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Stealing your vocal identity from the internet: cloning
Obama’s voice from found data using GAN and Wavenet
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Abstract:

Junicur Yamacisai!+2

With the rise of machine-learning speech processing techniques, the risk of having your vocal identity stolen from
online audio clips has risen considerably. In this research we study how GAN-based technologies can allow us to sig-
nificantly improve the vocal quality of found audios that suffer from noise or reverberation, and the consequences that
processing has from the speech generation point of view when using state-of-the-art Wavenet-based voice generation

techniques.
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1. Introduction

With the latest changes and improvements in machine learning
technologies the problem that was once science-fiction is becom-
ing more of a real nowadays problem: having your identity stolen.
In that line we have seen many different approaches: generating
bots that mimic human social interaction [1], tools that can gener-
ate photo-realistic videos of text-reading [2], [3], video-based im-
personation [4], image-based impersonation [5] and even claims
that your voice can be cloned with as little as one minute of au-
dio *I.

In the particular case of voice identity, it is easy to understand
that there are large amounts of speech-content sources publicly
available, and it is likely that data for almost anybody can be
found one way or another. If we are talking about public person-
alities such as Obama (a common target for identity theft research
[2], [3]), we can think that the amounts of public data available is
immense.

Fortunately, such content is commonly recorded in non-
professional acoustic environments such as homes and offices.
Moreover, the recordings are often carried out using consumer
devices such as smartphones, tablets, and laptops. Therefore, the
speech recordings of the content are of typically poor quality and
contain a large amount of ambient noise and room reverberation.
But, real applications, such as speaker adaptation of speech syn-
thesis or voice conversion, have been designed to work only on
clean data of optimal acoustic quality and properties, and thus the
quality of the systems trained with such found data is limited.

In this research we want to study the viability of training a
speech enhancement system using purely publicly available data,
and then using such tools for enhancing the speech quality of
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found data with the aims of, in the near future, training proper
speech synthesizers or voice conversion systems using state-of-
the-art tools.

Concretely, we want to answer two questions. First, we want
to know what kind of data provides us with the best speech en-
hancement systems when using it on found data: should we use
training data targeting the environmental conditions of the target
speech? Or should we use as much data as possible? Second, we
want to figure out if reducing the noisiness of the found data actu-
ally provides any perceptual benefit, as the spectral manipulations
caused by the enhancement process might be inducing a drop in
naturalness that would affect our future speech applications.

2. GAN:-based speech enhancement

Generative adversarial networks consist of two “adversarial”
models: a generative model G that captures the data distribution
and a discriminative model D that estimates the probability that
a sample came from the training data rather than G. This GAN
structure has already been used successfully for the task of speech
enhancement [6], [7], and for this research we work on an im-
proved version of SEGAN [6] that attempts to make the training
process more robust and stable by introduce a modified training
strategy for SEGAN’s generator.

2.1 Robust SEGAN training

For the considered robust training modification, we assume
that we have some pre-trained baseline speech enhancement mod-
els (which may be simpler signal processing methods or easier-
to-train neural networks than GANs), and that we can access to
enhanced speech signals using the baseline speech enhancement
models or methods. The modification, then, is to compute the
content loss of the initial iterations of the generator model based
on the baseline enhanced speech instead of on clean speech.

Additionally, a skip-connection was added around the gener-
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Table 1 Description of the different training speech enhancement corpora

considered.
Corpus Name Acronym | #Files | Total Time
VCTK clean 11572 | 8h54min56s
Noisy VCTK n 11572 | 8h54min56s
Reverberant VCTK r 11572 | 8h54min56s
Noisy Reverberant VCTK | nr 11572 | 8h54min56s
Device Recorded VCTK DR 11572 | 8h54min56s

ator so that the task of the generator module is not to generate
enhanced speech from scratch but to generate a residual signal
that refines the input speech [8]. With this, we expect to encour-
age the generator to learn the detailed differences between clean
and enhanced speech waveforms.

A more detailed explanation of this improved process is soon
to be published.

3. Speech Corpus

For this particular work we considered two kinds of speech cor-
pus. First of all the corpus to train the speech enhancement mod-
ule, which was selected from publicly available data so that the
training process can be replicable. Secondly we extracted a num-
ber of different Obama’s public intervention to use as a source of
our cloned voice.

3.1 Corpus for speech enhancement

For the speech enhancement corpus we always relied on a
subset (28 speakers 14 male and 14 female, all with British ac-
cent and around 400 utterances per speaker) of the centre for
speech technology research (CSTR) VCTK corpus*2[9] as the
clean speech, and different noisy iterations to train the speech
enhancement signal to face different possible noisy or reverber-
ant environments (see table 3). All of the distorted corpora were
recorded as a collaboration between CSTR and the National In-
stitute of Informatics of Japan, and are publicly available in the
DataShare repository of University of Edinburgh.

3.1.1 Device-recorded VCTK

The device-recorded (DR) VCTK*3[10] consists on re-
recording of the high-quality speech signals of the original VCTK
by playing them bach and recording them in office environments
using relatively inexpensive consumer devices. With this corpus
we expect to be able to learn the nuanced relationships between
high quality and device-recorded versions of the same audio.

For the re-recording, eight different microphones were used,
and it was carried out in a medium-sized office under two
background-noise conditions (i.e. windows either opened or
closed). In total this resulted in 16 different conditions.

3.1.2 Noisy, Reverberant and Noisy and reverberant VCTK

We considered three other artificially corrupted variations
of the CSTR VCTK corpus: Noisy VCTK**[11], Reverberant
VCTK*[12] and Noisy and reverberant VCTK*®[13]. Having
such a diverse portfolio of possible speech corruptions has the
aim of providing our speech enhancement systems with the ca-

2 http://datashare.is.ed.ac.uk/handle/10283/1942

3 https://datashare.is.ed.ac.uk/handle/10283/2959
4 https://datashare.is.ed.ac.uk/handle/10283/2791
= https://datashare.is.ed.ac.uk/handle/10283/2031
*6 https://datashare.is.ed.ac.uk/handle/10283/2826
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Table 2 Characterization of the used Obama’s found data.
Sources Public speeches, interviews, debates
Total length (including silences) | 3h 7min 39s
Minimum segment duration 0.54s
Maximum segment duration 24.4s
Average segment duration 5.4s
Estimated SNR of Obama's found data
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Fig. 1 Histogram of Obama’s found data estimated SNR.

pacity of learning to target the different possiblities, be it plain
noisy, reverberation compensation or a mixture of both.

As mentioned beforehand, since all the datasets are based on
the CSTR VCTK corpus, speakers and utterances of the Edin-
burgh noisy speech dataset are similar to those of the DR-VCTK
dataset presented above.

3.2 Obama’s found data

Obama’s data was found online, mainly in YouTube videos
with transcriptions as part of the description, from diverse sources
such as interviews, political meetings, with very diverse record-
ing conditions and environments, ranging from very noisy with
large amounts of reverberation to not so noisy or not so rever-
berant samples, never achieving recording studio standards. The
audio channel was split from the video, automatically segmented
on long pauses, and down-sampled to 16kHz. The transcription
was copied over as text files. Table 2 shows a brief characteriza-
tion of the data.

The histogram of the SNR in dB estimated using NIST SNR
tool *7 can be seen in figure 1. There it is evident how the vast
majority of the considered speech presented very low SNR when
compared to conventional speech generation corpus standards.

4. Enhancing Obama’s found data

The main aim of this research is to be able to train proper wave-
form generation models that can replicate a target speaker iden-
tity, in this case the very recognizable Obama’s voice. For that,
we only want to consider easily available low-quality resources,
as introduced in section 3.2. But, that kind of training data is com-
monly known to be too poor to provide reasonably good speech
synthesis systems. For that reason, we wanted to try applying the
aforementioned speech enhancement technique to improve our
low-quality found data to the point that it can allow us to train
proper TTS systems. On top of that, as our proposed approach

*7 https://www.nist.gov/information-technology-laboratory/iad/mig/nist-

speech-signal-noise-ratio-measurements
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Table 3 Description of the data sources of the different speech enhance-
ment models. To understand the meaning of the sources acronyms
please refer to table 1.

SOURCES #Files | Total Time
DR 11572 | 8h54min56s
n 11572 | 8h54min56s
r 11572 | 8h54min56s
nr 11572 | 8h54min56s
DR+n 23144 | 17h49min52s
DR+nr 23144 17h49min52s
All (DR+n+r+nr) | 46288 | 35h39mind4s

is GAN-based, by manipulating the hidden variable at generation
time, it allows us to obtain different enhanced representations of
the same waveform, significantly boosting the amount of training
data for the waveform generation systems.

4.1 Design of the speech enhancement models

As we had a large amount of free, publicly available resources
for training our speech enhancement models, we wanted to study
what would be the best training regime strategy. All in all, we
trained 7 speech enhancement systems with the amounts and
sources of training data seen in table 3.

The motivation for trying this large amount of possible con-
figurations was clear. We expect each single category (without
combination of data sources) to be specialized at enhancing their
particular kind of disturbance (e.g. n should be good at clean-
ing noise, r at cleaning reverberation, DR at compensating for the
low quality recording devices...). Then, it followed that, as most
of the found data will come from noisy poor quality sources, it
made sense to combine DR with the different noisy corpora. Fi-
nally, as it has been proven many times that having as much varied
data as possible helps the neural networks generalize better, we
also wanted to consider the mixture of all of our different corpora.

4.2 Training of the speech enhancement models

Similar to the original SEGAN training strategy, we extracted
chunks of waveforms with a sliding window of 2'* samples at
every 2'3 samples (i.e. 50% overlap). At testing time, we con-
catenated the results at the end of the stream without overlap-
ping. For the last chunk, instead of zero padding, we pre-padded
it with the previous samples. For batch optimization, RMSprop
with 0.0002 learning rate and batch size of 100 was used. The
modified SEGAN model converged at 120 epochs.

For selecting the pre-enhancement method, our preliminary
experiments, applying Postfish[14] and HRNR[15] sequentially
showed better quality enhanced samples. We used this compound
method to generate the baseline models explained in 2.1.

4.3 Objective evaluation of the speech enhancement

After training the speech enhancement models we proceeded to
boost the noisy found data under consideration. Then, in order to
quantify the impact of the enhancement process we estimated the
SNR once again using NIST tool, and the results can be seen in
table 4. It must be noted that SNR is most likely not the best way
to measure the consequences of the enhancement process, but as
we lack a clean reference we had limited availability of tools.

The SNR estimation results show us a clear picture: the en-
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Table 4 Average SNR in dB estimated with NIST tool for the results of the
different speech enhancement models.

SOURCES average SNR (dB)
Obama source 17.2

n 49.8

r 22.7

nr 43.1

DR 28.24

DR+n 40.1

DR+nr 41.37

all (DR+n+r+nr) | 37.89

Estimated SNR of Obama's found data
enhanced with the n corpus
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Fig. 2 Histogram of Obama’s found data estimated SNR after enhancing
with noisy VCTK.
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Fig. 3 Histogram of Obama’s found data estimated SNR after enhancing
with all the VCTK variants.

hancement process, regardless of which training data was used
for the model, improved the average SNR of Obama’s data. Not
only that, we can see how the speech enhancement models trained
with noisy data in particular (i.e. n, nr and its mixtures) perform
considerably better than the other two possiblities (i.e. r and DR).
This most likely has to do with the fact that they will reduce the
noise levels in the signal, which is what the SNR measure targets,
and not with an actual increase in perceptual quality of the voice.
We can see the SNR histograms of the output of enhancing with
n and all in figures 2 and 3 respectively.

4.4 Perceptual evaluation of the speech enhancement

As mentioned in the objective results (section 4.3), SNR esti-
mation is most likely not the best way to measure the improve-
ments of our approach. And, as the final objective of our research
is to produce high quality synthetic speech, be it through speech
synthesis or through voice conversion, it makes sense to evaluate
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Table 5 Results of the perceptual evaluation in MOS score. Non
statistically-significant differences are marked with *.

SOURCES Quality | Cleanliness
Obama source 3.58% 242

n 2.73 3.35

r 3.55% 3.17

nr 3.11 3.42%

DR 3.51 3.31

n+DR 3.26 3.02
nr+DR 3.30 3.34

all (n+r+nr+DR) | 3.41 3.40*

perceptual quality from the point of view of human users.

In that line, we carried out a crowd-sourced perceptual eval-
uation with Japanese native listeners. In this evaluation we pre-
sented the listeners with a set of 16 screens, which each corre-
sponding to 1 of the 8 evaluated conditions (original plus the 7
enhanced versions) times 2 utterances. The evaluators were asked
two question: first to rate their perceived speech quality of the
samples in MOS scale, and second to rate how clean of noise,
reverberation or artifacts the speech samples were, also in MOS
scale (with 1 being very noisy and 5 being clean speech).

They participants were able to listen to the sample in each
screen as many times as they wanted, but they could not proceed
to the next sample until they answered both questions, without
being allowed to go back. The test were selected based on their
length, evaluating in the all the utterances between 5.0 and 5.9
seconds long (i.e. 530 utterances). In total this meant that 265
sets for evaluating all the evaluation utterances, which was done
3 times over for a total of 795 sets. They participants could repeat
the task up to 8 times to guarantee that we collected at least 100
different listeners. In the end a total of 129 listeners took part in
the evaluation (72 male, 57 female).

4.4.1 Results

The results of the perceptual evaluation can be seen in table 5,
and they too show a clear picture. In the case of Obama’s found
data there is a clear perception of noisiness and related factors
(2.42), even if the perceived quality is reasonably high (3.58). It
is also noteworthy to say that this is about 1 point less of the av-
erage quality MOS of clean natural speech, most likely due to the
poor conditions on which these sources were recorded.

In the case of the enhanced versions, we can see how we man-
aged to consistently improve the cleanliness of the source data,
with different degrees of success depending on which source
data was used. Most noteworthy is the results of the “noisy-
reverberant” model (3.42), which provided the biggest improve-
ments in cleanliness. We can assume this to be because the found
recordings present in general both noise and reverberation, so
a speech enhancement system targeting this condition gives the
best improvement in that field. Similarly happens to the “all”
model, which we assume performed comparably because if was
trained in all possible situations.

On the other hand, we can also see how there is a cost to
applying speech enhancement techniques, as there is a consis-
tent degradation in the perceived quality of speech. This means
that speech enhancement, in the pursuit of cleanliness, produces
a considerable drop in the naturalness in the outputted speech.
This could potentially mean that the approaches that provided the
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biggest improvements in SNR, such as the ”noisy” model with
a quality rating of 2.73 or the “noisy-reverberant” model with a
quality rating od 3.11 could not be the best way to producing
clean speech for further speech processing.

In the end there seemed to be a trade-off between quality degra-
dation and cleanliness improvements, which were not encourag-
ing. But, if we look at the results of the all” model, combining all
possible sources of data, we see that it was capable of providing
one of the best cleanliness scores (3.40) with one of the small-
est quality degradation (0.17 degradation). This strongly hints
that having trained our speech enhancement system in a variety
of degradation conditions gave the system enough generalization
capability and enough knowledge of human speech to reduce the
noisiness while maintaining as far as possible voice naturalness.

5. Building the Wavenet vocoder

Building a state-of-the-art data-driven vocoder such as
Wavenet places the first challenge when trying to use this found
data: it is not easy to gather large amounts of good enough data
for the process. And this is were the advantage of having used
another data-driven speech enhancement system comes into play.
As hinted in the introduction of section 4, we can take advantage
of the generation process of our GAN-based speech enhancement
system to generate multiple versions of the enhanced speech of
the noisy data, effectively multiplying the amounts of training
data available for our system.

For this particular research we are currently training our own
Wavenet vocoder based on the enhanced Obama’s speech. The
Wavenet vocoder works at a sampling rate of 16kHz. The u-
law companded waveform is quantized into 10 bits per sample.
Similar to the literature [16], the network consists of a linear pro-
jection input layer, 40 blocks for dilated convolution, and a post-
processing block. The k-th dilation block has a dilation size of
2modk10) " where mod(-) is modulo operation.

The acoustic features, which are fed to every dilated convolu-
tion block, contain the 80-dimensional mel-spectrogram plus 1
additional component specifying which of the different speech
enhancing models had produced that speech waveform. The
choice of mel-spectrogram as the main acoustic feature was de-
termined by the expected limitations of traditional features (e.g.
FO, Mel-generalized Cepstrum and aperiodicity bands), as the
estimation of FO is very problematic in both the original noisy
speech signals and the enhanced signals. We also considered an
increased number of mel bands compared to other approaches
[17] (80 vs. 60) with the expectation that it will help the vocoder
cope better with the corrupted or noisy segments.

The tools for this implementation are based on a modified
CURRENNT toolkit [18], and can be found online too *&.

6. Conclusions and future work

We have introduced a number of publicly available and known
data-sets that proved to be extremely useful for training potent
speech enhancement models. These models were applied to a
corpus low quality, and considerably degraded found data (with

*8 http://tonywangx.github.io
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Obama’s identity), and were capable of very significantly improv-
ing the SNR of the data. Not only that, but after carrying out
a perceptual evaluation, we also saw how the obtained models
can also significantly improve the perceptual cleanliness of the
source speech without significantly degrading the naturalness of
the voice as is common after applying speech enhancement tech-
niques. This worked best when the speech enhancement system
was trained using the largest amount of data available, thus cov-
ering a large amount of environmental and recording conditions,
improving the generalization capabilities of the system.

The training of the Wavenet vocoder is still ongoing work, as
is the training of the network for predicting the mel-spectrogram
from text to build a complete text to speech (TTS) synthesis sys-
tem and a competing CycleGAN-based voice conversion (VC)
system. We also plan to do an evaluation comparing the Obama’s
impersonation capabilities of TTS vs. VC using the trained
Wavenet vocoder in the future.
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