Item type |
SIG Technical Reports(1) |
公開日 |
2018-02-13 |
タイトル |
|
|
タイトル |
Distilling Knowledge from a Multi-scale Deep CNN Ensemble for Robust and Light-weight Acoustic Modeling |
タイトル |
|
|
言語 |
en |
|
タイトル |
Distilling Knowledge from a Multi-scale Deep CNN Ensemble for Robust and Light-weight Acoustic Modeling |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属 |
|
|
|
IBM Research AI |
著者所属 |
|
|
|
IBM Research AI |
著者所属 |
|
|
|
IBM Research AI |
著者所属 |
|
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
IBM Research AI |
著者所属(英) |
|
|
|
en |
|
|
IBM Research AI |
著者所属(英) |
|
|
|
en |
|
|
IBM Research AI |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者名 |
Michael, Heck
Masayuki, Suzuki
Takashi, Fukuda
Gakuto, Kurata
Satoshi, Nakamura
|
著者名(英) |
Michael, Heck
Masayuki, Suzuki
Takashi, Fukuda
Gakuto, Kurata
Satoshi, Nakamura
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper presents our work on constructing a multi-scale deep convolutional neural network (CNN) ensemble for robust and light-weight acoustic modeling. Several VGG nets are used that differ solely in the kernel size of the convolutional layers. The ensemble serves as teacher for distilling knowledge into a much simpler student CNN. We compare the performance of the distilled CNN model with the results of system combination. We show that the knowledge distillation from a multi-scale ensemble yields equal performance with the best conventional combination methods, with a much simpler system architecture and decoding pipeline. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper presents our work on constructing a multi-scale deep convolutional neural network (CNN) ensemble for robust and light-weight acoustic modeling. Several VGG nets are used that differ solely in the kernel size of the convolutional layers. The ensemble serves as teacher for distilling knowledge into a much simpler student CNN. We compare the performance of the distilled CNN model with the results of system combination. We show that the knowledge distillation from a multi-scale ensemble yields equal performance with the best conventional combination methods, with a much simpler system architecture and decoding pipeline. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10438388 |
書誌情報 |
研究報告音楽情報科学(MUS)
巻 2018-MUS-118,
号 1,
p. 1-4,
発行日 2018-02-13
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8752 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |