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Abstract: This paper presents our work on constructing a multi-scale deep convolutional neural

network (CNN) ensemble for robust and light-weight acoustic modeling. Several VGG nets are used

that differ solely in the kernel size of the convolutional layers. The ensemble serves as teacher for

distilling knowledge into a much simpler student CNN. We compare the performance of the distilled

CNN model with the results of system combination. We show that the knowledge distillation from

a multi-scale ensemble yields equal performance with the best conventional combination methods,

with a much simpler system architecture and decoding pipeline.

1 Introduction

Building large-scale systems for automatic speech

recognition (ASR) is a complex task. Model combi-

nation is a popular method to improve outputs of very

large high performance systems [1]. However, finding

good pairs for combination is not trivial.

We describe our approach to building a large but

lightweight ASR system that can be used for offline

transcription of massive data amounts. We train a

set of deep convolutional neural network models with

VGG net architecture [2] for combination that is in-

spired by the multi-scale convolutional neural net-

work (MS-CNN) [3]. The MS-CNN consists of sub-

networks with receptive fields that vary in size. The

idea is that these receptive fields match objects of

different scales, which help with robust recognition.

We compare the model combination methods ROVER

and posterior prediction fusion to the model compres-

sion method. Lastly, we perform knowledge distilla-

tion [4] from ensembles [5], where the knowledge of a

“teacher” VGG ensemble is compressed – or distilled

– into a “student” CNN model [6]. A CNN trained in

this way is much simpler in structure but yields equal

performance.

2 Multi-scale ensemble

Our multi-scale ensemble is a combination of VGG

nets that are trained on the same data but differ in

the size of their receptive fields. In VGG nets, the

large convolutional kernels of standard CNNs are re-

placed with small kernels that are arranged in stacks

of layers. This change produces the same receptive

field with less parameters.

We use the “WDX” network layout of [7]. A graph-

ical representation is given in Figure 1. The default

network uses a kernel size of 3x3 (frequency domain

x time domain). To keep the output size of the fea-

ture extraction sub-network before the fully connected

layers the same for each model, we adjust the zero

padding and max pooling accordingly. The networks

take stacked logMel feature vectors as input. The last

fully connected layer of the network represents context

dependent (CD) HMM states. The output is a vector

of posterior probabilities.

2.1 Models

To produce candidates for model ensemble, we copy

the base model architecture and modify the kernel size

in the frequency domain X and time domain Y . We

allow variants with any size in {2,3,4}x{2,3,4} and

also use 5x5, 6x6 and 7x7 kernels (see Figure 1). We

adjust the zero padding for the convolutional layers

and the max pooling size to compensate for changes

in the kernel size.

2.2 Conventional combination

We build model ensembles by means of late model

combination. We use the AMs from above to decode
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Figure 1: Left: Permitted VGG kernel sizes. Center: Teacher VGG net. Right: Student CNN.
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Figure 2: Performance of single VGG nets in WER.

the target data multiple times for ROVER combina-

tion using without considering confidence measures.

Alternatively, we combine models by posterior proba-

bility fusion. For each feature vector x⃗i of frame i, we

compute the non-weighted average of posterior prob-

abilities for all CD states s⃗i.This is straightforward

as all M AMs have the same layout. After posterior

probability combination, we complete the decoding.

This has the advantage that full decoding has do be

done only once.

3 Distillation from ensembles

Knowledge distillation is a method for model com-

pression and knowledge transfer that takes a teacher

model to train or guide a student model. The guid-

ance is given by soft outputs (posterior probabilities).

Knowledge is distilled by increasing the temperature

T in the tempered softmax function in the last layer

of a neural network to convert logits into posterior

probabilities.

A temperature higher than the default T = 1 pro-

duces a softer probability distribution over the CD

states of the network. Typically, the distilled model

shows competitive performance with the advantage

of being less complex. Ensembles of models can also

serve as teacher. We use an ensemble of multi-scale

VGG nets as teacher to train a classical CNN student

with much simpler architecture (see Figure 1).

We construct the teacher ensemble by averaging the

CD state posterior probabilities of the single VGG

nets. We use the distillation for knowledge transfer

pre-training. The student model is trained with soft

labels from the ensemble as targets to push the model

parameters into a good direction. What follows is a

fine-tuning with the original hard labels to reach a

good local optimum.

4 Experiments

Our data is conversational interview-style English

(50h for training, 8.6h for testing).We use the cross-

entropy criterion for training. The VGG nets are im-

plemented in torch [8]. The initial learning rate is

set to 0.03 and is divided by 3 after 25M, 30M and

35M frames. Training is stopped after 40M frames.

The CNN is built with an in-house toolkit. The ini-

tial learning rate is 0.005 for knowledge distillation

pre-training and 0.0005 for fine-tuning and is reduced

with Newbob.

4.1 Multi-scale VGGs

Figure 2 shows that rhe VGG nets with kernel sizes

circling around the default all performed similarly

well. The default achieved 25.2% WER. The poor-

est model is using the 6x6 kernel and yields 27.0%

2

情報処理学会研究報告 
IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan

Vol.2018-MUS-118 No.1
Vol.2018-SLP-120 No.1

2018/2/20



Table 1: Combination performance in WER.

#VGGs 1 2 3 6 9

ROVER 25.2 - 24.8 24.3 24.0

Posterior 25.2 24.5 24.3 24.1 24.0

WER. With larger kernels, the training duration is

also growing considerably larger.

4.2 ROVER combination

ROVER proved very effective, even though most

models achieve similar WER. The more models there

are in the combination, the better the results. If we

use squared kernels only, combining all systems from

kernel size 2x2 to 7x7 produced the best hypotheses.

The best ROVER combination was achieved by using

the 9 systems whose kernel sizes circle around the 3x3

default (see Table 1).

4.3 Posterior combination

For posterior probability fusion, we extract and av-

erage the logit values for each frame from the layer

right before the final softmax layer, for all networks

of the ensemble. Our results in Table 1 show that

the posterior combination is superior when only a few

models are involved in the combinations: A 3-system

posterior combined ensemble can compete even with

a 6-system ROVER. We can also create 2-system en-

sembles, which is not possible with ROVER. Both

methods converge to the same performance with in-

creasing ensemble size.

4.4 Knowledge distillation

Our student CNN is already experienced in that it

has been initialized by a training on about 2000h of

out-of-domain Switchboard data. The soft labels from

the ensemble are computed with the softmax function

using a temperature T = 2.

The initialized CNN achieves 41.7% WER, a

domain-adapted CNN by fine-tuning using the orig-

inal hard labels 24.8% WER. The domain-adapted

CNN can beat the single best VGG, but not our best

multi-scale VGG ensemble. Knowledge distillation

alone, i.e., the pre-training (pt) on soft labels, does

not beat the domain-adapted model. However, fine-

tuning (ft) with hard labels greatly increases perfor-

mance so that the fine-tuned CNN model outperforms

Table 2: Distilled CNN performance in WER.

#VGGs 1 6 9

VGG → CNN (pt) 25.8 25.3 25.3

VGG → CNN (ft) 24.3 24.2 24.1

Table 3: Initial results on Switchboard 300h in WER.

Single Combination

2x2 3x3 4x4 ROVER Posterior

12.4 12.3 12.0 11.8 11.8

the domain-adapted model and achieves equal perfor-

mance with the best VGG ensemble (see Table 2), but

with much simpler structure.

4.5 Scalability

Table 3 lists results of scalability experiments on

the Switchboard 300h data set. As can be seen,

both ROVER and posteriorgram combination clearly

improve decoding performance, even with just three

multi-scale VGGs in the model ensemble. We also an-

alyzed the impact of the kernel size on the real-time

factor (RTF) for the model training with a single GPU

(NVIDIA Tesla K80). Using the default 3x3 kernel

yields an RTF of 0.12. The lowest (0.08) and highest

(0.5) RTFs are achieved with the smallest (1x2) and

largest (7x7) kernels, respectively.

5 Conclusions

We have shown that deep convolutional neural

network acoustic models that solely differ in their

kernel size are sufficiently diverse for model combi-

nation, which greatly simplifies building ensembles.

Both ROVER and posterior combination of multi-

scale models improve recognition accuracy. We suc-

cessfully distilled the knowledge of ensembles into a

classical CNN with much simpler architecture and

achieved equal performance compared to the best per-

forming conventional combination.
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