification
machine by combining a lot of weak classifica-
tion machines and its learning process is imple-
mented by sequentially reweighting all the ex-
amples according to classification results. The
typical Boosting algorithm AdaBoost was com-
pared with other methods and reported that
AdaBoost does not yield many impressive re-
sults 2),4). LogitBoost (see Friedman, et al. 5)),
which is a variation of AdaBoost, is applied and
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some results is obtained for publicly available
datasets by Dettling and Bühlmann 3).

The serious problem with classification from
gene expression profiles is that the sample size
n is generally too small relative to the num-
ber p of monitored genes. Many gene expres-
sions are considered to be non-differentially ex-
pressed across the sample and do not give any
important information. This superabundance
of information on gene expression makes it dif-
ficult to get any useful predictive results. More-
over, there are several solutions for prediction,
which situation inhibits the building of medi-
cal knowledge from the analysis. That p is ex-
tremely huge makes conventional classification
algorithms in-executable: the training dataset
often can be completely learned with the train-
ing error 0 even when any gene expressions do
not have information. To avoid those problem,
conventional methods apply a variable selec-
tion method to expression data for the reduc-
tion of gene expression and then only those se-
lected gene expressions are used to construct a
classification machine for producing the diagno-
sis. However, this can be problematic because
the set of all the genes involves a considerable
number of non-informative genes and the pre-
procedure often falls into a difficult situation in
which there are no evident separations between
important genes and unimportant genes. Once
a gene expression has been truncated by the
pre-procedure, the information is never utilized
in the prediction procedure. AdaBoost can be
applied to microarray data without any pre-
selection but does not sufficiently catch impor-
tant expressions. Because the usual Boosting
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method selects the best representative expres-
sion as a classification machine in each learning
step, the algorithm tends to look over impor-
tant genes having similar expressions over indi-
viduals. For example, in our data analysis, Ad-
aBoost selects only 15 genes for classification of
the well-known publicly dataset, Leukemia and
this result by AdaBoost gives less information
than that of Golub, et al. 6). However in their
naive analysis, the set of 50 genes was suggested
to have an association with leukemic diseases.

To overcome the above difficulty, we pro-
pose a new Boosting algorithm called GroupAd-
aBoost where the similarity between gene ex-
pressions is positively incorporated into Ad-
aBoost. GroupAdaBoost deals with genes hav-
ing similar performance as a group and enables
us to jointly execute a selection of important
genes and design of a classification machine
without pre-selection. Consequently, GroupAd-
aBoost can select important genes that are
highly influential for the classification of dis-
eases.

2. GroupAdaBoost

2.1 Framework of Boosting
We focus on the binary classification prob-

lem. See Mclachlan 7) for extensive discussion
for classification methods. Let us assume a set
of training dataset D = {(xi, yi) : i = 1, · · · , n},
where x ∈ Rp is an input vector and y ∈
{1,−1} is a class label. In our context the input
vector x has expression profiles of p monitored
genes as the components, y represents a dis-
ease status of an individual having expression
x. Typically, the sample size n is about several
tens, and there are several thousands or larger
of monitored genes, p. The aim of the classi-
fication problem is to construct a classification
machine F : x → R that minimizes a misclas-
sification error Pr(sgn(F (x)) �= y).

In the context of Boosting, we intentionally
use only weak classification machines, f(x) ∈
{1,−1}. We employ a decision stump as a weak
classification machine:

f(x; j, b) = sgn(xj − b),

where j = 1, · · · , p and b is a threshold value
in a range of the j-th gene expression profile
xj . This implies that the classification machine
f(x; j, b) determines the label for an input x
whether the quantity of the expression level of
j-th gene, xj is larger than the threshold b or
not. The decision stump has a preferable prop-

erty for analyzing gene expression data: the de-
cision result is dependent on only ranking of the
expression levels xj and thus the stump is in-
variant for any kind of monotone transforma-
tion in pre-processing such as centralization or
log transformation. Let F be a set of weak clas-
sification machines.

F = {f(x; j, b)|j = 1, · · · , p, b ∈ R}.
The Boosting method aims to construct a

strong classification machine sgn(FT (x)) by lin-
early combining weak classification machines as

FT (x) =
T∑

t=1

αtf(x; jt, bt), (1)

where jt is the gene number related in the t-
step and bt is the optimized threshold. The
derivation of (αt, jt, bt) will be given in a subse-
quent discussion. This discriminant function is
viewed as a weighted majority vote of stumps
associated with T gene expressions and an abso-
lute value of FT (x) represents a degree of con-
fidence concerned with the classification of x.
The prediction of label is decided by the sign
of FT (x). A typical Boosting algorithm is Ad-
aBoost, which is derived from a sequential min-
imization of the exponential loss function

Lexp(F ) =
1
n

n∑

i=1

exp(−F (xi)yi). (2)

We note that, if in the i-th example F (xi) has
the same sign as yi, it gives less influence for the
exponential loss than that with distinct sign.
Thus the minimization of Lexp(F ) with respect
to F qualitatively aims at matching the signs
of yi and F (xi) over the training dataset. Ad-
aBoost works efficiently for usual classification
problems but is not appropriate for gene ex-
pression datasets. In the present dataset, there
are too many feature variables comparing with
n and some of these have similar information.
Because AdaBoost selects only one variable in
one step, other variables with similar informa-
tion are abandoned. To overcome this prob-
lem, we propose GroupAdaBoost, as a simple
modification of AdaBoost in a learning step.
We will demonstrate its performance using real
datasets, and discuss the theoretical considera-
tions.

2.2 GroupAdaBoost Algorithm
In this section, we introduce the algorithm

GroupAdaBoost. For this, we overview the
learning step of algorithm of AdaBoost, which
consists of the following three procedures and
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is proceeded by a sequentially updated weight
distribution for examples. At first, the algo-
rithm selects the best weak classification ma-
chine having minimum weighted error rate.
Secondly, a coefficient for the selected classi-
fication machine is calculated according to the
performance of the selected machine. Thirdly,
the weight distribution is updated as putting
a high weight into only misclassified examples.
These three procedures are updated and fi-
nally provide the discriminant function (1). Let
us define GroupAdaBoost we propose. It fol-
lows almost the same procedures except for the
first procedure. AdaBoost selects the best ma-
chine in terms of weighted error rates, whereas
GroupAdaBoost selects a group of G classifica-
tion machines as follows.

GroupAdaBoost(G)
( 1 ) Set the initial condition as w1(i) = 1

n and
F0(x) = 0.

( 2 ) For t = 1, · · · , T.
(a) Select a weak machine for the j-th
gene as

ft(xj ; bj) = argmin
f∈Fj

εt(f),

where Fj = {f(xj ; b); b ∈ R} is a set of
weak classification machines associated
with j-th gene and εt(f) is a weighted
error rate,

εt(f) =
n∑

i=1

wt(i)I(f(xi) �= yi).

Note that the threshold value bj de-
pends on the step number t. From a se-
quence of weak machines {ft(x1; b1), · · · ,
ft(xp; bp)}, extract G weak classification
machines in the order of their weighted
error rate, with the smallest first,

{ft(x(1); b(1)), · · · , ft(x(G); b(G))},
where the subscript (g) denotes the gene
number of the g-th smaller weighted error
rate. Thus, this is a group of the G best-
weighted error rates.
(b) For the extracted weak classification
machine, ft(x(g); b(g))(g = 1, · · · , G), cal-
culate the coefficient

αt,(g) =
1
2

log
1 − εt(ft(·; b(g)))

εt(ft(·; b(g)))
,

and construct the t-th machine as

f̄t(x) =
1
G

G∑

g=1

αt,(g)ft(x(g); b(g)).

(c) Update a weight distribution as

wt+1(i) =
wt(i) exp(−f̄t(xi)yi)

Zt
,

where

Zt =
n∑

i=1

wt(i) exp(−f̄t(xi)yi),

and update the discriminant function as
Ft(x) = Ft−1(x) + f̄t(x).

( 3 ) Output the function

FT (x) =
T∑

t=1

f̄t(x).

If we set G = 1 , then GroupAdaBoost reduces
to the usual AdaBoost analysis. In the first
procedure, GroupAdaBoost can be expected to
catch a group of classification machines hav-
ing similar properties or equivalent genes com-
parable with the best machine. The constant,
G, is typically determined to be a number re-
quired by medical information and the number
within several tens is appropriate in our analy-
sis. Alternatively, we can choose classification
machines by other measures, for example, from
a range of weighted error rates. The coeffi-
cient αt,(g) calculated in the procedure (b) is
the same with AdaBoost and becomes higher as
the weighted error rate gets lower. The discrim-
inant function, f̄t(x) of step t is constructed for
the weighted majority vote. The sign of f̄t(x)
means a predicted label for the input x, and
the absolute value of f̄t(x) represents a confi-
dence of classification. In the procedure (c),
the weight distribution is updated according
to classification results and its confidences. A
weight of an example with a high confidence is
exponentially updated but its update is mod-
erated if f̄t(x) has a low confidence. By this
update rule, GroupAdaBoost sequentially rein-
forces the discriminant function Ft(x). As a re-
sult, GroupAdaBoost jointly executes accurate
classification and efficient correction of impor-
tant gene expressions.

2.3 Loss Function Related with
GroupAdaBoost

We now consider a relation between the
GroupAdaBoost algorithm and the exponen-
tial loss function (2). Procedures of GroupAd-
aBoost are derived from a approximate mini-
mization of the exponential loss function while
procedures of AdaBoost are derived from ex-
actly sequential minimization. Let us as-
sume that we obtain the discriminant function
Ft−1(x) and consider an update from Ft−1(x)
to Ft(x), where
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Ft(x)

= Ft−1(x) +
1
G

G∑

g=1

αt,(g)ft(x(g); b(g)).(3)

From the convexity of the exponential function,
we obtain the following inequality:

Lexp(Ft)

≤ 1
G

G∑

g=1

Lexp(Ft−1 + αt,(g)ft(x(g); b(g)))

≤ Lexp(Ft−1). (4)

This shows that the loss function monotonically
decreases by the update (3). A minimizer of
the exponential function is equivalent to the
Bayes rule which is the optimal discriminant
function and minimizes the naive error rate.
See Murata, et al. 8) for detailed discussion.
GroupAdaBoost approximately minimizes the
exponential loss function that is updated by
a set of weak classification machines. Note
that GroupAdaBoost does not directly mini-
mize Lexp(F ).

2.4 Score of a Gene
When the discriminant function FT (x) is ob-

tained, we define a score for xj associated with
the j-th gene as

1
T

T∑

t=1

G∑

g=1

I((g) = j)αt,(g). (5)

Note that the number (g) defined in step (a) of
the algorithm in Section 2.2 implicitly depends
on t. The score value implies the contribution of
classification machines associated with the j-th
gene expression per one step or total confidence
of j-th gene expression. In Section 3.5, we will
discuss a selection of important genes based on
the score.

2.5 Choice of the Learning Step Num-
ber

GroupAdaBoost and any other Boosting
method, including LogitBoost, are apt to over-
fit the training dataset unless the algorithm
is stopped at an appropriate step. See Take-
nouchi and Eguchi 9). Thus, the number of
learning steps T should be estimated. If we had
sufficient examples, we could set aside a test
dataset and use it to assess the performance of a
method. Now the sample size n of gene expres-
sion dataset is typically small compared with
p, we employ a K-fold cross validation tech-
nique. If we set K = n, this reduces to the leave
one out cross validation employed in many data
analysis. But the leave one out cross validation

does not work well as an estimator of the gen-
eralization error, we use another value of K,
typically 10 as in Ambroise and McLachlan 1).

First, we divide the training dataset into K
roughly equal-sized sets D1, · · · , DK in which
each Dk is a subset of D and satisfies D =
D1 ∪ · · · ∪ DK and Dj ∩ Dk = ∅ for any
different j, k ∈ {1, · · · , K}. Second, we run
GroupAdaBoost on the dataset without Dk and
construct the classification machines F

(−k)
t (x)

(t = 1, · · · , T ). We calculate the misclassifica-
tion rate ε(F (−k)

t ; Dk) on Dk and do this for
k = 1, · · · , K. Finally, we compute the cross
validation error at step t by averaging the K
estimates of misclassification rate as

ε(t) =
1
K

K∑

k=1

ε(F (−k)
t ; Dk).

Note that, if we set K = n, the above method
means the leave one out cross-validation. An
optimal learning step is determined as a point
that minimizes ε(t).

2.6 Experiment with a Synthetic
Dataset

In this subsection, we investigate the per-
formance of GroupAdaBoost with a synthetic
dataset. In particular, we want to investigate
the relationship between the number of groups,
G, and a number of feature vectors giving im-
portant information. Assume that the feature
vector x is uniformly distributed on [−1, 1]p and
the conditional probability of y is in the logistic
model,

p(y|x) =
1

1 + exp(−2yF ∗(x))
, (6)

where F ∗(x) = F 1(x) + F 0(x) and

F 1(x) =
u∑

s=1

10xs,

F 0(x) =
p∑

s=u+1

0.1
p

xs.

Under the above setting, the Bayes rule of (6)
is F ∗(x) and is mainly influenced by F 1(x)
because the rule is determined by the sign of
F ∗(x). See McLachlan 7) for detail discussion
for Bayes rule. Now, let us consider the rela-
tionship between u and G. We generated 20
sets of training datasets containing 50 exam-
ples and a test dataset containing 2000 exam-
ples for p = 1000, u = 10, 20, 50. The number
of learning steps T is estimated by the 10-fold
cross-validation with each training dataset for
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Fig. 1 The difference in the mean cross-validation er-
ror rate against G. The level 0 corresponds to
AdaBoost. The dataset was generated by (6)
and the dimension p of feature vector was 1000.

the fixed G. Figure 1 shows the result. Dif-
ferences in the cross-validation error rate be-
tween AdaBoost and GroupAdaBoost for fixed
G are shown in the figure. The level 0 indicates
AdaBoost; if lines are under the level 0, then
GroupAdaBoost is superior to AdaBoost. If we
appropriately choose G, GroupAdaBoost is su-
perior to AdaBoost. We could observe that the
number G that minimizes the cross-validation
error is near to the number u of influential fea-
ture variables.

3. Results

We applied GroupAdaBoost to three publicly
available real datasets. A preliminary experi-
mental analysis was performed in Takenouchi,
et al. 10). The test error rate was estimated
from the 10-fold cross-validation. Note that the
stopping parameter T was also determined by
the 10-fold cross-validation for a dataset with-
out validation examples. Consequently, we per-
formed two sequences of cross-validations: one
was to estimate the generalization performance
of GroupAdaBoost, and the other was to esti-
mate the optimal stopping point T .

3.1 Leukemia
We explored the performance of our method

on a leukemia dataset. This dataset contains
gene expression data from patients suffering
from acute lymphoblastic leukemia (ALL) or
acute myeloid leukemia (AML). The dataset
consisted of 72 observations and a feature vec-
tor x containing 7129 variables. More informa-
tion about this dataset can be found in Golub,
et al. 6).

Fig. 2 The mean of 10-fold cross-validation error rate
against G for the leukemia dataset. The point
G = 1 indicates AdaBoost.

Fig. 3 The mean of 10-fold cross-validation error rate
against G for colon datasets. The point G = 1
indicates AdaBoost.

3.2 Colon
This dataset contains 2000 gene expressions

of 62 patients, with 40 tumor and 22 normal
colon tissues, measured using Affymetrix gene
chip technology. This dataset is available at
http://microarray.princeton.edu/oncology/.

3.3 Estrogen
This dataset monitors 7129 genes in 49

breast tumor samples. The dataset is available
at http://mgm.duke.edu/genome/dna micro/
work/ and was obtained using Affymetrix gene
chip technology. The label describes the sta-
tus of the estrogen receptor (ER), in which 25
samples are positive (ER+) and 24 are negative
(ER−).

3.4 Discussion
The 10-fold cross-validation error rate against

G for each dataset, is shown in Fig. 2, Fig. 3
and Fig. 4, respectively. We observed that the
validation error rate was minimized at a rela-
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Fig. 4 The mean of 10-fold cross-validation error rate
against G for estrogen datasets. The point G =
1 indicates AdaBoost.

tively large G for all datasets. We also observed
that the mean training error is minimized near
G = 1, which supports AdaBoost or GroupAd-
aBoost with a small G. We observed that Ad-
aBoost apt to fall into over-learning; GroupAd-
aBoost escapes from the over-learning thanks to
the improved step in the algorithm. Note that
an extremely large G also loads to over-learning
and G of several tens seems to be appropriate.
GroupAdaBoost worked much better than Ad-
aBoost in the sense of the estimated test error
and this result is comparable to that of Det-
tling and Bühlmann 3), using the intensive pre-
selection of genes. For the leukemia dataset,
GroupAdaBoost wrongly classified only one ex-
ample through the validation process.

3.5 Selection of Important Genes
Another objective of this paper was to select

important genes as the weak learners. To verify
the importance of selected genes, we refer to
the original papers. Here, we discuss only the
leukemia and estrogen datasets because there
was no detailed information for important genes
for the colon dataset in the original paper.

Table 1 and Table 2 show the list of the top
30 genes for the leukemia and estrogen datasets
identified by GroupAdaBoost with the highest
score. The score for the classification machine is
defined in Eq. (5) and we averaged over 10 clas-
sification machines, obtained by 10-fold cross
validation.

For the leukemia dataset, we refer to Golub,
et al. 6) who showed 50 genes as informative
genes which were most closely correlated with
AML-ALL class distinction. Twelve genes in
Table 1 are listed in Golub, et al. 6). In partic-
ular, the genes CD33 and MB-1 are known to be

Table 1 Top 30 genes associated with disease from the
leukemia dataset. The “∗” marked genes are
also listed in 50 informative genes in Golub,
et al. 6). Gene names or symbols used in
Golub, et al. 6) are written in parentheses.

GenBank ID Gene Symbol

D88422 CSTA
J05243 SPTAN1
M11722 DNTTT
M23197* CD33 (CD33)
M27891* CST3 (Cystatin C)
M31166 TSG-14
M31303* STMN1 (Op18)
M63379 TRPM-2
M68891 GATA2
M84526* ADN (Adipsin)
M92287* CCND3 (CCND3)
M96326* AZU1 (Azurocidin)
U05259* CD79A (MB-1)
U46499 MGST1
U88047 DRIL1
X62320 GRN
X62654 CD63
X90858 UPP1
X95735* ZYX (Zyxin)
Y07604 NME4
J02783 P4HB
U22376* MYB (C-myb)
L07807 DNM1
L09209 APLP2
M83652* PFC (Properdin)
M83667 CEBPD
X85116* STOM (Epb72)
U49020 MEF2A
L11672 ZNF91
M31523* TCF3 (E2A)

useful in distinguishing lymphoid from myeloid
lineage cells, and so the genes likely to be asso-
ciated with ALL-AML can be distinguished.

For the estrogen dataset, we refer to West,
et al. 11) who showed the list of the 40 genes
most highly correlated with ER status. Fifteen
genes in Table 2 are also listed in Table 1 of
West, et al. 11), and 8 genes are in the protein
synthetic pathway of ER or are involved in ER
itself. For example, pS2, LIV-1, and GATA3
have already been reported to have a relation-
ship with ER status in several articles.

Therefore, we can confirm that many impor-
tant genes are included in our lists through the
use of GroupAdaBoost. Thus, important genes
can be selected accurately as those effective for
sample classification.

4. Conclusions

We have proposed the new algorithm
GroupAdaBoost for analyzing microarray prob-
lems under the difficult situation “p � n”. The
performance of the algorithm has been explored
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Table 2 Top 30 genes associated with disease from the
estrogen dataset. The marked genes are in
the 40 genes list which are correlated with
ER status, and the “∗∗” marked genes are in
the protein synthetic pathway of ER or are
involved in ER itself. Gene symbols used in
West, et al. 11) are written in parentheses.

GenBank ID Gene Symbol

D38437* PMS2L3 (PMS2L3)
J03778** MAPT (MAPT)
J03827 NSEP1
L08044** TFF3 (TFF3)
L12535 RSU-1
L17131 HMGA1
L26336 HSPA2
L40401 ZAP128
M29874* CYP2B6 (CYP2B)
M33493 TPSB2
M99701 TCEAL1/TCEAL3
U05340 CDC20
U07919 ALDH1A3
U09770* CRIP1 (CRIP1)
U22376** MYB (MYB)
U41060** SLC39A6 (LIV-1)
U42408 LAD1
U79293* Clone 23948 (N/A)
X03635** ESR1 (ESR1)
X13238* COX6C (COX6C)
X17059* NAT1 (NAT1)
X52003** TFF1 (pS2)
X52947 GJA1
X55037** GATA3 (GATA3)
X58072** GATA3 (GATA3)
X76180 SCNN1A
X83425 LU
X87176 HSD17B4
X87212* CTSC (CTSC)
Z48633 N/A

with publicly available real datasets and syn-
thetic datasets. We observed that GroupAd-
aBoost overcomes the sensitivity of the pre-
selection of genes and has a high generaliza-
tion ability by applying the adaptive selection
of tuning parameters. Additionally, the group-
ing and selection of weak classification machines
by GroupAdaBoost effectively worked for the
identification of important genes.
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