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We created a Free Energy Landscape Analysis System based on a parallelized molecular
dynamics (MD) simulation adapted for the IBM Blue Gene/L supercomputer. We begin with
an outline of our Free Energy Landscape Analysis system. Next we discuss how Parallel MD
was tuned for Blue Gene/L. We then show the results for some test targets run on Blue
Gene/L, including their efficiency. Finally, we mention some future directions for extension
of this project.

1. Introduction

Molecular structures and functions have rela-
tionships with each other. However it is not
easy to predict molecular functions from the
rigid structures recorded in the Protein Data
Bank (PDB) 1) files, because biomolecules are
fluctuating in living cells. A quantitative under-
standing of the relationships between structure,
dynamics, stability, and functional behaviors of
proteins are of paramount importance. There
are essential themes to represent fluctuations
throughout computational biology 2).

In this work, we used molecular dynamics
(MD) simulation to evaluate molecular fluctu-
ations. MD simulations are widely used for
simulating the motions of molecules. Rapidly
increasing computational power has made MD
simulation a powerful tool for studying the
structure and dynamics of biologically impor-
tant molecules 3). To understand the thermo-
dynamics and kinetics of protein folding, we
developed a free energy landscape analysis sys-
tem based on MD simulation. The calculation
of free energy is of great importance for under-
standing the kinetics and the structural deter-
minants of biomolecular processes, such as the
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folding and unfolding of proteins, ligand bind-
ings to receptors and enzymes, and the trans-
port of small molecules through channels. Since
they require extensive sampling of configuration
space, there are many variations of molecular
dynamics simulation methods such as unfold-
ing simulations, the replica exchange method 4),
and the multi-canonical simulation method to
construct free energy landscapes 5). One impor-
tant underlying technique is optimization of the
MD simulation program.

In this paper, we describe a Free Energy
Landscape Analysis System, the relevant as-
pects of Blue Gene/L architecture, and our
tuning and evaluation of its performance in
an MD simulation. We are distributing our
acceleration patch program from our website
(www.cbrc.jp/cbrc/intro/cluster/BlueProtein
.eng.html).

2. Outline of Free Energy Landscape
Analysis System

In this system (Fig. 1), first trajectory anal-
ysis was carried out to set the free energy of
the reaction coordinates after the conforma-
tion sampling using MD simulation on the Blue
Gene/L. Second, estimation of the probability
density was done along a given coordinate from
the set of configurations generated via simu-
lation. Then the free energy was calculated
from the probability density of each configura-
tion. Finally, all of the calculated free energy
data was plotted using gnuplot. These steps
were done using a Linux server for the Free En-
ergy Landscape Analysis System. The free en-
ergy was determined by calculating probabili-
ties from a histogram analysis. The value of the
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Fig. 1 Outline of Free Energy Landscape Analysis
System.

free energy of a conformation is F = −RT ln P ,
where P is the probability that a conformation
exists, R is gas constant, and T is temperature.
This system handles multiple trajectories from
MD simulations, and is applicable for unfolding
simulations, replica exchange simulations, and
multi-canonical simulations, and constructs a
histogram which shows the conformational dis-
tribution. Currently, this system automatically
constructs and analyzes the free energy land-
scape of (i) the Radius of Gyration (RG), (ii)
the End-to-End distance, (iii) the RMSD (Root
Mean Square Deviation) from the initial struc-
ture, and (iv) the distances among any residues
that the user selects based on trajectory analy-
sis. We computed the RG parameter as

RG =

√√√√ 1
2N2

N∑
i,j

(�ri − �rj)
2
,

considering only the coordinates �rn of the Cα-
atoms of all of the N residues.

3. Blue Gene/L and Tuning Policy

3.1 Specifications of the Blue Gene/L
Architecture

The IBM r© System Blue Gene r© Solution is
a massively parallel supercomputer based on
IBM’s system-on-chip technology. It is de-
signed to scale to 65,536 dual-processor nodes,
with peak performance of 360 teraflops. Each
core in the system has a pair of IBM Power
PC r© (PPC 440) processors with two floating-
point units (FPU) produced in 130-nm copper
IBM CMOS technology 6). To achieve a high
level of integration and large quantity of micro-
processors with low power consumption, the
machine was developed based on a processor
with a moderate frequency. Each processor core
runs at a frequency of 700 MHz giving a the-
oretical peak performance of 2.8 Gflops/core,

Fig. 2 Compute node ASIC of Blue Gene.

and 5.6Gflops/chip since each chip includes two
cores. Each chip constitutes a compute node.
Each node is very simple, consisting of a sin-
gle ASIC containing two processor cores and
double-data-rate (DDR) SDRAM chips of 1-
Gbyte capacity (Fig. 2). The nodes are inter-
connected through five networks, the most im-
portant of which is a three-dimensional torus
network that has the highest aggregate band-
width and handles the bulk of communications.
There are virtually no asymmetries in this inter-
connect, so the nodes communicate with neigh-
boring nodes that are physically close on the
same board and with nodes that are physically
far removed on a neighboring rack with the
same bandwidth and nearly the same latency.
This allows for a simple programming model
because there are no edges in a torus configu-
ration. The SoC ASIC that contains the node
incorporates all of the functionality needed by
Blue Gene. It also contains a 4-MB L3 cache
of extremely high-bandwidth embedded DRAM
that is on the order of 30 cycles from the reg-
isters for most L1/L2 cache misses. The next
building block is the compute card. Two com-
pute nodes attached to a processor card with
memory (RAM) make up a compute card. The
I/O card is the next building block. This card
is very similar to the compute card. The I/O
card has an integrated Ethernet connection for
communicating with the outside world. Com-
pute cards and I/O cards are plugged into a
node card. There are two rows of eight compute
cards on the node card. A midplane consists of
16 node cards stacked in a rack. One rack holds
two midplanes, for a total of 32 node cards con-
sisting of 1,024 compute nodes interconnected
by a 3D torus.

Some aspects of the machine which are in-
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teresting to application programmers are sum-
marized below. First, there are two identical
IBM PowerPC 440 CPU cores on each chip,
and each CPU has a dual floating-point unit
(FPU). This FPU executes instructions in
single-instruction multiple-data (SIMD) fash-
ion, like a two-element vector processor. Mak-
ing effective use of these double-FPUs is one of
the key strategies for application performance
improvement. Although the two CPU cores are
identical, one of the CPU cores is intended as
a communication coprocessor when executing
communication-intensive applications. There
are two main modes of operation supported by
the system software: each processor can handle
its own communication (virtual node mode),
or one processor can be dedicated to commu-
nication and one to computation (communica-
tion coprocessor mode). Making effective use
of the virtual node mode is another key aspect
for the performance improvement. BG/L has
two physically separate networks used for high-
performance communication between nodes: a
3D torus network in which every node is con-
nected to its six nearest topological neighbors,
and a hardware collective network that allows
rapid broadcasts and reductions. The collec-
tive hardware supports fixed-point operations
within reductions. Making effective use of these
networks and related hardware functions is also
important for performance.

3.2 Tuning Policy of Blue Gene
3.2.1 Enabling the Double-FPU
To maximize the performance we need to

use as many double-FPU instructions as pos-
sible. The double-FPU can do two floating
point calculations at once, so the double-FPU
is good at handling even number data sets such
as 2-dimensional or 4-dimensional vector cal-
culations or complex arithmetic. In particular,
the double-FPU has a special instruction set for
complex arithmetic. For example, the multipli-
cation of two complex values can be calculated
by two double-FPU instructions 7).

For such even-number data sets or complex
arithmetic, the IBM XL compiler can gener-
ate double-FPU instructions automatically in
many cases. However, for odd number data sets
such as 3-dimensional vector calculations, the
IBM XL compiler can rarely generate double-
FPU instructions automatically. For odd num-
ber data sets, if the data and calculations can
be handled sequentially, it is a possible to use
double-FPU instructions. To allow the com-

piler to generate double-FPU instructions for
sequential data, it is better to use 1-dimensional
arrays instead of the original array structure
used in the subroutine. The following modifi-
cations of the source code allow the compiler
to generate double-FPU instructions for a 3-
dimensional vector calculation.
• : original source code
• REAL*8 va(3,N),vb(3,N),t
• DO I=1,N
• va(1,I)=va(1,I) + t * vb(1,I)
• va(2,I)=va(2,I) + t * vb(2,I)
• va(3,I)=va(3,I) + t * vb(3,I)
• ENDDO

• : modified source code
• REAL*8 va(3*N),vb(3*N),t
• DO I=1,N*3
• va(I)=va(I) + t * vb(I)
• ENDDO
3.2.2 Enabling Parallel Load and Store

Instructions
To feed two floating point values into a

double-FPU, there are special load and store
instructions which can load two sequential val-
ues from an array into a double-FPU register or
store two sequential values from a register into
an array at the same time. We can improve the
performance of programs by using these parallel
load and store instructions as much as possible.
Parallel load and store decrease the time to load
and store, and also these instructions are good
for improving instruction scheduling.

To execute parallel load and store instruc-
tions, there are two limitations 8):
• the two values in the array must be sequen-

tial
• the two values must be aligned on a 16-byte

boundary
If the two values are separated, for example

in different arrays, we can not use parallel load
and store instructions. In this case, we should
use two of the usual load and store instructions.
The second limitation is very critical to per-
formance. If the two values are stored at an
address crossing over a 16-byte boundary, the
parallel load and store instructions can still be
used but it takes thousands of clocks to handle
the irregular procedure call in software.

The IBM XL compiler always allocates ar-
rays to be aligned on 16-byte boundaries. Thus
we need to be concerned about 16-byte bound-
aries only for even number data sets or for se-
quential calculations on 1-dimensional arrays.
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Unfortunately we have to take care of the 16-
byte boundaries if the data structure is odd-
numbered or if the data access is non-sequential
in a 1-dimensional array.

The IBM XL compiler can detect whether or
not the data is aligned and can generate code
for each case automatically for simple sequen-
tial calculations. However in most cases, the
compiler can not detect the 16-byte alignment
for a given array in subroutines. To make the
compiler aware of the 16-byte alignment, the
alignx intrinsic function is used for arrays that
are known (by the programmer) to be guaran-
teed to be 16-byte boundary aligned. Given ap-
propriate use of alignx , the compiler can gener-
ate parallel load and store instructions for com-
putations which would otherwise escape auto-
matic detection.

3.3 Profiling and Tuning Amber 9 on
Blue Gene

3.3.1 Porting Amber 9 on Blue Gene
(i) Compiling SANDER program
Although we adopted a parallel SANDER (Sim-
ulated Annealing with NMR-Derived Energy
Restraints) module that is one of the MD pro-
grams in Amber 9 9), the elements mentioned
below will apply to other MD programs. This
simulation of a continuous process is broken
down into small discrete time steps, each of
which is an iteration of two parts: a force cal-
culation (calculating the forces from the evalu-
ated conformational energies) and an atom up-
date (calculating the new coordinates of the
molecules).

SANDER already uses the Message Passing
Interface (MPI) 10) for data communication, so
it is easy to port this program to Blue Gene.
There is an automatic configuration script in
the Amber 9 package, but unfortunately there
is no setting for Blue Gene, so to create a config-
uration for Blue Gene, we ran the configuration
script with “./configure -mpich xlf90 suse” and
we modified the config.h file generated by the
configuration script.

We used the IBM XL FORTRAN compiler
v.10.1 for Blue Gene to build SANDER. The
compiler optimization options we used were “-
O3 -qhot -qstrict -qarch=440d -qtune=440”.
(ii) Increasing the limits of parallelization
SANDER limits the maximum number of pro-
cessors to 256 processors in the default settings.
We can increase the limit by modifying the
value of “MPI MAX PROCESSORS” defined
in “parallel.h” and “ew parallel.h” for an ap-

propriate number of processors. Then we must
add the data for the array “logtwo” defined in
“parallel.h”.

3.3.2 Profiling SANDER on Blue
Gene

Before we tune a program for Blue Gene, it
is important to know the characteristics of the
program to plan the tuning strategy. SANDER
includes its own timing routines and can dis-
play timing information for each module in the
program. We used this information for profiling
SANDER on Blue Gene.

We ran SANDER in coprocessor mode. In co-
processor mode, we can only use one processor
core in a compute node for calculations while
the other processor core is used for the MPI
functions. There is another mode called vir-
tual node mode, in this mode, we can use both
processor cores for calculation, and these pro-
cessor cores can be treated as independent MPI
tasks. Thus virtual node mode potentially has
double the computational power, but the actual
performance is not always twice that of copro-
cessor mode, because in virtual node mode the
L3 cache and memory bandwidth are shared by
two processor cores, and each processor core has
to handle MPI functions. The following table
shows comparisons of the elapsed time for the
prion data set (see Results section) between co-
processor (CO) mode and virtual node (VN)
mode.

Comparing the times with the same numbers
of nodes, VN mode is faster, but comparing
times with the same number of processors, CO
mode is faster. Therefore, if we can only use
a limited number of nodes, then it is better to
choose VN mode, but if we can use as many
nodes as the program’s scalability will allow,
then CO mode will be better (Table 1), so we
choose CO mode to run SSANDER.

We tested various numbers of processors for
profiling. We used a prion data set that con-
tains 31,562 atoms. Most of the calculations
performed by SANDER are the calculations
of the forces between atoms. Using molecu-

Table 1 Comparison of the elapsed time between
coprocessor mode and virtual node mode.

CO mode VN mode
16 nodes
(32 procs. in VN mode) 181.02 sec. 136.61 sec.
32 nodes
(64 procs. in VN mode) 116.08 sec. 98.13 sec.
64 nodes
(128 procs. in VN mode) 92.43 sec.
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Fig. 3 Profiling result of prion data set. This graph
shows the timing of major 4 modules and other
procedures (lumped together) of SANDER.

Fig. 4 Profiling result of reciprocal Ewald force
calculation.

lar topology, it is easy to calculate forces be-
tween two connected atoms. These forces are
called the bonding forces, shown in Fig. 3 as
“Bond/Angle/Dihedral”. These calculations
are not too heavy and the scalability is good.
The forces between non-connected atoms are
called non-bonding forces. When calculating
the non-bonding forces, there is no topology in-
formation, so the program has to collect a list
of all of the atoms that may affect each other at
the beginning of each time step. This module
is shown as “List time”. This module is also
well parallelized. Non-bonding forces are cal-
culated by the two modules shown as “Recip
Ewald time” and “Direct Ewald time”. “Di-
rect Ewald time” shows good scalability but
“Recip Ewald time” is not so scalable as the
number of processors increases. The “Other”
category shows no scalability, because there are
non-parallelized procedures in “Other”. These
non-parallelized procedures limit the scalability
of the program.

Figure 4 shows detailed profiling results for
the “Recip Ewald time”.

“Scalar sum”, “Grad sum”, and “Fill Charge

Fig. 5 The execution times of procedures: sum of
scaled procedures, FFT routine, and sum of
non parallelized or non scalable procedures are
shown.

grid” are very well parallelized but the other
procedures are not. The heaviest module in the
reciprocal Ewald force calculation is the FFT
module and the scalability of FFT is saturated
by 128 processors. This FFT module is in-
cluded in SANDER but is not tuned well for
any architecture.

3.3.3 Tuning Study of SANDER on
Blue Gene

Figure 5 shows another profiling result that
compares the time of some procedures: scaled,
FFT, and non-scaled. In this graph, the non-
scaled procedures consist of non-parallelized
procedures and procedures for which the scala-
bility is bad.

Figure 5 shows the limitations of the perfor-
mance improvement of SANDER. If we tune
the scaled procedures, the performance will be
greatly improved when we use a small num-
ber of processors; but the performance improve-
ment in terms of the total time will be small
when we use a large number of processors. If we
can tune the non-scaled procedures, the scala-
bility of SANDER will be improved for a larger
number of processors. FFT is one of the heavi-
est non-scaled procedures and potentially there
is some room to tune it for the Blue Gene ar-
chitecture. Most of the other non-scaled proce-
dures can not be parallelized. If we can tune
the local performance of these procedures, the
scalability will not be changed, but the overall
time will be decreased.

For both cases, scaled and non-scaled proce-
dures, we tuned the procedures by exploiting
the double-FPU as much as possible. SANDER
is well parallelized except for the FFT mod-
ule, and it is difficult to modify non-parallelized
procedures so that they are parallelized well on
Blue Gene. Thus our tuning of SANDER fo-
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cused on two points: (i) enabling double-FPU
operations and (ii) improving the FFT module.
(i) Enabling double-FPU operations
Most of the calculations of the MD programs
are 3-dimensional vector calculations, because
the properties of atoms such as their posi-
tions, velocities, and forces are presented as 3-
dimensional vectors. As we described in Sub-
section 3.2.1, the double-FPU is not good at
handling odd-numbered data structures such as
3-dimensional vector calculations. To generate
double-FPU instructions for MD calculations,
we merge two 3-dimensional vectors and let the
two vectors be calculated together. However
in most case in SANDER, it is very difficult
to merge pairs of calculations. We tried to
enable double-FPU operations in many cases,
but most of the modifications were not effective
in improving performance because these calcu-
lations were not critical to the overall perfor-
mance according to the profiling results. There-
fore we selected some functions where merging
pairs of calculations was possible and effective
in boosting the performance.

SANDER has its own array allocation routine
that allocates the array by sharing a part of the
large array stack allocated when the program
starts. When the IBM XL compiler allocates
an array, the address of the top of the array
is always aligned to a 16-byte boundary. How-
ever the array allocation routine of SANDER
was not designed to check for 16-byte bound-
aries, so we modified this routine to returns al-
located arrays whose address is always aligned
to a 16-byte boundary. With this modification
and by inserting the ALIGNX intrinsic func-
tion, double-FPU instructions can be generated
for simple cases involving sequential access.
(ii) Improving the FFT module
The FFT module of SANDER is a complex 3-
dimensional FFT, so an external FFT library
could be used instead of the original FFT mod-
ule, and this seemed to be the best way to im-
prove the performance of the FFT. But the
original FFT module is tightly dependent on
the rest of SANDER for memory allocation and
data structures. Therefore, for the current re-
search, we did not use an external FFT library,
but instead we tuned the original FFT module
to support double-FPU operations.

In an FFT module, most of calculation is
complex arithmetic, which is suitable for the
double-FPU. Unfortunately, the original source
code does not use the complex data type, but

uses the real data type so the compiler cannot
generate double-FPU instructions. We modi-
fied the code to use complex data types and
the double-FPU intrinsic functions to generate
appropriate instructions.

The original FFT module used MPI ISEND
and MPI RECV to exchange data between
processors for the array transpose. We
modified the transpose procedure and we
used MPI ALLTOALL to exchange all of
the data at once, because we ran the pro-
gram using the coprocessor mode of Blue
Gene. In the coprocessor mode the perfor-
mance of MPI ALLTOALL is better than us-
ing MPI ISEND and MPI RECV for all of the
pairs of processors.

4. Results

4.1 Performance Evaluation of MD
simulation

We measured the simulation time of SANDER
for two different protein data sets (Table 2):
the prion protein and the SARS coronavirus
main proteinase. These structures were ob-
tained from PDB. The prion protein is as-
sociated with the infection of Prion diseases
such as BSE, the new variant CJD, and scrapie.
The SARS coronavirus main proteinase is a key
structure of the SARS coronavirus and plays an
important role in the virus lifecycle through the
specific processing of viral polyproteins. There
are disulfide bonds between Cys179-Cys311 and
Cys214-Cys287 in the dimeric prion protein.
The systems were surrounded with a layer of
TIP3P water molecules using the LeaP pro-
gram. The number of solvent water molecules
and counter ions in each system are shown in
Table 2.

For each data set we set the iteration count
to 1,000. Figure 6 shows the elapsed time
measurements for these two data sets. In this

Table 2 Description of data sets for Performance
Evaluation.

Prion protein SARS coronavirus
main proteinase

(PDBID:1I4M 11)) (PDBID:1UJ1 12))
216 residues (3,440 atoms) 605 residues (4,675 atoms)

9,374 water molecules 24,212 water molecules
total: 31,562 atoms total: 77,314 atoms
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Fig. 6 Time measurement results of simulating two
protein data sets with the original SANDER
program on Blue Gene.

Fig. 7 Comparisons of measured simulation times of
the prion data set. Bar graphs denote total
simulation times, and line graphs denote FFT
times.

measurement we used the non-tuned original
SANDER.

Both data sets showed very similar scalability
in Fig. 6, reaching saturation near 128 proces-
sors. The performance gain slowly decreased
over 64 processors. Therefore we selected 32
processors as a practical number of processor
for MD simulation with SANDER for data sets
with similar numbers of atoms, because we can
run more test cases on different partitions with
32 processors than when running one test case
on a large partition. We originally expected
that the SARS data would scale up to more
processors. However our measurements show
almost the same scalability as the prion data
set. We think this scalability limitation is due
to the implementation of SANDER, and Fig. 7
effectively illustrates this problem. Non-scaled
or non-parallelized modules are very dominant
if the number of processors is large. The per-
centage of scaled modules can be increased if
the number of atoms is large enough, but for
this we need at least 10 times as large a data set
as the SARS data set. Otherwise, we should use

Fig. 8 Comparisons of measured simulation times of
the SARS data set.

another MD implementation for problem sizes
similar to those measured in this paper.

As we noted in Subsection 3.3.3, we mod-
ified SANDER to enable double-FPU opera-
tions, and in particular we tuned the FFT mod-
ule. We compared the simulation times between
the original SANDER and the tuned SANDER.
Figure 7 and Fig. 8 show the comparison re-
sults of the prion data set and the SARS data
set, respectively.

We increased the performance of the FFT
module by about 30–40%, and we also increased
the scalability limit of the FFT module to up
to 64 processors for the prion data set, and up
to 128 processors for the SARS data set. Even
though we tuned the FFT module, the over-
all performance was little improved. We also
modified other modules to enable double-FPU
operations, but we could not enable them for
all of the calculations and the performance did
not improve. For significant improvement it ap-
pears to be necessary to optimize the overall al-
gorithm or data structures for the double-FPU
architecture.

4.2 Free Energy Landscape Construc-
tion

We constructed free energy landscapes for
two different protein data sets (See Table 3):
the prion protein and the chignolin protein.
The chignolin protein was designed, synthe-
sized, and had its structure determined by one
of the authors 14). We used 64 processors to
calculate both data sets by using coproces-
sor mode. The prion data was evaluated 20
times for 30 nanoseconds with different ini-
tial velocities in simulations at 300◦K. The
chignolin data was evaluated for 1-microsecond
simulations at 315◦K. Although Table 3
shows the folded structure of the chignolin pro-
tein (PDBID:1UAO), we executed the simu-
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Table 3 Description of the data sets for Free Energy
Landscape Construction.

Prion protein Chignolin protein

(PDBID:1XYX 13)) (PDBID:1UAO)
112 residues (1,794 atoms) 10 residues (138 atoms)

3,868 water molecules 2,270 water molecules
1 sodium ion 2 sodium ions

total: 13,399 atoms total: 6,950 atoms

Fig. 9 Free energy landscape of mouse Prion protein
along RG and RMSD.

lation from the elongated state in the sim-
ulations. There are disulfide bond between
Cys170-Cys222 in the prion protein. The sys-
tems were surrounded with layer of TIP3P wa-
ter molecules using the LeaP program. The
numbers of solvent water molecules and counter
ions in each system are shown in Table 3.

Figure 9 shows plots of the free energy land-
scape of the mouse Prion protein. The value of
RG gives an estimate of the characteristic vol-
ume of a globular polymer, which is inversely
related to compactness. Figure 9 suggests the
mouse Prion protein has two stable states (con-
formations). This simulation required approxi-
mately 19,200 days of CPU time.

Figure 10 shows plots of the free energy
landscape of the chignolin protein. In the fig-
ure, the distances of Asp3:O-Gly7:N and of
Asp3:O-Thr:8:N were used as axes, because the
hydrogen bonds between these atoms are be-
lieved to be related to the essential interactions
of the chignolin protein. Honda, et al. have ex-
perimentally determined that the chignolin pro-
tein does not have a large energy gap between
its folded and unfolded states as compared with
a typical wild protein. Although this was con-
firmed in past research 15),16), our results also

Fig. 10 Free energy landscape of chignolin protein
along the distance between Asp3:O-Gly7:N vs.
Asp3:O-Thr:8:N.

show the effectiveness of our method in obtain-
ing the free energy landscape even for this kind
of small artificial protein. This simulation re-
quired approximately 9,600 days of CPU time.
The details of these free energy landscape anal-
yses will be published for the protein science
literature. These kinds of analyses will support
rapid progress in life science based on the com-
puter science contribution.

5. Conclusion

In this paper, we discussed a Free Energy
Landscape Analysis System and optimization
of an MD program on Blue Gene/L. We im-
proved the total scalability up to 64 proces-
sors. Now we can effectively use 64 processors
for MD simulation for both cases. However al-
though the scalability of the FFT module for
the SARS data set was greatly improved, the
total time was not improved compared to 128
processors. There remains room to tune mod-
ules other than the FFT module that currently
do not scale well with more processors. We
modified other modules to support double-FPU
operations, but actual double-FPU instructions
were not generated by the compiler in many
cases. Currently, there are many 3-dimensional
vector calculations for which it is difficult to in-
duce the compiler to generate double-FPU in-
structions. Even in the FFT module, there are
some cases for which we could not figure out
why the compiler was unable to generate par-
allel load and store instructions for arrays that
were clearly aligned to 16-byte boundaries. We
intend to further analyze the MD program and
the code generated by the compiler and feed
this analysis back into the further development
of the Blue Gene compiler. We also showed
the free energy landscapes of two data sets, the
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prion protein and the chignolin protein. We
suggested that the prion protein has two sta-
ble states in conformational space from the free
energy landscape of RG vs. RMSD, and our
method is also applicable to small artificial pro-
teins such as the chignolin protein which has a
small energy gap between the native and dena-
tured states.

It is still necessary to improve the simulation
performance to obtain biological results within
realistic amounts of time. We plan to apply
Space Decomposition (SD) 17) in which the sim-
ulation domain is usually broken into P (num-
ber of processors) subdomains and each pro-
cessor computes forces only on the atoms in
its subdomain or apply other paradigms 18) for
similar optimizations.

In addition, we are planning to consider ad-
ditional analysis methods which automatically
detect salt-bridges and similarities between free
energy landscapes.
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