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Investigation of WaveNet for Text-to-Speech Synthesis

XinWang1,a) Shinji Takaki1,b) Junichi Yamagishi1,2,c)

Abstract: WaveNet is a type of neural network that can be used to model speech waveforms. It has been used in text-
to-speech synthesis systems to convert acoustic or linguistic features into waveforms. Despite the description in recent
literatures and open-source implementation, the mechanism of WaveNet is still somewhat obscure. This work explains
the authors’ WaveNet implementation. It also introduces a one-best generation method that could be an alternative to
the random-sampling-based generation method. Based on the implementation, this work shows observations inside
the network. Interesting findings include the manifold of quantized waveforms learned by WaveNet and the gradually
decreased data variance in WaveNet blocks. These results may be helpful for further investigation on WaveNet.
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1. Introduction
Text-to-speech synthesis (TTS) is a technique that converts a

text string into a speech waveform. A classical TTS system de-
rives linguistic features from the text and then generates a wave-
form. A recent breakthrough in TTS is credited to a type of neural
network called WaveNet [1], which is able to model and gener-
ate quantized speech waveforms with natural-sounding quality.
WaveNet can be used as the final block of a TTS system to convert
acoustic features generated by preceding acoustic models into a
waveform [2]. Alternatively, WaveNet can be directly used for
waveform generation given linguistic features. This work refers
to the WaveNet in the first case as WaveNet-vocoder while in the
latter case as WaveNet-backend.

WaveNet is much larger than conventional neural networks for
TTS. Although open-source codes of WaveNet are available, they
are based on Tensorflow [3] or other high-level programming
languages, because of which the details of computation may be
veiled. Furthermore, those implementations may include specific
structures without explaining the motivation. On the other hand,
most of the recent literatures focus on the application of WaveNet.
The inner side of WaveNet is not well explored.

This report summarizes the lessons that the authors learned
from implementing and analyzing WaveNet. Section 2 will ex-
plain the implementation and the motivation for a few specific
designs. This section also explains a generation method for
WaveNet, which could be an alternative to the random-sampling-
based approach. Section 3 will summarize the observations on
WaveNet, including the manifold of quantized waveform and
the decreased variance of the features in WaveNet skip-channels.
This section also show the experiments on different generation
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methods for both WaveNet-vocoder and WaveNet-backend.
The implemented WaveNet is based on C++/CUDA.

The source code and scripts to use it can be found from
http://tonywangx.github.io.

2. WaveNet in details
2.1 Network structure

WaveNet is an autoregressive model. It defines the probability
for observing a waveform o1:T = {o1, · · · , oT } conditioned on an
acoustic or linguistic feature sequence c1:N = {c1, · · · , cN} as

P(o1:T |c1:N) =

T∏
t=1

P(ot |ot−R:t−1, c1:N). (1)

Here, T is waveform length in terms of the number of sampling
points; N is the number of speech frames; R denotes the size of re-
ceptive field, which will be explained later. Vector ot is a one-hot
vector that encodes the quantized waveform at time t. Its dimen-
sion is equal to the number of quantization level L. Vector cn for
WaveNet-based vocoder may include Mel-general cepstrum coef-
ficients (MGC) [4] and F0 of the n-th frame. For WaveNet-based
TTS backend, cn may encode the F0 and linguistic features.

An essential task of any WaveNet implementation is to cal-
culate P(ot |ot−R:t−1, c1:N),∀t ∈ {1, · · · ,T }. Figure 1 shows the
structure of the authors’ WaveNet implementation, which in-
cludes waveform-embedding, dilated convolution backbone, con-
ditional feature processing, and post-processing. Although Fig-
ure 1 only shows the computation at time t, in training stage
P(ot |ot−R:t−1, c1:N) of all time steps can be computed simultane-
ously by using convolution and matrix operation. However, it is
easier to explain WaveNet by focusing on a single time step.
2.1.1 Waveform-embedding

At time t, the waveform-embedding module takes ot−1 as input
and transforms it as

et = Wemot−1, (2)

where Wem ∈ R
Dr×L and et, bem ∈ R

Dr . This module then feeds
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Fig. 1 General structure of implemented WaveNet. Blue block denotes waveform-embedding module;
black blocks do dilated convolution and other operations; purple blocks process conditional fea-
tures; red blocks do post-processing. Note that (1),(2) , · · · ,(M) are the index of WaveNet block;↘
denotes a feature vector from a previous time step, which is used by dilated convolution.

Fig. 2 Histogram on values of Weml (left figure) and Wemr (right figure)
from causal embedding layer.

et to Wavenet block 1. Because ot−1 is a one-hot vector, et is just
one column of Wem selected by the hot-dimension of ot−1. Since
L < Dr, et is referred to as the embedding vector of ot−1. Such an
embedding vector is retrieved for every t ∈ {1, · · · , T }.

In some other open-source codes of WaveNet *1, the waveform-
embedding module uses a so-called causal embedding layer,
which defines et = Wemlot−1 +Wemr ot−2. However, it seems to
be unnecessary to add ot−2 since information about ot−2 has been
sent to the Wavenet block through et−1. In fact, when we trained a
WaveNet with a causal embedding layer, we found that the value
of elements in Wemr is close to zero as Figure 2 shows. It suggests
that et focuses on ot−1. Therefore, our implementation doesn’t use
the causal embedding layer.
2.1.2 WaveNet backbone

The backbone of WaveNet consists of multiple blocks, each of
which does dilated convolution and other operations. Literatures
usually use the terminology of image processing to explain those
blocks, which makes it less clear for speech processing. Hence,
we use the notation of linear transformation for explanation.

A block in the WaveNet backbone is referred to as a Wavenet
block. We take the first block as an example and plot its structure
in Figure 3. For brief notation, we drop the block index (1) for all
the vectors inside the block. At time t, this block uses a dilated
convolution layer to process the input vectors et and et−1, which
are generated by the waveform-embedding module at time t and
t− 1. For a single time step, this dilated convolution is equivalent
to linear transformation and summation *2:

ht =Wdclet +Wdcret−1 + bdc, (3)

*1 For example https://github.com/ibab/tensorflow-wavenet
*2 In the training stage where e1:T = {e1, · · · , eT } have been calculated from

the training waveform o1:T , linear transformation and summation for ev-
ery t ∈ {1, · · · , T } can be conducted at the same time in a parallel way.
Because the same pair of transformation matrices {Wdcl,Wdcr} is used
for every t, all the computation can be implemented as a single 1D con-
volution on e1:T .
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Fig. 3 Structure of wavenet block 1. Index (1) is dropped for all vectors
inside the block.

where Wdcl,Wdcr ∈ R2Dr×Dr , ht ∈ R2Dr , and bdc ∈ R2Dr . The out-
put vector ht can be added with lt ∈ R2Dr given by the conditional
feature module:

yt = ht + lt. (4)

After splitting the vector yt into two short vectors y′t ∈ RDr and
y′′t ∈ RDr , where yt = [y′�t , y′′

�
t ]�, activation functions can be

used to derive another vector gt ∈ RDr as

gt = tanh(y′t) � sigmoid(y′′t). (5)

Here, � denotes the element-wise product. After that, gt can be
further transformed and then summed with et as

r(1)
t =Wrgt + br + et, (6)

where Wr ∈ RDr×Dr and r(1)
t ∈ RDr . This r(1)

t will go to the next
wavenet block. Meanwhile, gt can be transformed into another
vector s(1)

t :
s(1)

t =W sgt + bs, (7)

where W s ∈ RDs×Dr and bs ∈ RDs . This s(1)
t is fed to the post-

processing module.
Other wavenet blocks do similar operations except that the in-

put vectors may be different. For example, the m-th block with a
dilation size d should define Equation 3 as

h(m)
t =W(m)

dcl r(m−1)
t +W(m)

dcr r(m−1)
t−d + b(m)

dc , (8)

where r(m−1)
t and r(m−1)

t−d are given by the (m− 1)-th block at time t
and t − d. Since r(m−1)

t−d may further depend on features extracted
by the (m − 2)-th block before t − d, the stack of WaveNet blocks
can cover a long span of waveform. The length of the span is
called the receptive field R.
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The path that r(m)
t goes through is called residual channel

while that of s(m)t is called skip channel. Note that Equation
6 is different from the original WaveNet paper, which defines
r(m)

t = s(m)
t + et. In other words, the original WaveNet paper

assumes that s(m)
t and r(m)

t have the same dimension. Normally,
s(m)

t should have a large dimension because it will be used by the
post-processing block to calculate the probability. However, if
r(m)

t has the same dimension as s(m)
t , the whole network would

be extremely large. Therefore, it is better to use separate trans-
formations for r(m)

t and s(m)
t , i.e., Equation 6 and 7. In this way,

dimension of r(m)
t and other vectors inside each block can be re-

duced. This structure is also used in other open-source WaveNet
implementation and Deep voice [5].
2.1.3 Post-processing module

The post-processing module sums s(m)
t over m ∈ {1, · · · ,M}.

It then transforms the summed vector and calculates the output
probability using a softmax layer. The dimension of s(m)

t , i.e., Ds,
is called the size of skip-channel.
2.1.4 Conditional feature module

Suppose time step t locates in the n-th speech frame, then lt

in Equation 4 can be acquired by changing the dimension of cn.
However, we found that it is better to generate lt through a recur-
rent network. In this work, this module contains a bi-directional
long-short-term-memory (LSTM) recurrent layer followed by a
convolution layer with a window size of 3. Additionally, F0 is
directly concatenated with the output vector of the convolution
layer. After dimension change, the output vector is used as lt in
Equation 4. Note that vector of one frame is duplicated for all the
time steps within that frame.

2.2 Generation method
In the generation stage, WaveNet predicts ôt given previously

generated samples. According to the literature, ôt is randomly
sampled from P(ot |̂ot−R:t−1, ĉ1:N). However, we noticed that the
generated waveform may sound hoarse in the case of WaveNet-
vocoder. One reason could be that randomly sampled waveform
may not preserve the harmonic structure of natural speech. After
plotting the distribution inferred by WaveNet, we noticed that the
distribution in voiced segments normally had a single peak. We
think it better to trust the inferred distribution and directly pick the
best point as output, i.e., ôt = arg maxot P(ot |̂ot−R:t−1, â1:N). This
method is referred to as the one-best generation method. Note
that samples in the unvoiced regions are still randomly drawn,
and the voiced/unvoiced boundary are determined based on the
unvoiced/voiced information in F0.

2.3 Memory and time consumption
Let’s take the dilated convolution layer in WaveNet block 1 as

example. Naively, a memory matrix of size T × Dr is required to
store e1:T = {e1, · · · , eT } ∈ R

T×Dr . To compute e1:T naively, Equa-
tion 3 should be conducted for every t. Similar time and memory
consumption is required by all the hidden layers. Intuitively, the
memory (or space) and time consumption of naive WaveNet im-
plementation depends on the length of waveform T and the total
number of layers.

Of course, the consumption can be reduced. In the training
stage where the waveform o1:T is known, embedding vectors e1:T

can be computed by launching Equation 2 for every t in a parallel
way. Then, computation defined in Equation 3 can also be com-
puted for ∀t ∈ {1, · · · ,T } simultaneously, which is implemented
by a single 1D convolution operation. Except the LSTM layer in
conditional feature module, computation in any other layer can
be conducted efficiently regardless of T . However, the memory
consumption cannot be reduced as memory space is required to
store the feature vectors for all t ∈ {1, · · · ,T }. In implementation,
we simply split the training waveform to make sure the network
can be trained by using a single GPU card. To model waveforms
at the sampling rate of 16kHz, the maximum length of waveform
is set to be no longer than 0.9375s, or T ≤ 15000. Given this
configuration, the memory consumption of the network used in
experiment is around 12GB.

In the generation stage, computation must be conducted for
every t sequentially. The maximum length of waveform should
not be limited. Therefore, the time consumption is proportional
to T and the total number of layers *3. However, the memory
consumption can be reduced. First, it is unnecessary to allocate
memory space of length T for hidden features that will be only
used by time-independent operations. For example, we only al-
locate a memory of size Dr to store yt at time t. After yt is used,
this memory space is ready to store yt+1 for the next time step. On
the other hand, a memory space of size d × Dr must be allocated
to store the input feature of a Wavenet block with dilation size d.
At time t, this memory will store {r(m−1)

t−d , · · · , r(m−1)
t }. Details of

implementation can be found online *4.

3. Experiments and results
3.1 Corpus and network configuration

This work used a Japanese corpus [6] of reading speech ut-
tered by a female speaker. The duration is 50 hours, and 500 ut-
teranaces were randomly selected as a validation set and another
500 were used as a test set. Linguistic features with a dimension
of 389 were extracted by using OpenJTalk [7]. MGC and F0 were
extracted from the 48 kHz waveforms by using WORLD [8] with
a frame rate of 200 Hz (5 ms). The dimension for MGC was 60.
For WaveNet-vocoder, the acoustic model for MGC was a shal-
low autoregressive (AR) network (SAR) [9]; F0 was modeled by
a deep AR model [10]. Note that F0 was not interpolated but
quantized.

Both WaveNet-vocoder and WaveNet-backend used the same
structure. Waveforms were down-sampled to 16kHz, companded
by using the µ-law, and then quantized into 10 bits per sample,
i.e., L = 1024. The network had M = 40 blocks. The k-th block
has a dilation size of 2mod(k,10), where mod(·) is modulo operation.

*3 However, this doesn’t mean that the implementation is stupidly slow. In
fact, the time consumption is equal to the so-called ‘fast-wavenet’. We
think it better to call the ‘fast-wavenet’ as ‘normal-speed yet memory-
friendly WaveNet’ since it avoids the redundant computation in a ‘slow
WaveNet’ while keeps the memory consumption at a low level. It should
be noted that a ‘normal-speed but memory-prohibitive WaveNet’ can be
built by simply caching r(m)

t for every t and m. Compared with ‘fast-
wavenet’, we use a plain buffer rather than a queue to cache r(m)

t
*4 http://tonywangx.github.io/pdfs/CURRENNT WAVENET.pdf
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Fig. 4 Manifold of embedded vectors for quantized waveforms. Left figure shows the color assigned to
each quantized waveform level.

The size of residual channel is Dr = 64; size of skip-channel is
Ds = 512. In the conditional feature module, the layer size of the
Bi-LSTM is 64; the output feature dimension of CNN is 60; the
size of concatenated vector is 61. Natural acoustic features are
used for training WaveNet-vocoder. The training recipe can be
found online.

3.2 Manifold of quantized waveform
It is shown in Section 2.1.1 that Wem ∈ R

Dr×L in Equation 2
contains the embedding vectors for quantized waveform. Specif-
ically, if we write Wem = [w1, · · · ,wL], where wl ∈ R

Dr , l ∈
{1, · · · , L}, wl is the embedding vector for the quantization level
l. After training, we cast all the embedding wl into a 2D space by
using t-SNE [11]. The results are shown in Figure 4.

Figure 4 suggests that the embedded vectors lie on a low-
dimensional manifold. Furthermore, the order of the embedded
vectors on the manifold is consistent with the order of quantiza-
tion levels, i.e., the indicated quantization level monotonically in-
crease or decrease as we move from one end of the manifold to the
other end. Although it has been argued that distance between two
one-hot vectors cannot reflect the distance between the waveform
values represented by the one-hot vectors, the learned manifold
suggests that the network can infer the distance between one-hot
vectors based on the distance between their embedding vectors.
Interestingly, the manifold of WaveNet-vocoder is divided into
several pieces. Reason for this result is still being investigated.

Note that vectors corresponding to the extremely large quanti-
zation level, which are colored by dark red and dark blue, formed
one cluster. The reason may be that training data do not cover
those waveform quantization levels. Therefore, those embedding
vectors were not well updated during training. Vectors for quan-
tization levels around 0 (green color) are also in that cluster. This
may due to the fact that those levels may only corresponding to
small noise in training data.

3.3 Data variance in residual channel
As Figure 3 shows that each WaveNet block contains a skip-

connection, the sequence of WaveNet blocks formulates a resid-
ual structure [12]. It would be interesting to investigate the con-
tribution of each block to the post-processing block. For this
purpose, we collected s(m) from all the blocks when WaveNet-
vocoder generated waveforms on 10 randomly selected test utter-
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Fig. 5 Statistics on s(m)
t over 10 test utterances for WaveNet-vocoder. The

horizontal axis denotes index m ∈ {1, · · · ,M}.

ances. Then, we flattened s(m) and calculated the data variance
over t. Figure 5 shows the data variance for each m ∈ {1, · · · ,M}.

The interesting observation is that the data variance decreases
as m increases. This trend is somewhat consistent with the anal-
ysis on other residual networks [13]. It is argued that the initial
block in a residual structure explains the general feature pattern
while the following blocks finely modify the description given by
the preceding block. According to the recent work on WaveNet
[14], it is suggested that removing some Wavenet blocks may not
severely degrade the overall performance. This may be possible
according to the decreased data variance over s(m)

t . It is somewhat
consistent with the finding on residual or highway network [13].

3.4 Comparing generation methods
For WaveNet-based vocoder, we found that the random-

sampling-based method generated waveforms with hoarse qual-
ity, especially in the voiced segments. This may due to the fact
that sampled waveform in a local segment may not convey the
harmonic structure of a voiced sound. As Figure 6 suggests, the
spectrum of a voiced sound generated by random-sampling (fig-
ure on the right-tpp corner) seems to be quite noisy around the
harmonics over 4k Hz. Similarly, the figure on instantaneous fre-
quency (figure on the right-bottom corner) doesn’t show regular
patterns that can be found in natural speech. The reason for this
result may be explained by Figure 7, where the inferred distri-
bution and the picked value are plotted for at a few time steps
within that voiced sound. The second row shows that random
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sampling may not pick the value with the highest probability.
What’s worse, it may randomly select a value that is not highly
probable. Compared with random-sampling, the one-best gener-
ation method may work better for the voiced sound. As the spec-
trogram of WaveNet-vocoder in Figure 6 suggests, the harmonic
structure of the voiced sound was less noisy. The pattern of in-
stantaneous frequency can be observed and the generated wave-
form sounds less hoarse.

However, we found that one-best generation method degraded
the quality of generated waveform in the case of WaveNet-
backend. To explain the possible reasons, we point it out that
generating a waveform of length T from WaveNet is a search task
in a space of LT . It is impractical to find the best solution among
LT possible outputs. One-best generation is a greedy search strat-
egy. It can find a good result if the time dependency in the search
space is local. As a WaveNet-vocoder may only need to learn the
mapping between natural acoustic features and waveforms in lo-
cal time span, using a greedy search strategy may find the a wave-
form with an overall high probability (or high quality). However,
mapping between linguistic features and waveforms is quite am-
biguous in case of a WaveNet-backend. To generate a good wave-
form, the network may take into consideration previously gener-
ated samples over a long time-span. Hence, time dependency is

strong and a greedy search method may result in a local optimal
solution. Random-sampling may be a better strategy to explore
the search space in the case of WaveNet-backend.

4. Conclusion
This report explains the details of WaveNet implemented by

the authors, including specific designs on the embedding mod-
ule and the residual structure inside WaveNet. Based on the im-
plementation, this report shows the observations inside WaveNet.
It was found that WaveNet can learn a meaningful manifold for
quantized waveforms. Additionally, it was found that the data
variance gradually decreased along the WaveNet blocks. Finally,
this work introduced a one-best generation method that may be
used for WaveNet-vocoder. It was hoped that findings in this
work could facilitate further investigation on WaveNet.
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