
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Call-trail Dependent Inline Caching for a Scoping
Mechanism of Class Extensions

Wei Zhang1,a) Shigeru Chiba1,b)

Received: July 23, 2017, Accepted: September 28, 2017

Abstract: We propose call-trail dependent inline caching to improve the method dispatch performance of Method
Seals. Method Seals is a class extension mechanism that allows users to manually control the effective range of class
extensions. It provides better safety than existing class extension mechanisms. However, the absence of inline method
cache renders Method Seals’ runtime performance unsatisfactory. To enable inline caching on Method Seals, we added
call-trail dependency to the conventional inline caching mechanism. To that end, we introduced the notion of call-trails
which represent sets of classes along a call path. We use fixed-length bitsets for representing the current call-trail and
a method definition’s unsealed package list. Also, we relaxed Method Seals’ semantic constraints accordingly in order
to implement our proposal. We also implemented the proposed call-trail dependent inline caching on top of Method
Seals and benchmarked its performance.

Keywords: class extensions, inline caching, Ruby

1. Introduction

Writing maintainable, modular code is emphasized in modern
software development. One reason is that no projects with even a
moderate scale can be built individually. Taking advantage of
libraries or code written by someone else is inevitable, and it
requires code to be written with modularity and extensibility in
mind.

Conventionally, in object-oriented programming, we design
and implement programs using well crafted class hierarchy and
design patterns hoping to achieve the goal of modularity. How-
ever, it often backfires as the project gets larger, and the rela-
tions between classes become too complex to comprehend. In a
lesser modular world, however, programmers can use class exten-

sions [1] to destructively change the behavior of an existing class.
For example, the Ruby programming language [2] provides open

classes, a class extension mechanism, for modifying and adding
methods to an existing class.

A number of class extension mechanisms has been proposed,
such as selector namespace [3], Classbox [4], Method Shelters [5]
and Method Shells [6]. Also, programming paradigms like
aspect-oriented programming [5] and context-oriented program-

ming [7] have also been studied over the years. All of these pro-
posals can be regarded to aim to come up with new language
constructs programmers can use to apply class extensions. Ap-
proaches these research take are similar. They introduce well-
designed, specific rules and semantics of newly-proposed lan-
guage constructs, with which the scopes of class extensions’ ef-

1 Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) weizhang@csg.ci.i.u-tokyo.ac.jp
b) chiba@acm.org

fect range are implicitly decided.
Implicitly deciding class extensions’ scope with predefined

rules keeps class extensions relatively safe to use, but at the cost
of flexibility. Method Seals [8] was proposed to address this prob-
lem. Method Seals asks programmers to explicitly specify the ef-
fective range of class extensions, by providing a list of classes
within which class extensions are activated. The activation of
class extensions upon a list of classes is called “unsealing” upon
these classes in Method Seals’ terminology. By default, on the
contrary, all class extensions are deactivated, or “sealed” upon all
classes.

Explicit control over class extensions’ scopes is a flexible fea-
ture Method Seals provides. However, naive implementation of
Method Seals will suffer from poor performance during method
dispatch, the reason being, conventional inline caching does not
suffice Method Seals’ semantic requirements. In a usual scenario,
the method dispatched at a given call site will remain the same
as long as the class hierarchy and the receiver also do. With
Method Seals, however, dispatched methods also depend on the
path along which this method is invoked. Because of the ab-
sence of inline method cache, an experimental implementation of
Method Seals showed a performance significantly slower than the
MRI (Matz’ Ruby Implementation), the original implementation
of Ruby in C.

We propose a call-trail dependent inline caching mechanism
that can be applied to Method Seals. We also relaxed the se-
mantics of Method Seals to require top-level unsealed package
lists. This greatly helps the efficiency of our caching mechanism.
We designed call-trail bitsets and unsealed bitsets to represent the
current call-trails and a method’s unsealed packages, respectively,
for efficiently validating cache entries. We also benchmarked the
performance of our implementation. The result shows perfor-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

mance boost compared to the standard Method Seals implemen-
tation.

The remainder of this paper is structured as follows. In Sec-
tion 2, we introduce the background and motivation of our study.
We will introduce how Method Seals works in detail and also dis-
cuss the performance issue induced. In Section 3, we present our
proposal of call-trail dependent inline caching. We also discuss
limitations of the current proposal. In Section 4, we introduce the
results of our benchmarks – a micro-benchmark and a larger one
with Ruby on Rails. In Section 5, we introduce related work on
inline caching. Finally, we wrap up the paper in Section 6.

2. Method Seals and its Performance

2.1 Method Seals
Fukumuro et al. proposed Method Seals [8], a class extension

mechanism that allows explicit control over its effective scope.
It takes a different approach from conventional class extension
mechanisms, which implicitly decide the scope of class exten-
sions by predefined semantic rules. Instead, Method Seals asks
programmers to explicitly declare the scope in which class ex-
tensions are activated. This allows safer use of class extensions
while keeping its usability.

Method Seals limits the effect of class extensions to the part of
code which programmers have read and understood. This can re-
duce the chance of unintended class extension activation. Method
Seals introduced the concept of a package, which is equivalent
to either a class, a module or a method. The basic actions with
Method Seals are sealing and unsealing. A package p is said
to be sealed for a class extension e when e is inactivated on p.
Likewise, a package p is said to be unsealed for a class extension
e when e is activated on p. By default, all packages are sealed
upon all class extensions, which are only activated in a package
where a user explicitly unseals. In the current implementation of
Method Seals, the granularity of packages is at class-level (i.e.,
only classes are supported as packages).

We demonstrate the usage of Method Seals with an example
from the original Method Seals paper by Fukumuro et al. [8].
We use an implementation of Method Seals on the Ruby pro-
gramming language provided by the original authors. Figure 1
shows the use of Terminal Table, a Ruby library that prints out
collections of data in human-readable formatting. Terminal Table
works well with Roman alphabets, but does not work property
with full-width Japanese letters (at version 1.5.2). The reason
being is that Terminal Table calculates the lengths of strings by

Fig. 1 An example output of Terminal Table.

invoking the built-in lengthmethod in String class. It does not
take full-width characters into account.

To address this issue with Method Seals, we refine the length
method in String class as shown in Fig. 2. The way we refine
a method with Method Seals is the same as with Ruby’s refine-
ments, simply rewrite the length method taking full-width let-
ters into account and pack it up in a module FullWidthLength.
We use the using method as shown in Fig. 3 to deploy a class
extension upon a list of unsealed packages (classes, modules or
methods). What is different from the usage of usingwith Ruby’s
refinements is that here we are providing some extra informa-
tion, an non-empty list of packages. We call this list of pack-
ages an unsealed package list. Note that this list should be non-

empty. On line 1 of Fig. 3, we are deploying FullWidthLength
upon the classes provided in the unsealed package list: Class,
Terminal::Table, Array, and Integer.

The reason to unseal all these classes is because Method Seals
will activate a class extension only if all classes along the call path
are unsealed. If the call path contains a class that is not in the un-
sealed list, the class extension will not be activated. Here, Class,
Array, and Integer class are unsealed because the calculation
of string widths happen in the constructor of Terminal::Table,
whose call path goes though the aforementioned classes.

One thing to note is that although Method Seals is very similar
to Ruby’s refinements, the way they work is not. While Ruby’s
refinements limits class extensions to the lexical scope of their
activations, Method Seals let programmers decide the intended
scope through call paths. The example in Fig. 3 will not work
with Ruby’s refinements because the place where Terminal Table
invokes String’s length method is outside the lexical scope of
our using.

2.2 Performance issue of Method Seals
Method Seals provides a mechanism for safely using class ex-

tensions. However, without a good runtime performance, it will
not be very useful. Table 1 is the benchmark results of Method
Seals’ runtime performance appeared in the original paper by
Fukumuro et al. [8]. As the result shows, the performance of
Method Seals is close to that of the MRI when no class extensions
are deployed. However, when class extensions are deployed, that
is, applied upon certain call paths, the performance of Method

Fig. 2 A class extension adding full-width letter support to String’s length
method.

Fig. 3 Unsealing the FullWidthLength extension.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 The method call performance with class extensions.

iterations/sec standard deviation

Open class 9.16 × 106 0.9%
Refinements 9.22 × 106 1.9%
Method seals (unsealed) 4.63 × 106 0.3%
Method seals (sealed) 7.10 × 106 0.4%

Seals drops to around half of that of MRI.
Our profiling shows that a large overhead occurs during

Method Seals’ method dispatch, especially when class extensions
are deployed. Indeed, method dispatch in Method Seals depends
on whether or not our current call path includes only unsealed
packages, so it needs to perform a comparison between the cur-
rent call path and the unsealed package list at each method call.
Due to the dependency of call paths during method dispatch,
conventional inline method cache cannot be used together with
Method Seals. This is the cause of the unpromising performance
of the benchmark.

Unfortunately, it is not an easy task checking the validity of
a cached method entry when a class extension may be activated
by Method Seals. Conventional inline cache has no idea of a
method’s unsealed packages and the running program maintains
no information of the current call path. To enable inline caching
with Method Seals, we need to somehow keep track of the current
call paths together with each method’s unsealed packages. And
they need to be efficient and economic on memory usage.

3. Call-trail Dependent Inline Caching

As discussed in the previous section, Method Seals imposes a
significant performance issue due to absence of inline caching. In
this section, we introduce our relaxed Method Seals mechanism,
and a call-trail dependent inline caching mechanism exploiting
that relaxation.

3.1 Relaxed Version of Method Seals
With Method Seals, the user is required to specify unsealed

packages, which is either a class, a module or a method, for a
class extension. The class extension is only activated on method
calls that route within the unsealed packages. It is tedious to list
out all classes on our potential call paths, especially when built-
in classes are involved. Take Fig. 3, Class, Array and Integer
are all Ruby’s builtin classes, and we are listing out these classes
in our unsealed path solely because they are involved in Termi-
nal Table’s initialization procedures. It is not only frustrating for
users to dig out all the nuts and bolts, but also inefficient for
Method Seals to perform checking on the call paths. What we
really need is a method for users to pick out the packages of their
concern.

In our revised version of Method Seals, we introduced a new
keyword tracked, which is used for explicitly declaring the
packages that Method Seals needs to be concerned about. In
other words, only packages listed with tracked will affect the
method dispatch. Let’s go back to the previous example. With
the tracked keyword, we can rewrite Fig. 3 as Fig. 4. On line
1 we declare that only class Terminal::table should be con-
cerned. Therefore on line 3, we no longer need to put all the other
classes into the unsealed list. Method calls passing through un-

Fig. 4 Unsealing (activating) the FullWidthLength extension with
“trakced” keyword.

tracked classes behave as if they never passed through those class
at all. Simply speaking, what Method Seals really concerns now
is whether the call path passed by a tracked package that is not un-
sealed. If the answer is yes, the class extension is not activated,
and vice versa. The implication of the new tracked keyword is
that we no longer need to keep track of many classes we are not
interested in, and optimizations can be made under this premise.

Unsealed package lists of the original Method Seals only needs
to contain unsealed packages starting from where the class exten-
sion is applied (i.e., the call of using). We relaxed this to require
all unsealed packages starting from the top-level needs to be in-
cluded in unsealed package lists. With this relaxation, we give
the knowledge of all possible unsealed call paths to each class
extension. This empowers us to associate the unsealed package
information with a class extension to be stored in a method cache.

The modifications to the original Method Seals semantics,
however, are a compromise we made for performance. On the
one hand, the relaxed semantics enables us to provide an efficient
design and implementation of call-trail dependent inline caching,
which we will discuss in follow-up sections. On the other hand,
the relaxed semantics could potentially break modularity as users
may need to modify library code when deploying class exten-
sions. This design decision is a trade-off between performance
and modularity. Improvement of the semantics is part of the fu-
ture work of enhancing the usability of our proposal.

3.2 Call-trail Dependent Inline Caching
We propose an inline method cache mechanism with depen-

dency on call-trails to improve the performance of Method Seals.
Cache validation of standard inline caching does not suffice
Method Seals (We will discuss this in detail in Section 5), and
it imposes a significant overhead during method dispatch. Our
call-trail dependent inline caching works well with Method Seals,
and also eliminates the large overhead. It introduces fixed-length
bitsets for representing call-trails and unsealed packages, and ex-
ploits the relaxed semantics of Method Seals.

First, we introduce the idea of a call-trail. An observation is
that the order of packages along a call path is irrelevant in Method
Seals. Suppose a class extension e is unsealed upon unsealed
package list l = [A, B, C]. Call paths with any permutation of
one or more element from l is a valid call path (e.g., A-B, B-B-C,
C-A-B are all valid call paths). Neither the order nor the repeti-
tion of packages on a call path has significance in Method Seals.
A conclusion can be drawn from the observation:

In a program with a tracked package list lt, a class exten-
sion deployed with unsealed package list lu is activated
iff this condition holds: for all package p along the call
path, p � lt or p ∈ lu.

Put simply, the only information we are concerned about any call

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 5 Call-trail bitset.

path is the unordered set of packages along it. We have been us-
ing the term “call path” so far, but it is not perfectly accurate since
the term implies ordering. To address this concern, we use a new
term call-trails to refer to the aforementioned set of packages.

The core task is to find a data structure to represent call-trails.
Also, the data structure needs to be economic in its memory usage
and fast to match against. We propose the use of bit sets, which
meets both criteria. Each bit in the bit set represents a Method
Seals package. For example, suppose we have a bit set A, which
represents our call-trail. Class Foo is represented by the 2nd bit
of A, noted as a2. When a2 has value 1, it suggests that Foo is
on the call-trail. On the contrary, 0 on a2 suggests the absence
of Foo on the call-trail. We refer to the bit set representing our
current call-trail as a call-trail bitset.

Likewise, bit sets can also be used for representing unsealed
package lists. When a class extension is unsealed on a list of
packages, methods being modified by the class extension are
associated with a bit set with bits representing those packages
flipped to 1. We refer to a bit set representing an unsealed pack-
age lists, which a class extension is deployed on, as an unsealed

bitset. A call-trail bitset should have the same length as an un-
sealed bitset, and the bit representing a package should have same
indices in both bitsets.

Assigning positions (i.e. indices) within a bit set to newly-
defined classes is straightforward. We keep a monolithic global
counter of classes, starting from 0, and assign each class with this
number. We call the number assigned to the class its tracking

id. The tracking id of a class is essentially the index of the bit
representing this class in our bitsets.

Figure 5 demonstrates this mechanism. The program has 6 de-
fined classes and each of them has its distinct tracking id. The
current call path goes by D, A and B, whose tracking ids are 5, 1,
4, respectively. The call-trail bitset is therefore with all bits being
0 except for the first, fourth and fifth bits flipped to 1.

One potential risk is running out of bits in our bit sets. On the
one hand, a bit vector with moderate length can work efficiently,
but might not accommodate all classes; On the other hand, a
variable-length bit vector is able to support infinite number of
classes, but would become sluggish as the number of classes
grows.

The tracked keyword introduced in our revised version of
Method Seals mitigates this problem, as we only need to assign
tracking ids to those classes declared to be tracked. As shown in
Fig. 6, four classes out of total six are declared to be tracked.
Therefore, only four indices in the bit set are allocated to the

Fig. 6 Assigning tracking ids with tracked keyword.

tracked classes. The other two classes’ tracking id are unavail-
able.

For our call-trail dependent inline caching to support Method
Seals, we need to ensure the validation of a cached method entry.
The cache validation procedure of conventional inline caching
checks two things: whether the receiver type has changed; and
whether the class hierarchy is altered. The assumption goes: if
the class hierarchy of a program has not changed and the receiver
type remains the same, then the dispatched method should be the
same as the last lookup result, which is in the cache. For our
purpose, we need to check one more factor besides the two, that
is, whether our current call-trail is a subset of that of the cached
method entry.

We have discussed in previous subsection that our relaxed se-
mantics of Method Seals asks users to specify unsealed path taken
into account all classes on the call-trail starting from the top-level.
Therefore, verifying the current call-trail against a cached method
entry’s call-trail is sufficient for validation. Suppose our current
call-trail bitset is C, and the cached method entry e has an un-
sealed bitset T (T � 0). To validate e, if the class hierarchy and
receiver type are valid, C validates T iff C ⊆ T . This is verified
by checking bitwise or of C and T equals T (given that T � 0). In
other words, the call-trail of a inline cache is validated as follows:

C ⊆ T ⇐⇒ C ∪ T = T, T � 0

What happens when T is 0? An empty T implies that the cor-
responding method definition is either a normal method defini-
tion (not class extension) or a class extension definition with an
empty unsealed package list. Either way, a 0-valued unsealed
bitset should be validated by any call-trails. First, if it is a nor-
mal method definition, then it is only invalidated by change in
the class hierarchy or the receiver type, which have already been
dealt with. The second case should not occur because an empty
unsealed package list is not allowed.

One edge case occurs when a normal method definition, say
m, is refined by class extension me. me is deployed with an un-
sealed package list le. Suppose a callsite of m first dispatched
the normal method definition. The inline method cache will have
the normal definition of m, which has an empty unsealed pack-
age list. According to the algorithm, this will be validated by
any call-trails and prevent me to be ever dispatched. However,
we set a special flag on callsites of any method definition refined
by class extensions, and will perform a check of the existence of
class extensions when any flagged method definition is about to
be dispatched. Therefore, there is no risk of the ocurring of the
above situation.

3.3 Example
We demonstrate the usage of our version of Method Seals with

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 7 Refining to s method of Fixnum class for RomanClock.

Fig. 8 Unsealing RomanInteger class extension for RomanClock.

an example. Suppose we are building a clock class that prints the
current hour in its roman numeral representation, and we want
to achieve the effect by refining the builtin integer class’s to s
method, which return the string representation of the object. Our
class extension and RomanClock class are defined as shown in
Fig. 7.

Suppose there is a Main class, which is the class using our
RomanClock’s current hour method (Fig. 8). To use the class
extension, we unseal the class extension as shown on line 8 of
Fig. 8. Note that on line 7, we declare Main and RomanClock
are tracked. Because Main is the only top-level class using
RomanClock, only these two classes are concerned when vali-
dating method caches. Therefore, when we unseal the class ex-
tension on line 8, we only need to put these two classes in our
unsealed packages.

After first invocation, the callsite on line 11 in Fig. 7 will have
our refined to s method cached up. Subsequent calling of the
current hourmethod will validate the inline method cache first
during method dispatch. As long as the method is invoked from
Main class, the cached entry will be dispatched, thus the costly
full method lookup is avoided.

3.4 Limitations
3.4.1 Fixed Length of Bit Sets

A call-trail bitset with length n can only track at most n pack-
ages. Currently, we use trackedmethod to manually specify the
packages of our concern. However, as a project grows, the num-
ber of class need to be tracked might exceed n, causing undefined
behavior of inline method caches. Therefore, the number of n

need to be carefully chosen. However, if n exceeds a word on
the host operating system, validation of call-trail will take more
than a bitwise or instruction and even cancel out the performance
advantage of the inline cache. In our current implementation, we
specify n as 64, a word on a 64-bit architecture operating system.

Using of tracked keyword requires the user to have a clear

understanding over the relations among class extensions. It is
possible to cause more work on the user’s side, but we consider it
improves the security of the use of class extensions.
3.4.2 Top-level Unsealed Package Lists

We relaxed the semantics of original Method Seals to require
unsealed package lists to specify all unsealed packages along the
path from top-level. The benefit of this is faster validation of a
cache entry’s unsealed bitset, in particular, when multiple class
extensions are deployed, because it eliminates the need to keep
track of the position along a call path where they are deployed.
However, it requires more effort from users when deploying a
class extension, as a user of a library might need to analyze the
source code and modify accordingly to include all unsealed pack-
ages from top-level. On the other hand, however, it will let users
to have a more thorough understanding of code they are using.
3.4.3 Limitations of the tracked Keyword

The current version of the new tracked we proposed has sev-
eral limitations. First, it does not support specifying tracked
classes when these classes have not been defined. This is because
the tracking mechanism works by assigning track ids to specified
classes directly. It cannot handle the cases where the specified
classes do not yet exist. Second, the current version does not sup-
port specifying new tracked classes in the middle of execution.
The reason is that the unsealed bitset of a class extension already
deployed does not reflect the information of untracked classes.

4. Implementation and Benchmark

We implemented our proposed call-trail dependent inline
method cache and relaxed semantics on top of Method Seals with
the Ruby programming language. The base Ruby interpreter we
used is the most widely used implementation, MRI (Matz’ Ruby
Implementation). The version number is Ruby 2.1.4, which is the
one Method Seals was originally implemented on. MRI adopts a
two-level caching mechanism: inline method caches and a global
method cache. Our implementation only uses inline caching.
Also, we benchmarked our implementation with a microbench-
mark and a practical benchmark using Ruby on Rails.

4.1 Implementation
We implemented the relaxed Method Seals mechanism and

call-trail dependent inline method cache discussed in Section 3.
The approach can be summarized as follows:
(1) When the Ruby virtual machine spawns, it maintains a

global counter of number of classes being tracked. This al-
lows we assign distinct track id to tracked classes.

(2) We record the current call-trail in Ruby’s internal call stack.
The top-level call frame has a 0 call-trail bitset. At method
invocation, we copy over the call-trail bitset of previous call
frame, and flip the bit of the tracked class of current call
frame.

(3) All method definitions, regardless of normal method defi-
nitions or class extensions, have their own unsealed bitsets,
initialized to 0. Unsealed bitsets of normal method defini-
tions will remain 0 thereafter; those of class extensions will
be updated at the time of deployment (see (4)).

(4) All class definitions have a track id value, initialized to 0.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

When the user specifies tracked classes, these classes’ track
ids will be updated to distinct integer values.

(5) When the user deploys a class extension, all method defini-
tions in the class extension will update their unsealed bitsets
to reflect the unsealed package list.

The validation procedure of an inline method cache entry can
be summarized as follows:

Step.1 Check if the cache is empty. If yes, go to Step.2,
otherwise go to Step.3.
Step.2 Perform a full method lookup, store the resulting
method definition (who keeps its own unsealed bitset) in the
inline method cache. If the method is being refined, set the
refined flag of the callsite to 1. Go to Step.4.
Step.3 The cache is not empty, validate the cache as follows:
a. Check whether the program’s class hierarchy or the re-
ceiver’s type has changed. If yes, go to Step.2. Otherwise,
proceed.
b. If this cached method definition’s unsealed bitset is 0
and the refined flag of the callsite is 0 (a normal method
definition), go to Step.4.
c. Check whether this cached method’s unsealed bitset T

contains the current call-trail bitset C by taking a bitwise
or. If yes, go to Step.4. Otherwise, Step.2.

Step.4 Dispatch the method.

4.2 Limitations of the Implementation
As discussed in Section 3, the length of two types of bit sets

(call-trail bitset and unsealed bitset) needs to be carefully cho-
sen in order to achieve the best performance. We chose bit sets
with length 64, which is the word length of the host machine we
performed benchmark on. Thus the bitwise or operation between
current call-trail bitset and a method definition’s unsealed bitset
can be performed with one machine instruction, providing best
performance. However, it is an undefined behavior in the current
implementation to declare more than 64 tracked packages.

Besides, due to limitation of the implementation, our current
implementation can only correctly run with Ruby’s garbage col-
lector turned off. The implementation also does not provide sup-
port for multi-threading.

4.3 Benchmark
We benchmarked our implementation of relaxed version of

Method Seals and call-trail dependent inline method cache.
The environment on which we performed the experiments is
Linux Mint 18.1 Cinnamon 64-bit on dual Intel Core i7-6600U
2.60 GHz CPUs with memory of 16 GiB. Note that we use “MS”
to refer to Method Seals, and “IC” to refer to “inline method
cache” in the result tables to save space.
4.3.1 Method Invocation with No Class Extensions

First we measured the overhead of call-trail dependent inline
method cache with no class extensions used. The benchmark
program repeatedly invoke an empty method and calculate the
average speed of method dispatch. The result is listed in Fig. 9.
The original Method Seals implementation with no inline method
cache support is around 48.8% slower than the standard MRI. The
overhead is blamed on full method lookup at every method dis-

Fig. 9 Method invocation performance with no class extensions.

Fig. 10 Method invocation performance with Method Seals.

patch. With our support of call-trail dependent inline caching, the
overhead has decreased to around 7%.
4.3.2 Method Invocation Using Method Seals

We measured the performance of the original and our im-
plementation of Method Seals during method invocation using
Method Seals. We applied two class extensions on distinct un-
sealed package lists, and measured the average speed of method
dispatch when the modified methods are invoked repeatedly. Re-
sults in Fig. 10 shows that our call-trail dependent inline caching
is almost as fast as the standard MRI and is 57.1% faster than the
original Method Seals. We can safely conclude that the perfor-
mance gain accredits to the use of inline caching.
4.3.3 Method Invocation Alternating between Sealed and

Unsealed Call-trails
Due to the design of our call-trail dependent inline method

cache, only one method definition can be cached at each call site.
Previous benchmarks proved the usefulness of our inline cache
when a method is invoked repeatedly from the same call-trails.
When a method is invoked alternately from inside and outside a
deployed class extension’s unsealed package lists, however, in-
duces a performance drop. Figure 11 shows that both original
Method Seals and our implementation slow down significantly
compared to previous benchmark results. This is because the in-
line cache is always invalidated by call-trails alternately going in
and out of the unsealed ranges.
4.3.4 Benchmark on Ruby on Rails

To examine the performance of our implementation under
more realistic settings, we carried out benchmark with Ruby on
Rails, a popular Ruby library for developing web applications.
Ruby on Rails is famous for its use of Ruby’s open class to pro-
vide convenient methods to built-in classes. We took a convenient
method in time zone for the built-in String class out from

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 11 Method invocation performance when alternating between sealed
and unsealed call-trails.

Fig. 12 A class extension to builtin String class.

Fig. 13 Deployment of a class extension to String on RoR.

Rails’ ActiveSupport library, and put it into a class extension,
StringZonesModule, defined in a standalone file (Fig. 12). We
then deployed this class extension as shown in Fig. 13. The code
defines three classes: Foo, Bar and ApplicationController,
the entry point of the web app. Our app invokes method hello in
ApplicationController by sending a request to Rails. hello
in turn calls foo method of Foo, which calls bar method of
Bar, which finally repeatedly invokes our convenient method on

Fig. 14 Average response time using Ruby on Rails.

String. We deploy the class extension with an unsealed package
list [Foo, Bar], so call-trails from these packages will activate the
class extension. We ignored ApplicationController in both
tracked package list and unsealed package list because it is not to
our concern.

We deployed this Rails app on WEBrick, a web server written
in Ruby. We then requested actions on hellomethod 1000 times
through ApacheBench and measured response speed.

We observe a 15% performance boost over the original Method
Seals implementation. The speed improvement grows as the
number of invoking the same method (line 10 in Fig. 13) in-
creases.

5. Related Work

The idea of using call-path information as a means of con-
trol exists in previous studies. As an example, Java introduces
a class java.security.ProtectionDomain, which allows de-
velopers to define a protection domain which consists of a set of
classes and objects [9]. Different protection domains are granted
different protection policies. The current protection level is de-
pendent on the current protection domain where the thread of
control occurs. This idea is called “Domain-based access Con-
trol.” AspectJ [10], an aspect-oriented programming extension to
Java, has a language construct named “cflow pointcut,” which lets
users define pointcuts based on call-path information.

The idea of inline method lookup caches first appeared in
an early Smalltalk-80 system [11]. Sending a dynamic-bound
message exhibits a significantly larger overhead than calling a
statically-bound procedure albeit simple inheritance rules of the
Smalltalk language. It is because the program needs to locate the
correct method definition according to the receiver type during
runtime and also the inheritance hierarchy. Inline method caches
largely mitigate the problem by caching the most recently looked-
up result. When sending a message, the program first checks the
cache. If the cache is not valid, the program performs an ex-
pensive lookup routine and replace the cache with the new result.
The MRI adopts this idea by placing inline method caches at each
method callsite. This conventional inline method caches fail to
serve the semantics of Method Seals (see Section 2.2).

Polymorphic Inline Caches [12] was proposed to reduce the
overhead of polymorphic message sends. It extends the ordinary
inline caches to include multiple cached lookup results at each
call site. Each cache entry stores a method lookup result of a re-
ceiver type used at the call site, thus subsequent message sends at

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the call site by these recorded receiver types will not trigger a full
method lookup. As future work, we plan to integrate the idea of
polymorphic inline caching into our inline caching mechanism to
mitigate the performance issue demonstrated in Section 4.3.4.

Zakirov et al. proposed fine-grained state tracking [13] for the
validation of inline method caches. It aims at reducing inline
cache misses in Ruby under the condition that frequent mixin op-
erations are performed. The proposal introduces the notion of
state objects. Instead of using a global state counter representing
the programs’ overall inheritance hierarchy, state objects are as-
sociated to each method lookup path, helping to invalidate only
the caches along a lookup path that has changed. Although this
proposal looks similar to ours, they are not the same thing. This
fine-grained state tracking aims to decrease the number of caches
voided each time a mixin operation is performed. Our aim is to
provide inline caching to class extension mechanisms that have
call-trail dependency. In future work, we plan to combine this
proposal together with our proposal.

6. Conclusion

We propose call-trail dependent inline caching to improve the
method dispatch performance of Method Seals. We introduced
the notion of call-trails which represent sets of classes along a
call path. We introduced call-trail sets and unsealed sets, which
uses fixed-length bit sets for representing the current call-trail and
a method definition’s unsealed package list, respectively. We re-
laxed Method Seals’ semantic requirements accordingly in order
to implement our proposal. We also implemented the proposed
call-trail dependent inline caching on top of Method Seals and
benchmarked its performance.

As for next steps, it is necessary to verify the usefulness of the
proposal. Current Method Seals semantics are subject to change
for better performance and user-friendliness. Besides, it is neces-
sary to address the issues discussed in Section 3.4.

References

[1] Akai, S.: Expressive and Safe Destructive Extensions for Separation
of Concerns, Ph.D. Thesis, Tokyo Institute of Technology (2013).

[2] Flanagan, D. and Matsumoto, Y.: The Ruby Programming Language:
Everything You Need to Know, O’Reilly Media, Inc. (2008).

[3] Wirfs-Brock, A. and Wilkerson, B.: An overview of modular
smalltalk, ACM SIGPLAN Notices, Vol.23, No.11, pp.123–134
(1988).

[4] Bergel, A., Ducasse, S. and Nierstrasz, O.: Classbox/J: Controlling the
scope of change in Java, ACM SIGPLAN Notices, Vol.40, pp.177–189,
ACM (2005).

[5] Akai, S. and Chiba, S.: Method shelters: Avoiding conflicts among
class extensions caused by local re-binding, Proc. 11th Annual In-
ternational Conference on Aspect-oriented Software Development,
pp.131–142 (2012).

[6] Takeshita, W. and Chiba, S.: The Semantics and Implementation of
Method Shells: Avoiding Method Conflicts Caused by Destructive
Class Extensions, IPSJ-PRO, Vol.7, No.3, pp.12–21 (2014).

[7] Hirschfeld, R., Costanza, P. and Nierstrasz, O.: Context-oriented pro-
gramming, Journal of Object Technology, Vol.7, No.3 (2008).

[8] Fukumuro, R. and Chiba, S.: Method Seals: Safe Class Extension
for Ruby Limiting the Scope to Known Call Paths, IPSJ-PRO, Vol.9,
No.4, pp.16–26 (2016).

[9] Gong, L., Mueller, M., Prafullchandra, H. and Schemers, R.: Going
beyond the sandbox: An overview of the new security architecture in
the Java development kit 1.2, USENIX Symposium on Internet Tech-
nologies and Systems, pp.103–112 (1997).

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G.: An Overview of AspectJ, ECOOP 2001 – Object-

Oriented Programming, LNCS 2072, pp.327–353, Springer (2001).
[11] Deutsch, L.P. and Schiffman, A.M.: Efficient Implementation of the

Smalltalk-80 System, Proc. 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’84, New York,
NY, USA, pp.297–302, ACM (online), DOI: 10.1145/800017.800542
(1984).

[12] Hölzle, U., Chambers, C. and Ungar, D.: Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches,
European Conference on Object-Oriented Programming, pp.21–38,
Springer (1991).

[13] Zakirov, S.S., Chiba, S. and Shibayama, E.: Optimizing Dynamic Dis-
patch with Fine-grained State Tracking, Proceedings of the 6th Sympo-
sium on Dynamic Languages, DLS ’10, New York, NY, USA, pp.15–
26, ACM (online), DOI: 10.1145/1869631.1869634 (2010).

Wei Zhang received his Master degree
from Graduate School of Information Sci-
ence and Technology of The University
of Tokyo in 2017. His reserch interest is
modularity of programming languages.

Shigeru Chiba received his Ph.D. degree
from The University of Tokyo 1996. He
became an assistant professor at Univer-
sity of Tsukuba in 1997 and at Tokyo In-
stitute of Technology in 2001, and a pro-
fessor at Tokyo Institute of Technology in
2008. He is a professor at The University
of Tokyo since 2011. His research inter-

ests include system software and programming languages.

c© 2018 Information Processing Society of Japan

