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Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Al-
though many MSA algorithms have been developed, there is still room for
improvement in accuracy and speed. We have developed an MSA program
PRIME, whose crucial feature is the use of a group-to-group sequence align-
ment algorithm with a piecewise linear gap cost. We have shown that PRIME is
one of the most accurate MSA programs currently available. However, PRIME
is slower than other leading MSA programs. To improve computational perfor-
mance, we newly incorporate anchoring and grouping heuristics into PRIME.
An anchoring method is to locate well-conserved regions in a given MSA as an-
chor points to reduce the region of DP matrix to be examined, while a grouping
method detects conserved subfamily alignments specified by phylogenetic tree
in a given MSA to reduce the number of iterative refinement steps. The results
of BAliBASE 3.0 and PREFAB 4 benchmark tests indicated that these heuris-
tics contributed to reduction in the computational time of PRIME by more
than 60% while the average alignment accuracy measures decreased by at most
2%. Additionally, we evaluated the effectiveness of iterative refinement algo-
rithm based on maximal expected accuracy (MEA). Our experiments revealed
that when many sequences are aligned, the MEA-based algorithm significantly
improves alignment accuracy compared with the standard version of PRIME
at the expense of a considerable increase in computation time.

1. Introduction

Multiple sequence alignment (MSA) provides a useful information for eluci-
dating the relationships among function, evolution, sequence, and structure of
biological macromolecules such as genes and proteins 1)–5). Theoretically, we can
calculate the optimal alignment of many sequences by n-dimensional dynamic
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programming (DP). However, a DP method is practically applicable only when
a small number of sequences are aligned. In fact, even when a sum-of-pairs (SP)
score with the simplest gap cost is used as an objective function, constructing
optimal MSA is an NP-hard problem 6). Hence, many heuristic methods have
been developed. Almost all practical methods currently available adopt either a
progressive 7)–9) or an iterative refinement 10)–14) heuristic strategy.

To speed up iterative refinement, several programs, such as MAFFT 12) and
MUSCLE 15), adopt an additional heuristic approach, i.e. given a pair of groups
of sequences (MSAs), these methods first find candidate segment (consecutive
columns) pairs that could contribute to the optimal alignment between the
groups, determine the optimal combination of segment pairs from the candi-
date pairs, and then align the groups into a single MSA based on restricted DP
space flanked by the selected segment pairs used as anchor points. Instead of
finding segment pairs from separate groups, another approach extracts anchor
points that specify well-conserved regions on the given MSA to be refined by the
iterative refinement steps 11),15). Although some papers discussed methods for
extracting well-conserved regions from an MSA, these methods were mainly con-
cerned with analysis or correction of the MSA 16),17). In addition, the effects of
anchoring on the quality of the resultant MSA have not been explicitly discussed
until now. Acceleration of computation by yet another heuristics that reduces
the number of iterative refinement steps by grouping of closely related members
in an MSA have been tried only by Prrn 11) without any quantitative evaluation
of their effects.

In order to improve alignment accuracy, especially when some of the sequences
to be aligned have long insertions or deletions, recent programs incorporate
consistency information among pairwise sequence alignments 8),13),18),19). Other
programs employ additional information such as pairwise structure alignment,
sequence-structure alignment, or secondary structure prediction 20)–22). More-
over, some recent studies adopt probabilistic alignment algorithms based on max-
imal expected accuracy (MEA) in place of the standard Needleman-Wunsch type
DP algorithms 18). MEA-based algorithms have also been successfully applied to
some bioinformatics applications related to sequence alignment 23),24).

Previously, we have devised an MSA algorithm using a piecewise linear gap
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3 Improvement in Speed and Accuracy of PRIME

cost 14), and developed a program named PRIME. Although PRIME can con-
struct accurate MSAs comparable to the most accurate programs currently avail-
able, its computational speed is somewhat slower than those of most MSA pro-
grams. Compared with similar iterative refinement algorithms, PRIME em-
ploys a relatively computationally intensive group-to-group sequence alignment
algorithm. Therefore, some heuristic methods for reducing the computation of
PRIME without a large amount of accuracy loss are highly desirable.

In this work, we newly incorporate anchoring and grouping methods into
PRIME. An anchoring method is to locate well-conserved regions in a given
MSA that act as anchor points to reduce the region of DP matrix to be ex-
amined, while a grouping method detects conserved subfamily alignments in a
given MSA to reduce the number of iterative refinement steps. The results of
BAliBASE 3.0 and PREFAB 4 benchmark tests indicated that the computational
speed of PRIME was reduced by more than 60% while average alignment accuracy
measures decreased by at most 2%. Additionally, we evaluated the effectiveness
of iterative refinement algorithm based on MEA. Our experiments indicated that
the MEA-based algorithm significantly improves alignment accuracy compared
with the standard version of PRIME, although considerably longer computation
time is required especially when many sequences are aligned.

2. Algorithms

2.1 PRIME Overview
For a given set of sequences, PRIME constructs an MSA based on a dou-

bly nested randomized iterative strategy similar to our previous MSA program
Prrn 11). The crucial feature of PRIME is a group-to-group sequence alignment
algorithm with a piecewise linear gap cost 25), which is the key to a progressive
or an iterative refinement method. In this subsection, we briefly describe the
algorithms of PRIME.

2.1.1 Doubly Nested Randomized Iterative Strategy
PRIME uses a weighted sum-of-pairs (WSP) score as the objective function

of MSA, M , to be optimized. WSP is defined as
∑

i<j wi,j · Si,j , where wi,j is
the weight for the pair of i-th and j-th sequences in M and Si,j is the score of
pairwise alignment induced from i-th and j-th rows of M . In order to optimize

WSP score, PRIME employs a doubly nested randomized iterative strategy 11),
involving refinement of MSA, phylogenetic tree, and pair weights until these
triples are mutually consistent. After preparation of an initial MSA M with a
simple progressive method using a group-to-group sequence alignment algorithm,
this strategy refines M as follows:
( 1 ) calculate a distance matrix from M

( 2 ) construct a phylogenetic tree from the distance matrix
( 3 ) calculate pair weights from the phylogenetic tree
( 4 ) (Optional) apply anchoring method to M

( 5 ) (Optional) apply grouping method to M (and Mbfr) and the phylogenetic
tree

( 6 ) iteratively refine M using the phylogenetic tree and the pair weights
( a ) Mbfr ←M

( b ) compile a branch list
( c ) randomly choose a branch b from the branch list
( d ) divide M into two groups based on b

( e ) align these two groups into a single MSA Maft using a group-to-group
sequence alignment algorithm

( f ) if WSP score of Maft is greater than that of M , then M ←Maft

( g ) repeat steps 6c to 6f until no better WSP score of M is obtained after
examining all divisions of M based on all branches in the branch list

( 7 ) repeat steps 1 to 6 until WSP of M is equal to that of Mbfr

Note that the above procedure contains anchoring and grouping methods, which
are introduced in this study. A branch list includes all branches of the phyloge-
netic tree, except those in the excluded branch list obtained at step 5.

2.1.2 Group-to-group Sequence Alignment Algorithm with Piece-
wise Linear Gap Cost

The core algorithm of PRIME is the group-to-group sequence alignment algo-
rithm with a piecewise linear gap cost 14), which aligns two groups of sequences
(MSAs) into a single MSA based on a two-dimensional DP. The piecewise lin-
ear gap cost is one of the concave functions, consisting of L linear functions 25).
Since the inclination of this gap cost, which corresponds to the gap extension
penalty, becomes small as gap length increases, this gap cost could alleviate
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over-penalizing long insertions or deletions. The group-to-group sequence align-
ment algorithm employs essentially the same recurrent relations as the pairwise
sequence alignment algorithm 26). The major difference between group-to-group
sequence alignment algorithm and pairwise one is exact calculation of gap open-
ing and extension penalties 14),27),28). In order to calculate gap opening penalty,
a gap state plays a crucial role. The gap state denotes the number of consecutive
nulls (blank characters indicating absence of the corresponding residues in the se-
quence) up to the current position. By comparing gap states, we can easily detect
opening of a gap and hence calculate the gap opening penalty. For calculation of
a gap extension penalty, dynamic gap information is required in addition to the
gap states. A dynamic gap is a gap inserted during the DP process, and dynamic
gap information is held by a list of the positions and lengths of dynamic gaps.
By combining the dynamic gap information and gap states, we can calculate gap
extension penalty efficiently. For the detailed description of the algorithm, see
the previous paper 14).

2.2 Anchoring and Grouping Methods
In order to reduce the computation, we have newly introduced two heuristics:

anchoring and grouping methods. An anchoring method is to locate a run of
consecutive conserved columns in a given MSA that acts as an anchor point.
Fixing such anchor points can significantly reduce the amount of DP matrix to
be examined, i.e. the computation at step 6e of the doubly nested randomized
iterative strategy. A grouping method detects conserved subfamily alignments
in a given MSA. A subfamily is specified by an internal node of a phylogenetic
tree, and a subfamily alignment is one induced from an alignment consisting of
all sequences included in the subtree that descend from the internal node. Fixing
the subfamily alignments can reduce the number of iterative refinement steps.
We employ two types of anchoring and grouping methods: one is based on con-
servation, and the other on comparison. The conservation-based anchoring and
grouping methods are applied when we first execute steps 4 and 5 of the doubly
nested randomized iterative strategy, while the comparison-based anchoring and
grouping methods are applied to the second or later execution of these steps.

2.2.1 Conservation-based Methods
Conservation-based anchoring and grouping methods calculates sum-of-pairs

(SP) score for columns or subfamily alignments in an MSA, respectively. Given
an MSA, the conservation-based anchoring method detects a run of consecutive
conserved columns based on the following algorithm:
( 1 ) calculate SP score for i-th column, SPi

( 2 ) smooth SP score: SP ′
i ← 1/(2r + 1) ·∑−r≤k≤r SPi+k

( 3 ) detect anchor points based on Z-scores of SP ′
i

Because we would like to detect consecutive well-conserved columns only, we omit
those columns that contain any nulls by setting SPi and SP ′

i of such columns to
zero at steps 1 and 2. The procedure of step 2 includes a parameter r, which is
set to 1 in this study. At step 3, we regard a stretch of columns as conserved if
the Z-score of SP ′

i exceeds the threshold, 1.8, by default.
In the grouping method, conserved subfamily alignments induced from a given

MSA are judged by their SP scores as follows. Given an MSA and a phylogenetic
tree T , the procedure is executed in a bottom-up manner similarly to that used
in a progressive alignment method:
( 1 ) label ‘unknown’ for all internal nodes of T and ‘conserved’ for all leaves of

T

( 2 ) for each ‘unknown’-labeled internal node p of T

( a ) if either child nodes of p is labeled ‘non-conserved’, then label p ‘non-
conserved’

( b ) else if both child nodes of p are labeled ‘conserved’; then label p

‘conserved’ if SPS/P is more than a threshold, or ‘non-conserved’
otherwise

( 3 ) compile excluded branch list
SPS is the SP score of the subfamily alignment specified by p, and P is defined
as P = l · n(n + 1)/2 where l is the alignment length, and n is the number of
sequences included in the subfamily alignment. Note that l varies depending on
p, because subfamily alignment can contain columns comprising nulls only, which
must be ignored. The threshold in this study is set to 2.4. The excluded branch
list consists of branches specified by the child nodes of the ‘conserved‘-labeled
internal ones.

2.2.2 Comparison-based Methods
Comparison-based methods detect unchanged columns or subfamily alignments
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Fig. 1 Example of comparison-based grouping method. This figure exemplifies the procedure
for detecting identically aligned subfamilies. The example contains two identically
aligned subfamilies, one consisting of S1, S2, and S3; and the other consisting of S4

and S5. ‘.’ denotes a null. Note that the first columns of A and B are omitted for
brevity.

between two MSAs before and after step 6 of the doubly nested randomized strat-
egy. In these methods, unchanged columns or subfamily alignments during the
iterative refinement are considered to be conserved. Therefore, the comparison-
based methods are parameter-free unlike the conservation-based counterparts.
Both comparison-based methods first convert MSAs into index matrices whose
element represents the number of non-null residues on the row up to the rele-
vant column (Fig. 1). To describe these methods explicitly, we introduce several
symbols. Let A and B be index matrices which are constructed from the two
MSAs to be compared. Here, the MSAs corresponding to A and B are denoted
by MA and MB, respectively. mA

i represents the i-th column of MA, and mB
j

is similarly defined. Without loss of generality, we assume that both A and B

have the same number of rows, n. lA and lB denote the respective lengths of
MA and MB. Ak, ai, and ak,i mean k-th row of A, i-th column of A, and i-th
element of Ak, respectively. Bk, bj , and bk,j are defined similarly. We set all

the elements of the first column (column number 0) of A and B to zeros, that is,
ak,0 = bk,0 = 0 for all k ∈ {1, · · · , n}. Hence, matrices A and B have lA + 1 and
lB + 1 columns, respectively. Column vectors ai and bj are partially ordered on
the relation ‘≤’ as follows; if ak,i ≤ bk,j for all k, then ai ≤ bj . Clearly, ai = bj

only if ak,i = bk,j for all k. In practice, we can use slightly less stringent condi-
tions for the inequality: if RA

i ≤ RB
j , then ai ≤ bj , where RA

i ≡ max1≤k≤n ak,i.
RB

j is defined analogously. These relaxed conditions for the inequality play a key
role for the grouping method.

The anchoring method detects alignment columns that are identical between
MA and MB. Since identical (unchanged) columns can contain some nulls, the
comparison-based anchoring method can detect null-containing columns as well
as those consisting of residues only. mA

i is regarded as identical to mB
j , if the

following four conditions are simultaneously satisfied: (1) mA
i �= φ, (2) mB

j �= φ,
(3) ai−1 = bj−1, and (4) ai = bj , where φ denotes the empty column whose
elements are all null characters. The conditions (1) and (2) can be replaced by
(1)′ ai−1 �= ai and (2)′ bj−1 �= bj as easily verified by the definitions of A and
B. Under the relaxed conditions, the column vectors ai and bj are replaced by
the corresponding elements of RA

i and RB
j . The index pairs (i, j) that satisfy the

condition (4) are efficiently found by the following simple algorithm:
( 1 ) convert MA and MB into A and B

( 2 ) i← 0 and j ← 0
( 3 ) do the following procedure until either i = lA or j = lB

( a ) if ai = bj , then record the index pair (i, j)
( b ) if ai ≤ bj , then i← i + 1
( c ) if bj ≤ ai, then j ← j + 1
( d ) if neither ai ≤ bj nor bj ≤ ai, then i← i + 1 and j ← j + 1

( 4 ) detect unchanged anchor points based on the recorded index pairs
In this procedure, both ai ≤ bj and bj ≤ ai can hold simultaneously. The
columns sandwiched between two records with consecutive column numbers
are regarded as identical columns. For example, if the index pairs (i − 1, j −
1), (i, j), · · · , (i+k, j +k) are recorded, the consecutive columns mA

i · · ·mA
i+k are

identical to mB
j · · ·mB

j+k. In a special case, we regard MA and MB are identical
to each other, and denote as MA = MB, if all non-empty columns in MA are
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6 Improvement in Speed and Accuracy of PRIME

identical to some columns in MB and vice versa. Note that this method could
miss some identical columns when, for example, two columns are permutated.
Specifically, two identical column pairs (mA

i , mB
j ) and (mA

p , mB
q ) can not be

detected, if i < p and q < j. Since such columns could be artifacts, this method
suffices for our purpose.

The grouping method tries to extract identical subfamily alignments in the
two MSAs. Given MA, MB , and a phylogenetic tree T , the comparison-based
grouping method is nearly the same as the conservation-based counterpart:
( 1 ) convert MA and MB into A and B

( 2 ) label ‘unknown’ for all internal nodes of T and ‘identical’ for all leaves of
T

( 3 ) for each ‘unknown’-labeled internal node p of T

( a ) if either child nodes of p is labeled ‘non-identical’, then label p ‘non-
identical’

( b ) else if both child nodes of p are labeled ‘identical’; then label p ‘iden-
tical’ if MA

p = MB
p , or ‘non-identical’ otherwise

( 4 ) compile excluded branch list
The MA

p denotes the alignment induced from MA consisting of all sequences in-
cluded in the subtree of T that descend from p. MB

p is defined analogously. For
the examination of MA

p = MB
p , the comparison-based anchoring method under

the relaxed conditions is used. At step 3a of the comparison-based anchoring
method, the equality condition ai = bj (with O(n) computation) can be sub-
stituted with the equality conditions RAs

i = RBs
j and RAt

i = RBt
j (with O(1)

computation) where s and t are the child nodes of p, since subfamily alignments
specified by s and t have already been found to be identical. The excluded branch
list consists of branches specified by the child nodes of the ‘identical’-labeled in-
ternal ones. Fig. 1 shows an example of the grouping method.

2.3 Group-to-group Sequence Alignment Algorithm Based on Max-
imal Expected Accuracy

In order to evaluate the effectiveness of a group-to-group sequence alignment
algorithm based on MEA, we incorporate this algorithm into PRIME. The basic
idea of MEA is to maximize the expected number of ‘correctly’ aligned residue
pairs 29). We adopt an approach similar to that used in ProbCons 18). Using a

simple three-state (match, insertion, and deletion) pair hidden Markov model,
we first compute a posterior probability matrix for a pair of sequences from
mA and mB. Each element of the matrix is a posterior probability where i-th
residue of a sequence in mA is matched with j-th residue of a sequence in mB.
Posterior probabilities are calculated using the standard forward and backward
algorithms 30). Then, a simple DP algorithm is employed to align the groups:

Hi,j = max

⎧⎪⎨
⎪⎩

Hi−1,j−1 + S(mA
i ,mB

j )
Hi−1,j

Hi,j−1

(1)

where S(mA
i ,mB

j ) =
∑

p∈MA,q∈MB s(mA
p,i, m

B
q,j). If both mA

p,i and mB
q,j are

residues, s(mA
p,i, m

B
q,j) is a corresponding posterior probability, or zero otherwise.

3. Results

3.1 Benchmarks
We examined several variants of PRIME and other MSA programs shown in

Table 1. The variants of PRIME differ from one another in the group-to-group
sequence alignment algorithms, the use of the anchoring and the grouping meth-
ods, and methods in construction of the initial MSAs. pcw and afn mean the
group-to-group sequence alignment algorithms with the piecewise linear and the
affine gap costs, respectively. ag refers to the use of the anchoring and group-
ing methods; the PRIME variants with ag apply the steps 4 and 5 of the doubly
nested randomized iterative strategy, while those without ag do not involve these
steps. mea denotes the group-to-group sequence alignment algorithm based on
MEA. Note that PRIMEpcw,mea and PRIMEafn,mea first calculate an initial
MSA by the MEA-based algorithm, and then iteratively refine the MSA by the
group-to-group sequence alignment with the piecewise linear gap cost and the
affine gap cost, respectively. In the case of PRIMEmea,mea, both initial MSA
calculation and iterative refinement are done by the MEA-based algorithm.

For evaluation, two benchmark tests were executed: BAliBASE version
3.0 32)–34) and PREFAB version 4 10). BAliBASE consists of alignments con-
structed by human expertise, categorized into five references according to the
nature of sequences to be aligned. Reference 1 is further divided into two sub-
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7 Improvement in Speed and Accuracy of PRIME

Table 1 List of evaluated programs.

Program Version Note

PRIMEpcw BLOSUM62, g(x) = max{−(x + 9),−(0.5x + 21.5)}
PRIMEpcw,ag PRIMEpcw with anchoring and grouping methods
PRIMEafn BLOSUM62, g(x) = −(x + 9)
PRIMEafn,ag PRIMEafn with anchoring and grouping methods
PRIMEpcw,mea MEA-based initial MSA, refined with PRIMEpcw

PRIMEafn,mea MEA-based initial MSA, refined with PRIMEpcw

PRIMEmea,mea MEA-based initial MSA, refined with MEA-based

Prrn 11) 3.4 -b2 -mblosum62 -u1 -v9

MAFFT 13) 6.240 --maxiterate 1000 --localpair (L-INS-i)

ProbCons 18) 1.12 default

T-Coffee 8) 5.05 default

MUSCLE 10) 3.6 default

DIALIGN-T 31) 0.2.2 default

POA 7) 2 -do global -do progressive blosum80 trunc.mat

ClustalW 9) 1.83 default

references based on sequence identities. The contents of each reference are as
follows. Reference 1 alignment consists of phylogenetically equidistant sequences
of similar length. The average sequence identities of reference 1.1 are less than
20%, while those of reference 1.2, 20-40%. Alignments in reference 2 include a
few distantly related sequences, in addition to closely related ones. In reference
3, each alignment comprises equidistant subfamilies. Sequences in alignments of
references 4 and 5 contain long N/C terminal extensions, or long internal inser-
tions, respectively. Except for reference 4, each reference consists of two test sets:
full-length and trimmed sets. In this study, we used only the full-length sets.

PREFAB is composed of automatically generated alignments in contrast to
BAliBASE. PREFAB contains three data sets: main, weighting, and long gap
sets. The main set corresponds to the previous PREFAB version 3, which is
not categorized. The weighting set involves alignments each of which consists of
subfamilies with unbalanced numbers of members. Each alignment of the long
gap set, a subset of the main set, contains one or more gaps whose lengths are
more than 10. Note that each reference alignment of PREFAB is provided as a
pairwise alignment of a pair of PDB sequences of known structures.

To evaluate alignment accuracy based on BAliBASE, we use sum-of-pairs and
column scores 35). The sum-of-pairs score is defined as the proportion of correctly

aligned residue pairs, while the column score represents the proportion of cor-
rectly aligned columns. For alignment evaluation of PREFAB, the quality score
is used, which measures only two PDB sequences within each alignment. The
quality score is the ratio of correctly aligned residue pairs of the reference pair-
wise alignment. The definition of these scores implies that quality, sum-of-pairs,
and column scores have the same value if the reference alignment is pairwise.

3.2 Results of BAliBASE Benchmark Test
The average sum-of-pairs and column scores of BAliBASE are shown in Table 2

and Table 3, respectively. The last columns of both tables represent the rank
sums of the Friedman test. The program with the smallest rank sum means that
the program consistently constructs the most accurate MSAs even if it does not
achieve the largest average score. The Friedman test based on sum-of-pairs score
indicates that the tested programs are classified into four groups according to the
significance (P -value < 5.0 × 10−2) in their performances. The most accurate
group consists of PRIMEpcw, PRIMEpcw,mea, PRIMEafn,mea, PRIMEmea,mea,
MAFFT, and ProbCons. The second most accurate one consists of PRIMEpcw,ag ,
PRIMEafn, PRIMEafn,ag, Prrn, and T-Coffee. MUSCLE is classified into the
third group. The accuracies of DIALIGN-T, POA, and ClustalW are comparable
to each other and are significantly lower than that of MUSCLE.

The tendency of the Friedman test based on column score is slightly differ-
ent; PRIMEpcw,ag and PRIMEafn, in addition to MAFFT and ProbCons, are
classified into the most accurate group, and the accuracy of PRIMEafn,ag is
comparable to that of Prrn, T-Coffee and MUSCLE. The Wilcoxon signed rank
test based on sum-of-pairs score indicated that the accuracy difference between
PRIMEpcw and PRIMEpcw,mea is significant (P -value: 1.3×10−6), while the dif-
ference is insignificant in terms of column score (P -value: 0.10). The same ten-
dency is also reproduced in comparison between PRIMEafn and PRIMEafn,mea.
The Wilcoxon signed rank test indicated that the accuracy difference between
PRIMEpcw,mea and PRIMEmea,mea is statistically insignificant (respective P -
values: 0.63 and 0.89), while PRIMEmea,mea is significantly more accurate than
PRIMEafn,mea in terms of both sum-of-pairs and column scores (respective P -
values: 1.5× 10−2 and 3.6× 10−3).
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Table 2 Average sum-of-pairs scores of BAliBASE. Each column shows average sum-of-pairs scores using all alignments of each
reference of BAliBASE. Overall and Ranksum columns show the average sum-of-pairs scores and the rank sum of the
Friedman test using sum-of-pairs scores on all alignment of each reference, respectively. A smaller rank sum means better
accuracy.

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 4 Ref. 5 Overall Ranksum

PRIMEpcw 0.638 0.932 0.917 0.858 0.906 0.885 0.858 1354
PRIMEpcw,ag 0.633 0.929 0.917 0.844 0.913 0.876 0.855 1501
PRIMEafn 0.627 0.930 0.899 0.845 0.883 0.864 0.844 1518
PRIMEafn,ag 0.620 0.929 0.898 0.823 0.869 0.859 0.836 1682
PRIMEpcw,mea 0.641 0.937 0.925 0.856 0.923 0.890 0.865 1066
PRIMEafn,mea 0.631 0.934 0.902 0.851 0.882 0.875 0.847 1266
PRIMEmea,mea 0.646 0.941 0.880 0.829 0.855 0.888 0.839 1061
Prrn 0.572 0.923 0.902 0.822 0.860 0.822 0.821 1688
MAFFT 0.671 0.938 0.923 0.852 0.918 0.891 0.868 1052
ProbCons 0.669 0.943 0.914 0.847 0.898 0.882 0.861 1072
T-Coffee 0.578 0.924 0.910 0.789 0.860 0.847 0.821 1865
MUSCLE 0.590 0.918 0.886 0.803 0.866 0.843 0.821 1976
DIALIGN-T 0.484 0.883 0.855 0.737 0.795 0.781 0.760 2637
POA 0.474 0.857 0.857 0.733 0.805 0.754 0.753 2748
ClustalW 0.497 0.864 0.848 0.722 0.786 0.713 0.748 2592

Table 3 Average column scores of BAliBASE. Each column shows average column scores using all alignments of each reference
of BAliBASE. Overall and Ranksum columns show the average column scores and the rank sum of the Friedman test
using column scores on all alignment of each reference, respectively. A smaller rank sum means better accuracy.

Ref. 1.1 Ref. 1.2 Ref. 2 Ref. 3 Ref. 4 Ref. 5 Overall Ranksum

PRIMEpcw 0.412 0.834 0.441 0.557 0.579 0.526 0.568 1386
PRIMEpcw,ag 0.406 0.829 0.435 0.511 0.588 0.509 0.560 1524
PRIMEafn 0.367 0.832 0.388 0.529 0.514 0.477 0.528 1534
PRIMEafn,ag 0.366 0.830 0.381 0.493 0.447 0.476 0.506 1666
PRIMEpcw,mea 0.416 0.841 0.439 0.547 0.603 0.521 0.574 1266
PRIMEafn,mea 0.378 0.841 0.368 0.547 0.502 0.491 0.529 1440
PRIMEmea,mea 0.404 0.850 0.374 0.478 0.511 0.544 0.532 1146
Prrn 0.335 0.791 0.405 0.483 0.487 0.421 0.501 1669
MAFFT 0.449 0.839 0.442 0.561 0.609 0.518 0.583 1178
ProbCons 0.414 0.858 0.393 0.549 0.540 0.521 0.554 1169
T-Coffee 0.307 0.813 0.369 0.361 0.492 0.457 0.480 1879
MUSCLE 0.353 0.804 0.337 0.382 0.481 0.439 0.480 1958
DIALIGN-T 0.251 0.703 0.278 0.346 0.426 0.397 0.410 2402
POA 0.224 0.678 0.265 0.343 0.412 0.323 0.389 2568
ClustalW 0.221 0.707 0.219 0.271 0.404 0.237 0.368 2297

3.3 Results of PREFAB Benchmark Test
The average quality scores of the three sets of PREFAB are shown in Table 4.

Compared with those of BAliBASE, the results of the Friedman test of the main

set are somewhat different. The most accurate group consists of PRIMEpcw,mea,
PRIMEafn,mea, PRIMEmea,mea, and MAFFT. In the second accurate group,
PRIMEpcw, PRIMEafn, Prrn, and ProbCons are included. PRIMEpcw,ag and
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Table 4 Average quality scores of PREFAB. Each QS and Ranksum columns show the aver-
age quality scores and the rank sum of the Friedman test using quality scores on all
alignments of each reference of PREFAB, respectively. A smaller rank sum means
better accuracy.

Main Weighting Long gap
QS Ranksum QS Ranksum QS Ranksum

PRIMEpcw 0.719 11879 0.652 762 0.657 2114
PRIMEpcw,ag 0.712 12893 0.650 771 0.642 2359
PRIMEafn 0.718 11816 0.637 808 0.651 2187
PRIMEafn,ag 0.711 12882 0.634 806 0.645 2297
PRIMEpcw,mea 0.724 10830 0.655 723 0.658 1976
PRIMEafn,mea 0.722 10864 0.641 768 0.655 1988
PRIMEmea,mea 0.694 9972 0.622 606 0.606 1755
Prrn 0.721 11662 0.624 806 0.652 2134
MAFFT 0.723 11020 0.637 780 0.662 1978
ProbCons 0.716 11770 0.658 646 0.648 1978
T-Coffee 0.673 14922 0.620 790 0.605 2713
MUSCLE 0.679 14489 0.613 830 0.598 2803
DIALIGN-T 0.609 18856 0.586 980 0.520 3706
POA 0.603 19838 0.554 1099 0.513 3806
ClustalW 0.617 17548 0.603 824 0.519 3526

PRIMEafn,ag are classified into the third group. The fourth one is comprised of
T-Coffee and MUSCLE. The fifth one consists of ClustalW only. DIALIGN-T
and POA are included in the rest one. The Wilcoxon signed rank test of the
main set showed that PRIMEpcw,mea is significantly more accurate than that of
PRIMEpcw (P -value: 3.7×10−6). Similarly, the accuracies of PRIMEafn,mea are
statistically better than those of PRIMEafn (P -value: 1.3× 10−6).

In the case of the weighting set, all programs except DIALIGN-T and POA
are comparable to each other. The Friedman test of the long gap set divides
the tested programs into four groups. The most accurate group is composed of
PRIMEpcw, PRIMEafn, PRIMEpcw,mea, PRIMEafn,mea, PRIMEmea,mea, Prrn,
MAFFT, and ProbCons. The second most accurate group includes PRIMEpcw,ag ,
PRIMEafn,ag, and T-Coffee. The third one consists only of MUSCLE. The rest
of programs, DIALIGN-T, POA, and ClustalW showed comparable performances
to each other, consisting of the fourth group.

3.4 Computation Time
The computation time of each program for executing the benchmarks is com-

piled in Table 5. The computer we used is Pentium3 933MHz with 1 GB

Table 5 Computation time. BAliBASE column shows the total times (sec.) spent for con-
struction of all alignments of each reference by each program, whereas PREFAB
column shows those used for whole alignments of the main and weighting sets only.

BAliBASE PREFAB

PRIMEpcw 1.1 × 106 5.4 × 105

PRIMEpcw,ag 3.6 × 105 2.1 × 105

PRIMEafn 4.1 × 105 3.6 × 105

PRIMEafn,ag 1.4 × 105 1.3 × 105

PRIMEpcw,mea 1.1 × 106 1.2 × 106

PRIMEafn,mea 5.0 × 105 1.0 × 106

PRIMEmea,mea 7.9 × 105 1.9 × 106

Prrn 6.7 × 105 1.9 × 105

MAFFT 1.7 × 104 2.3 × 104

ProbCons 1.4 × 105 5.7 × 105

T-Coffee 1.7 × 105 8.7 × 105

MUSCLE 5.8 × 103 1.4 × 104

DIALIGN-T 2.0 × 104 1.2 × 105

POA 7.8 × 103 2.7 × 104

ClustalW 6.0 × 103 2.8 × 104

memory, running on RedHat Linux 7.3. As expected, the computation of
PRIMEpcw,ag and PRIMEafn,ag are reduced more than 60%, compared with that
of PRIMEpcw and PRIMEafn. Note that variants of PRIME with MEA-based
algorithm are rather slow, partly because we do not currently use lookup table
and interpolation techniques for calculating posterior probabilities; implementing
these techniques would improve the speed to some extent.

4. Discussion

Compared with other leading MSA programs, PRIME adopts a computation-
ally intensive group-to-group sequence alignment algorithm. Therefore, some
heuristics for reducing the computation with a minimal loss in accuracy is highly
desired. Accordingly, we newly introduced anchoring and grouping methods into
PRIME. As a result of BAliBASE and PREFAB benchmark tests, PRIMEpcw,ag

and PRIMEafn,ag are proven to be much faster than PRIMEpcw and PRIMEafn,
while average alignment accuracy measures decrease by at most 2%. However,
the choice of appropriate parameters is a difficult problem, because there is a
tradeoff between speed and accuracy. In this study, we selected the parameters
of the anchoring and grouping methods based on the observation that the average
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sum-of-pairs and column scores of the previous BAliBASE version 2.0 decreased
by less than 1%. Similarly, there are several choices of how to use anchor points.
Although the entire span of anchor points is currently fixed, it is possible to fix
only an internal region of these points, or each region is used only for dividing
the DP matrix into pieces. This choice could also provide another tradeoff.

In this study, we also evaluated the effectiveness of the MEA-based algorithm.
The alignment accuracy of MEA-based algorithm is robust; although the aver-
age sum-of-pairs and column scores of PRIMEmea,mea is relatively smaller than
those of the score-based variants like PRIMEpcw, the rank sum of PRIMEmea,mea

often exceeds those of the other variants. However, the computation with
PRIMEmea,mea is expensive especially when many sequences are aligned, because
the computational complexity of calculating substitution cost is proportional to
the product of the numbers of sequences in the groups. In addition, the accu-
racies of PRIMEpcw,mea is comparable to those of PRIMEmea,mea. PRIMEpcw

and PRIMEpcw,mea differ from each other only by the way of construction of
initial MSAs; the former relies on a score-based algorithm, while the latter uses
an MEA-based algorithm. In fact, we have observed that pairwise alignments
constructed by an MEA-based algorithm are generally more accurate than those
obtained by the corresponding score-based algorithm (data not shown). MEA-
based initial MSA probably contributes to improvement in accuracy even after
similarly performed iterative refinement. Therefore, when not so many sequences
are aligned, PRIMEpcw,mea may replace PRIMEpcw to construct the most accu-
rate MSA.
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