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In many cases of biological observations such as cell array, DNA micro-array or tissue
microscopy, primary data are obtained as photographs. Specialized processing methods are
needed for each kind of photographs because they have very wide variety, and often needed au-
tomated systems for modern high-throughput observations. We developed a fully-automated
image processing system for cell array, high-throughput time series observation system for
living cells, to evaluate gene expression levels and phenotype changes in time of each cell.

1. Introduction

In many cases of biological observations such
as 2-dimensional electrophoresis of proteins,
DNA micro-array, and cell array, the primary
data are obtained as photographic images. Ex-
perimental methods developed in recent years
are characterized by high-throughput, then
large volumes of photographic data are now ob-
tained with the aim of comprehensive observa-
tion. In cell array 1)∼5) (Fig. 1), which is cur-
rently the focus of our research, there are small
pits (called “spots”) on the surface of a slide
glass (TFA chip). The cells are cultured in these
holes while gene expression levels and pheno-
type changes are simultaneously observed using
fluorescent proteins and other methods.

For example, in experiments using a TFA
chip with 1,500 spots, if a photograph is taken
of each spot every 15 minutes for 2 days, a total
of 288,000 images (1500 × (24 × 60/15) × 2 =
288,000) will be produced. For this approx-
imate 300,000 images, background luminance
intensity subtraction, noise on a spot elimina-
tion, recognition of cell shape, and the integra-
tion of luminance intensity are performed, and
as time series processing, depending on the cir-
cumstances, each cell needs to be traced and
any changes in gene expression levels and cell
shapes in time are digitized.

In general, since this type of image processing
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requires experience at discriminating between
noise and artifacts which are not noise, often
manipulations by the researcher who did the ex-
periments are needed. For example, based on
knowledge concerning general cell size, shape,
the approximate intensity of background lumi-
nance, and so on, the selection of optimum pa-
rameters for the experimental conditions is per-
formed by trial and error iterations using soft-
ware that comes with the observation equip-
ment, etc. and semiautomatic processing is per-
formed while monitoring for the appearance of
miss-recognition and outliers by operators. In
such cases, researchers who conducted the ex-
periments are occupied for long periods of time
because the most detailed and precise knowl-
edge are needed to select optimum parameter
values which reduce noise and extract the high-
est quality informations from photographed im-
ages.

Furthermore, manual processing including
search optimum parameter values for the im-
ages on a video display monitor generally takes
long time for the operation and may also dam-
age the health of the operator. In our past
cases, an operator could process approximately
20,000 images of cell array per month. There-
fore, it will take about 1 year to process images
obtained by 2 days observation.

Thus, support from bioinformatics is indis-
pensable in order to achieve the maximum
level of high-throughput, comprehensive obser-
vation ability of cell array. To solve problems
above, many software systems have been de-
veloped. One of the most popular image pro-
cessing/recognition software is ImageJ 6),7) (for-
merly known as NIH Image). It is made as
general-purpose and many algorithms are im-
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Fig. 1 Time series observation of living cells by the cell array. Several mi-
crometers diameter holes (called ‘spot’) are digged on a slide glass.
Other surface than spots is covered by polymer to prevent adhesion
of cells. Virus vectors can be transfected through cell membrane from
spot’s surface into cells, then into nuclei. Transfected vector will make
cells luminary if the vector contains a fluorescent protein gene. If a
siRNA is transfected, target gene of the siRNA will be knocked out.

plemented based on it. Software especially for
cell array are available in this few years 8),9).
Although these software can digitize intensity
of cell luminance, recognize each cell and its
shape, count a number of cells, etc. 10), noth-
ing available to track each recognized cell in
time. Since behavior of cells varies widely even
in a same condition, cell tracking is significant
to analyze how and why their behavior varies.
Especially for large-scale high-throughput data,
automated cell tracking must be introduced.

We therefore have developed a system using
parallel computing and a minimum of manual
operations to process the data. The software
used was based on a published image processing
system, ImageJ. The software runs on Linux
and Windows XP.

2. Input-Output

2.1 Primary Data
Input data to our system are series of

monochrome images in time obtained by a cell
array equipment with one TFA chip. The input
units are multiple images (a number of images
equals the number of spots on the chip multi-
plied by the number of times each spot is pho-
tographed) obtained from a single experiment.
Each image is a TIFF or JPEG microscopic im-
age of a spot with a diameter of several μm (an
example is shown as Fig. 2), and the file name
included the spot number and number of a time
the spot had been photographed. Information
such as the magnification and exposure time

that is not directly related to the image pro-
cessing results is stored in separate files.

2.1.1 Optional Parameters
The numerical values of the upper and lower

limits of the cell diameters are inputted into the
software because of cell size, amount of move-
ment, and so on are depending on cell species
and experimental conditions being observed.
The directory of the input file and the direc-
tory of the output on the computer in which
the software runs are also specified by the user.

2.2 Output Data
From one image, the total of the luminance

values in the image (total for a spot), the mean
luminance intensity (mean of a spot is obtained
by dividing the luminance by the total cell
area), the total and mean of the luminance of
each cell, and centroid and circularity of each
cell are calculated, and then it is determined
whether the cell in the image at a certain time
point corresponding to a cell in an image taken
the next image (Table 1). All outputs are
stored as text files, and the values of spot to-
tal and spot mean are stored in files for each
spot, while values for each cell are stored in
files for each cell in a directory for each spot.
By plotting these numerical values, it is possible
to survey and analyze the changes in intensity
and shape of cells over time. In addition, for
verification, the image files with the outlines of
the cells recognized are generated in lower res-
olution (Fig. 3).
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Table 1 Values calculated by our software system.

For each image shape of cells (as an image file)
total and mean intensity for each
spot
total and mean intensity for each
cell
circularity and centroid of each
cell

As time series correspondence of cells between
images
time series of calculated values for
each cell

Fig. 2 Example of a photographed image of a spot.
An edge of a circle shaped spot appears at four
corners of the image.

Fig. 3 Processed image from photograph of Fig. 2.
Background luminance has been subtracted.
Each recognized cell is bordered by solid line
and numbered inside their border (numbered
as ‘12’ in this example shown at upper-right
corner).

2.3 Processing Method
Each image is downloaded into a computer

and then 1) background correction, 2) threshold
value processing, and 3) shape recognition and
luminance intensity integration are performed

Fig. 4 A flowchart of the image processing algorithm
of our system. Outer (C1’s) loop illustrates
process for each spot. Inner (C2’s) loop is for
each image file consisting of background sub-
tract, cell body recognition, integration of in-
tensity and calculation of circularity and cen-
troid. Each process is applied in this order.

sequentially. After processing of all the images
has been completed, cell tracking is done con-
cerning whether the cells in multiple images are
the same cell or not (Fig. 4).

2.3.1 Background Correction
Taking into consideration that they are im-

ages of round spots, picture elements (pixels) of
parts of the images other than the cells are re-
moved by the shading correction 11)∼13). First,
the scale of the image is reduced to 1/10 in
order to shorten the processing time. An im-
age is smoothened using morphology filters (ex-
pansion/contraction filters) with the radius of 2
pixels and the block noise generated by expand-
ing to the original size is smoothened using the
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Gaussian filter 13). The resulted image by these
processes is used as the background image. The
luminance intensity of the background image is
subtracted from the original image, and then
the corrected image is obtained by adding the
mean intensity of luminance of the background
image to each pixel of this image that under-
went the subtraction.

2.3.2 Threshold Value Processing
The threshold value is subtracted from the

entire image in order to separate the cells and
the background. First, the initial value of the
threshold value is calculated using the maxi-
mum entropy algorithm 14). Since cells that ap-
pear dark are eliminated if this value is sub-
tracted from the entire image, the value from
which the standard deviation of the luminance
intensity over the entire image has been sub-
tracted is taken as the threshold value.

2.3.3 Cell Shape Recognition
For the entire image, binarization is per-

formed by assigning pixels that have higher
luminance intensity values than the threshold
value described above as 1, and those with lower
pixels as 0. For pixels that are 1, the cell shape
is obtained by tracing the contour line to make
closed curves 13). A number is assigned to each
closed curve. On the background corrected im-
age, the values of intracellular luminance inten-
sity are added up, and the total of the lumi-
nance intensity values of all the pixels in the
cell areas in one image is used as the luminance
intensity value of that image. The mean lumi-
nance intensity value is derived by dividing the
luminance intensity value of the image by the
total area of cells.

The values of luminance intensity of each cell
in the image are calculated, and simultaneously
the centroid coordinates and circularity (4π×
area/circumference) are also calculated.

2.3.4 Cell Tracking
Based on the location of the centroid of a cell

in each image, time series data consisting of
the luminance intensity, mean intensity of lu-
minance, centroid, and circularity for each cell
are constructed for the cell are assumed to be
the same cell in more than one image.

Two consecutive images are compared and it
is concluded that a cell in the chronologically
preceding image and a cell within the subse-
quent image whose centroid is the closest to
the previous cell and is within the judgment
distance, are the same cell. The judgment dis-
tance is taken to be a given threshold depends

on a diameter of circle whose area is the same
as the average area of cells in a preceding im-
age. For this reason, when observing cells with
a large amount of movement, it is necessary to
shorten the photographing interval. If there is
no corresponding cell in the later image, it is
assumed that the cell has disappeared. How-
ever, if a cell that meets the conditions appears
in a later image, it is assumed to be the same
cell. On the other hand, if a cell appears where
there was no cell, it is assumed to be a new cell.

3. Implementation

The shading correction, Gaussian filter, mor-
phology filter, a part of threshold value process-
ing, and shape recognition implemented for Im-
ageJ v. 1.37 are used. Background correction,
another part of threshold value processing, cal-
culation of circularity, and time series process-
ing have been programmed newly and prepared
as plug-ins for ImageJ. The program was con-
structed so that it could be run as the parallel
execution by the native thread function of Java
1.4.2 or higher runtime environment.

4. Case Study

Twelve types of virus vectors were introduced
into HeLa cells, and we processed images of 9
types of gene reporter vectors that were ob-
served by one experiment using one TFA chip.
Figures 2 and 3 had been obtained by this ex-
periment. The experimental conditions were
12 × 9 = 108 sets, and 4 spots were assigned
for each condition. By statistically processing
these 4 spots, we attempted to improve the re-
liability of calculated values. The total num-
ber of spots was 108 × 4 = 432, photographed
over 42 hours every other hour (photographed
a total of 43 times). The total number of im-
ages was 18,576 (432 × 43). A size of obtained
image files is 2800 (width) × 2133 (height) pix-
els. The format is 12-bit depth gray-scale TIFF.
Approximately it is 40 GB in total.

Typical shape of a cell is a circle whose diame-
ter is approximately 100 pixels. Especially dead
cells show apparent circle shapes by its surface
tension. In this experiment, most of both liv-
ing and dead cells do not move because they
are stick to the glass surface of their spot. So
we have set judgment distance (Section 2.3.4)
to 2.5 × larger than the average circle. If we
take more larger value for the distance, several
separated cells are recognized as identical cells
even if they completely stick. If the value is
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Fig. 5 Effect of background subtraction and cell size
threshold. Original image is shown as Fig. 2.
Left solid line square indicates cells subtracted
simultaneously with background luminance.
Right solid line square indicates cells having
smaller area than a circle which has a lower
limit of specified diameter (Section 2.1.1).

Fig. 6 Recognized cells and its trajectories. A trajec-
tory is a time series of centroid coordinate of a
cell. It is saved in a text file automatically.

too small, identical cell are not recognized after
they divide. The distance should be chosen for
each experimental condition.

Figure 5 shows automatic elimination of
ambiguous cell shapes by background subtrac-
tion and specifying the lower limit of cell size.
Each cell which has dark shape (in the left
solid square) and too small shape (in the right
square) is not recognized as a cell and ignored
when performing digitizing of luminance of cells
and spots and tracking of cells.

A result of cell tracking is shown in Fig. 6.
Trajectories are tracked for all recognized cells.
If a cell disappears and appears again in the
distance threshold, the later cell is recognized

Fig. 7 Change of the number of recognized cells on a
spot in time. Because of observed cells are can-
cer cells (HeLa cells), the number is approxi-
mately increasing. Hoever, it shows small de-
crease at many points.

Fig. 8 Change of background luminance of a spot in
time. Its increase may caused by progression of
transfection of reporter vectors.

as same cell as former one, and the trajectory
is represented by broken lines that have a same
color.

For each spot of this experiment, averagely
51.1 cells were recognized (SD 19.4). A plot of
a number of recognized cells changing in time of
the spot No.43 is shown in Fig. 7 and changes
of estimated background luminance of the same
spot is shown in Fig. 8. An image of this spot
at the last time point is shown in Fig. 2. Due
to a kind of observed cells (Hela, a well estab-
lished cancer cell stock), total number of cells
is increasing (Fig. 7). Average number of cells
of the spot is 59.4. Simultaneously, by the pro-
gression of reporter vector’s transfection total
luminance of the spot is increasing and it af-
fects to background luminance (Fig. 8).

A number of cells are varying depending on
spot’s condition. Time series of mean lumi-
nance of each cell in the spot No.87 are shown
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Fig. 9 Average intensity of all cells in a spot (total in-
tensity of each cell divided by area of the cell).
Each line corresponds to each cell. Total num-
ber of cells is 56.

Fig. 10 Plots of cells except whose circularity are 0.8
or upper. Total number of plotted cells is 29
(27 cells have been assumed dead, and elim-
inated from Fig. 9). Compared with a cell
which has the highest intensity in Fig. 9, a plot
of correponding cell in this figure ends earlier
than in Fig. 9. It means the cell shape changed
to circular and judged the cell died at the end
of the plotted line.

in Fig. 9. Average number of recognized cells
in No.87 is 56. In this experiment, taking into
consideration that dead cells would nearly peel
off the glass surface and become circular due to
surface tension, we assumed those cells with a
high circularity index (0.8 or more) had died.
By eliminating these cells we are able to fol-
low the changes in intensities and shapes of
cells over time for only viable cells. The plot
is shown in Fig. 10. Compared a cell whose in-
tensity is the highest in both two figures, a plot
of the cell is terminated earlier in Fig. 10 than
Fig. 9. The terminating point is determined by
the circularity index. It means a plot is ended
at a time of death of the cell.

The program was run in parallel on a SMP
calculator which had 4 dual-core CPUs. All of
the images were processed and it took approxi-
mately 8 hours to produce the whole time series
data (Dual-core Opteron 886/2.4 GHz/1MB
cache × 4 CPU (8-core SMP architecture),
memory 32 GB, J2RE 1.4.2, Linux kernel 2.6.5).

5. Discussion

We are able to follow and simultaneously
measure the activities of 9 types of genes as
well as cellular shape in each viable cell within
the cell array spots using the software we devel-
oped. Since luminance intensity is not lost even
if a cell dies (exponential decrease with half-life
of several hours), when fluorescence only is ob-
served, there is concern that gene activity will
be calculated from both dead and living cells.
However, this problem can be avoided by judg-
ing the viability of a cell based on its shape,
making it possible to achieve an analysis with
a higher degree of reliability.

In molecular biology or biology in general, if
there is a large volume of images, the process-
ing of the images usually progresses as far as
being semiautomated because there are great
differences in the characteristics of the im-
ages depending on objects being observed and
the method used for observation. In other
words, if we consider the case of cell array,
we see visually with our eyes how the cells
should be recognized, and if there are cells that
should be recognized but are not, this should
be corrected, and in the case in which noise is
miss-recognized for a cell, all miss-recognitions
should be pointed out in general. With the soft-
ware we developed as well there are cells that
cannot be recognized, however, it can be con-
firmed with the image that miss-recognition of
noise is slight by specifying the size of the cell
and performing background correction. It is be-
lieved high quality numerical values can be ob-
tained in this manner.

Our method can process varying background
luminance in time, however, dark cells in a to-
tally bright spot cannot be recognized, even if
the shape is clear. Cells that can be clearly
identified when seen by the naked eye are elim-
inated simultaneously with the background lu-
minance in such images. In order to solve this
problem, other filters such as differentiation fil-
ters, fast Fourier transformation (FFT) filters,
wavelets, etc. should be introduced, or back-
ground calculation should be improved as such
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that initial threshold value is set lower and
background luminance is calculated for each
cell, etc. Template matching for cell size and
shape recognition will also improve measure-
ments and judgments. Although these methods
require more computational resources, possibly
improve cell recognition performance.

If it is assumed that approximately 30 sec-
onds are required to perform the same pro-
cessing using the semiautomatic software that
comes with the experimental equipment used
in the photographing, the present data would
have taken about 155 hours to process, which
equals 19 days at 8 hours per day. Taking into
consideration that the observations were com-
pleted in slightly less than 2 days, it can be seen
that image processing acts as a bottleneck. In
order that the high through-put of cell array is
not lost, in the very least the processing should
be faster than the observation period. The pro-
cessing system that we developed and described
here achieved this by parallel computing. When
executed on a computer with a single CPU core,
it is envisioned that it would take 60 hours for
the same processing, which would not be able
to keep up with the pace of the experimental
observations. Furthermore, because a large in-
crease in the calculation time is expected if in-
telligent algorithm are introduced for a noise
filter or shape recognition, increasing the speed
by parallel computing is inevitable, and it is
believed not only SMP computing but also grid
computing should be used.
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