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On the size of concept lattices

Yasuaki Kobayashi1

Abstract: In this paper, we give an upper bound of the size of concept lattices, where the size of a concept lattice is
measured by the number of concepts plus the number of arcs in its line diagram. We show that the size of the concept
lattice of a formal context (X,Y,R) is 2min(|X|,|Y |)(|X| + |Y |)O(1), which is essentially tight up to a polynomial factor. To
establish this bound, we analyze a combinatorial structure of concept lattices through the theory of minimal separators
and potential maximal cliques. More specifically, we give a characterization of arcs in the line diagram of concept
lattices by means of potential maximal cliques in an associated co-bipartite graph, which might be of interest in its own
right.
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1. Introduction
Concept lattices, also known as Galois lattices, are widely used

in several areas such as association rule mining [8], [13], fre-
quent itemset generation [12], information retrieval [9], software
engineering [11], social network analysis [10], and web docu-
ment management [4]. In such applications, a crucial and time
consuming step is building the concept lattice from a given data.
Given this, many algorithms for building concept lattices are pro-
posed in the literature [5], [7]. However, to the best of the author’s
knowledge, no non-trivial upper bound on the size of concept lat-
tices is known, where the size of a concept lattice is measured by
the sum of the number of concepts and the number of arcs in the
Hasse diagram of the concept lattice.

In this paper, we give, for the first time, a non-trivial up-
per bound on the size of the concept lattice of a formal context
(X,Y,R).
Theorem 1. Let (X,Y,R) be a formal context. The size of the con-
cept lattice is 2min(|X|,|Y |)(|X|+ |Y |)O(1). Moreover, this upper bound
is tight up to a polynomial factor in |X| + |Y |.

To show this bound, we exploit the result of Berry and
Sigayret [1]. They gave a method of analyzing concept lattices by
using the theory of minimal separators. We borrow some tools to
analyze concept lattices given by [1] and we extend their tools by
exploiting the theory of potential maximal cliques. More specifi-
cally, we give a characterization of the covering relations between
two concepts in concept lattices.

2. Preliminaries
In this section, we give some notations and terminologies used

throughout our paper.
Let G be an undirected graph. We denote by V(G) the set of

vertices of G and by E(G) the set of edges of G. Let X ⊆ V(G).
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We write N(X) to denote the set of neighbors of X, that is,
N(X) = {u ∈ V(G) \ X : {u, v} ∈ E(G) for some v ∈ X}. The
subgraph of G induced on X is denoted by G[X].

2.1 Concept Lattices
Let X and Y be non-empty sets and let R be a binary relation,

that is, R ⊆ X × Y . We usually call X the set of objects and Y
the set of attributes. We say that an object x ∈ X has an attribute
y ∈ Y if (x, y) ∈ R. The ordered triplet (X,Y,R) is called a formal
context. Let K = (X,Y,R) be a formal context. Consider two op-
erators over K. Operators ↑ : 2X → 2Y , ↓ : 2Y → 2X are defined
as: for A ⊆ X and for B ⊆ Y ,

A↑ = {y ∈ Y : (x, y) for every x ∈ A}
B↓ = {x ∈ X : (x, y) for every y ∈ B},

that is, A↑ is the set of all attributes that every object in A has and
B↓ is the set of all objects that have all attribute in B.

Let A ⊆ X and B ⊆ Y . We say that the pair (A, B) is a formal
concept (or simply concept) of K if A↑ = B and B↓ = A. Note that
two pairs (∅,Y) and (X, ∅) are concepts. We say that a concept is
trivial if it is one of the above two concepts. A concept is non-
trivial if it is not a trivial concept. When C = (A, B) is a concept
of K, A is called the extent of C and B is called the intent of C.

Consider a partial order ⪯ on the set of concepts in a formal
context K: for contexts (A, B) and (A′, B′), (A, B) ⪯ (A′, B′) if
and only if A ⊆ A′. Equivalently, (A, B) ⪯ (A′, B′) if and only if
B ⊇ B′. It is well-known that this partial order relation ⪯ on the
set of concepts forms a complete lattice, called a concept lattice
[14]. In this lattice, we say that a concept C = (A, B) is a prede-
cessor of a concept C′ = (A′, B′) if A′ ⊆ A (and hence B ⊆ B′).
In particular, C is an immediate predecessor of C′ if C is a pre-
decessor of C′ and there is no concept C′′ = (A′′, B′′) satisfying
A′ ⊂ A′′ ⊂ A (and hence B ⊂ B′′ ⊂ B′).

2.2 Minimal Separators
Berry and Sigayret [1] gave several tools for analyzing concept
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lattices. The key to their results is exploiting results of minimal
separators.

Let S be a vertex set of an undirected graph G. We say that
S is an a, b-separator of G if there is no path between a and b in
G[V(G)\S ]. Furthermore, S is said to be a minimal a, b-separator
of G if no proper subset of S is an a, b-separator of G. A minimal
separator of G is a vertex set that is a minimal a, b-separator of
G for some a, b ∈ V(G).

It is well-known that minimal separators can be characterized
by using the notion of full components. Let S be a vertex set and
let C be a component of G[V(G)\S ]. Then we call C a component
associated to S . We say that C is a full component associated to
S if N(C) = S .
Lemma 1 (forklore). A separator S is a minimal separator of G
if and only if there are at least two full components associated to
S .

2.3 Potential Maximal Cliques
Dirac [3] gave a characterization of the class of chordal graphs

by using minimal separators. Minimal separators were also used
for computing the treewidth and a minimum fill-in of several
classes of graphs [6]. This argument was extended by Bouch-
itté and Todinca [2]. The crucial idea of their results is using the
notion of potential maximal cliques. A set Ω ⊂ V(G) is called a
potential maximal clique if there is a minimal triangulation of G
in which Ω is a maximal clique. Bouchitté and Todinca gave the
following characterization for potential maximal cliques.
Lemma 2 ([2]). Let Ω be a vertex set of H and let Q be the set of
component associated toΩ. ThenΩ is a potential maximal clique
of H if and only if
(1) there is no full component in Q and
(2) Ω is a clique in the graph obtained from H by adding an edge

between every pair of vertices in N(C) for each component
C ∈ Q.

Moreover, for each C ∈ Q, N(C) is a minimal separator of G.

3. Main Result
This section is dedicated to give an upper bound on the size of

concept lattices. Here, we consider the size of a lattice as the sum
of the number of concepts and the number of arcs in the Hasse
diagram of the lattice.

Let K = (X,Y,R) be a formal context. We assume that for every
x ∈ X, there is y ∈ Y with (x, y) ∈ R, and for every y ∈ Y , there
is x ∈ X with (x, y) ∈ X. Let L be the concept lattice of the for-
mal context K. Since any two concepts have different extent and
different intent, we obviously have the following upper bound on
the number of concepts.
Lemma 3. The number of concepts in L is at most 2min(|X|,|Y |).

This upper bound is essentially tight. To see this, we need a
characterization due to [1]. Let GL be a co-bipartite graph with
vertex set X ∪ Y , where both GL[X] and GL[Y] are cliques, and
there is an edge between x ∈ X and y ∈ Y if (x, y) < R. Berry and
Sigayret [1] showed that there is a one-to-one correspondence be-
tween the set of non-trivial concepts in L and the set of minimal
separators in GL.
Lemma 4 ([1]). Let C = (A, B). C is a non-trivial concept in L if

and only if V(GL) \ (A ∪ B) is a minimal separator of GL. More-
over both A and B are full components associated to this minimal
separators.

Therefore the number of concepts in L is exactly equal to the
number of minimal separators of GL plus two (trivial concepts).
Conversely let G be a co-bipartite graph with bipartition (X,Y) of
the vertex set. We say that G is well-formed if N({x}) ∩ Y , ∅ for
every x ∈ X and N({y})∩X , ∅ for every y ∈ Y . Let RG ⊆ X×Y be
a binary relation such that (x, y) ∈ RG for every pair {x, y} < E(G)
with x ∈ X and y ∈ Y . Lemma 4 shows in fact that S ⊆ V(G) is
a minimal separator of G if and only if (X \ S ,Y \ S ) is a concept
in the formal context (X,Y,RG). Thus we immediately have the
following corollary.
Corollary 1. Let G be a well-formed co-bipartite graph with bi-
partition (X,Y). Then the number of minimal separators in G is
at most 2min(|X|,|Y |).

To see a lower bound, let us consider a co-bipartite graph
G = (X ∪ Y, E) with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}
such that E = {{xi, x j} : 1 ≤ i < j ≤ n} ∪ {{yi, y j} : 1 ≤ i < j ≤
n} ∪ {{xi, yi} : 1 ≤ i ≤ n}. In other words, G forms two cliques of
the same size and has a perfect matching between cliques. This
co-bipartite graph is indeed well-formed. To separate x1 and yn

in G at least one of xi and yi must be chosen as a separator for
each 1 < i < n. On the other hand, for any x1, yn-separator S with
{xi, yi} ⊆ S , both S \ {xi} and S \ {yi} are also x1, yn-separators.
Thus every minimal x1, yn-separator contains exactly one of xi

and yi for each 1 < i < n. This implies the number of minimal
separators is at least 2n−2, which is tight up to a constant multi-
plicative factor for the bound in Lemma 3.

In the rest of this section, we give an upper bound on the num-
ber of pairs of concepts C and C′ such that C is an immediate
successor of C′. To do so, we need to show several lemmas.
Lemma 5. Let C = (A, B), C′ = (A′, B′) be concepts in L such
that A′ ⊂ A (and hence B ⊂ B′). Then C is an immediate pre-
decessor of C′ if and only if (A \ A′) ∪ (B′ \ B) is a clique in
GL.

Proof. Let W = A \ A′ and let Z = B′ \ B. As C is a predecessor
of C′, both W and Z are non-empty.

To prove the forward direction, suppose that C is an immedi-
ate predecessor of C′. Moreover suppose, for contradiction, that
there are w ∈ W and z ∈ Z that are not adjacent to each other. Con-
sider the complement bipartite graph H of GL[W ∪ Z]. Since w
and z are adjacent to each other in H, there is a maximal biclique
C in H that contains both w and z. Define A′′ = A′ ∪ (V(C) ∩ X)
and B′′ = B ∪ (V(C) ∩ Y). Observe that, in G, every vertex in
x ∈ X \ A′′ is adjacent to some vertex in B′′ since otherwise
C ∪ {x} is a biclique of H with {w, z} ⊆ V(C), which contradicts
the maximality of C. Therefore B′′ is a full component associ-
ated to V(GL) \ (A′′ ∪ B′′). A symmetric argument shows that
A′′ is also a full component. By Lemma 1, V(GL) \ (A′′ ∪ B′′) is
a minimal separator of GL. This implies that (A′′, B′′) is a non-
trivial concept of L with A′ ⊂ A′′ ⊂ A and B ⊂ B′′ ⊂ B′. This is
contradicting to the fact that C is an immediate predecessor of C′.

Conversely, suppose that W ∪ Z is a clique in GL. If C is
not an immediate predecessor of C′, there must be a concept
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C′′ = (A′′, B′′) with A′ ⊂ A′′ ⊂ A and B ⊂ B′′ ⊂ B′. Since
C′′ is non-trivial, by Lemma 4, V(GL) \ (A′′ ∪ B′′) is a minimal
separator of GL. This implies that there are no edges between
A′′ \ A′ and B′′ \ B. This is contradicting to the fact that W ∪ Z is
a clique in GL. □

Lemma 6. Let C = (A, B),C′ = (A′, B′) be concepts of a concept
lattice L. Then C is an immediate predecessor of C′ if and only if
V(GL) \ (A′ ∪ B) is a potential maximal clique of GL.

Proof. Suppose C is an immediate predecessor of C′. Let Ω =
V(GL) \ (A′ ∪ B). We will show that Ω is a potential maximal
clique of GL. Let C be a component associated to Ω. Observe
that there are no edges between A′ and B′. This follows from
Lemma 4 when C′ is a non-trivial concept and from the fact that
either A′ or B′ is empty when C′ is a trivial one. As B ⊂ B′, there
are no edges between A′ and B as well. Therefore either C = A′

or C = B. If C is a trivial concept, B must be empty, and if C′
is a trivial concept, A′ must be empty. Thus C is an extent or an
intent of a non-trivial concept, and hence, by Lemma 4, N(C) is
a minimal separator of GL and C is a full component associated
to it. When C = A′, N(A′) is a minimal separator that separates
A′ and B′. Since Ω contains B′ \ B, N(C) is strictly contained
in Ω. Therefore C is not a full component associated to Ω. The
same consequence also holds when C = B. Hence Ω has no full
component associated to it.

Let G′L be a graph obtained from GL by adding an edge be-
tween every pair of vertices in N(A′) and that in N(B). In order
to prove that Ω is a potential maximal clique, it suffices to show
that Ω is a clique in G′L. Suppose first that C is a trivial con-
cept. Then we have A = X and B = ∅. Let us note that, in this
case, Ω = (A \ A′) ∪ Y . We have the fact that Ω is a clique in
G′L from Lemma 5. Applying a symmetric argument to the case
where C′ is a trivial concept proves Ω is a clique in G′L. Suppose
next that either C or C′ is a non-trivial concept. By Lemma 4,
V(GL)\ is a minimal separator of GL, and B is a full component
associated to it. Thus we have that X \ A ⊆ N(B). Similarly, we
have that Y \ B′ ⊆ N(A′). As GL is co-bipartite, we also have
X \ A′ ⊆ N(A′) and Y \ B ⊆ N(B). This gives the fact that for
every pair (x, y) ∈ (X \ A′) × (Y \ B), if at least one of x ∈ X \ A
or y ∈ Y \ B′ holds, then x and y are adjacent to each other in G′L.
Moreover if both x ∈ A \ A′ and y ∈ B′ \ B, by Lemma 5, x and y
are adjacent to each other in GL. Therefore Ω is a clique in G′L.

To prove the other direction suppose Ω = V(GL) \ (A′ ∪ B) is
a potential maximal clique of GL. We will show that C = (B↓, B)
and C′ = (A′, A′↑) are concepts of L, and moreover C is an im-
mediate predecessor of C′ in L.

Obviously C is a concept when B = ∅. So is C′ when A′ = ∅.
Thus we suppose otherwise. As Ω is a potential maximal clique
of GL, by Lemma 2, N(B) is a minimal separator. Let us note that
B↓ is the set of vertices in X, each of which has no neighbor in
B. Therefore N(B) = (X \ B↓) ∪ (Y \ B). By Lemma 4, (B↓, B)
is a non-trivial concept in L. A symmetric argument proves that
(A′, A′↑) is a non-trivial concept as well.

Now we will prove that C is an immediate predecessor of
C′. To do this, by Lemma 5, it is sufficient to show that
(B↓ \ A′) ∪ (A′↑ \ B) is a clique in GL. As GL is co-bipartite,

both B↓ \ A′ and A′↑ \ B are cliques in GL. Let x ∈ B↓ \ A′ and
y ∈ A′↑ \ B be arbitrary. Let G′L be a graph obtained from GL by
adding an edge between every pair of vertices in N(A′) and every
pair of vertices in N(B). SinceΩ is a potential maximal clique, by
Lemma 2, x and y are adjacent in the filled graph G′L. However
observe that x < N(B). This follows from that fact that B↓ is the
set of vertices of X that have no neighbors in B. We can show
that y < N(A) by a symmetric argument. Therefore x and y are
adjacent in GL. Hence the lemma follows. □

We are now ready to give our upper bound on the size of con-
cept lattice. The above lemma says that it suffices to consider
the number of potential maximal cliques in the associated well-
formed co-bipartite graph GL of L. The following lemma give
such an upper bound.
Lemma 7. Let G be a well-formed co-bipartite graph with bi-
partition (X,Y). Then the number of potential maximal cliques in
G is 2min(|X|,|Y |)(|X| + |Y |)O(1), where n is the number of vertices in
G.

Proof. The lemma immediately follows, together with Corol-
lary 1, from the following claim: if Ω is a potential maximal
clique of G, then there are x ∈ X ∩ Ω and y ∈ Y ∩ Ω such that
Ω \ {x, y} is a minimal x, y-separator of G′, where G′ is a co-
bipartite graph obtained from G by removing the edge between x
and y. In the following we will prove this claim.

Let RG = {(x, y) ∈ X × Y : {x, y} < E(G)}, and let L be the
concept lattice of a formal context (X,Y,RG). By Lemma 6, Y \Ω
is an intent of a concept C and X \ Ω is an extent of another con-
cept C′ in L. Moreover C is an immediate predecessor of C′. Let
C = (A, B) and C′ = (A′, B′), where B = Y\Ω, A′ = X\Ω, A = B↓,
and B′ = A′↑. Choose x from A \ A′ and y from B′ \ B. This can
be done since C is a predecessor of C′, that is, A′ ⊂ A and B′ ⊂ B.
Let Cx and Cy be the components of G′[V(G′) \ (Ω \ {x, y})] that
contains x and y, respectively. Since there are no edges between
A′ and B in G′, Cx and Cy must be different. Moreover we have
that Cx = A′ ∪ {x} and Cy = B ∪ {y}. To prove the aforemen-
tioned claim, we show that both Cx and Cy are full components
associated to S = V(G) \ (Cx ∪ Cy) in G′. Let us first consider
the cases where Cx = {x} or Cy = {y}. In these cases, say here
Cx = {x}, by Lemma 5, x is adjacent to every vertex in B′ \ B,
and as B′ = Y , we have S = N(Cx) \ {y}, that is, Cx is a full
component associated to S in G′. For the other case, suppose C
and C′ are not trivial concepts. In this case, by Lemma 4, A′ and
B are full components associated to S C′ = V(G) \ (A′ ∪ B′) and
S C = V(G) \ (A ∪ B) in G, respectively. This implies that every
vertex in S C′ has a neighbor in A′ and every vertex in S C has a
neighbor in B. By Lemma 5, x is adjacent to every vertices in
B′ \ B. This implies that S = S C′ ∪ (B′ \ (B)) \ {y} has a neighbor
in Cx. Thus Cx is a full component associated to S in G′. We can
analogously show that Cy is a full component associated to S in
G′. Therefore, by Lemma 4, Ω \ {S } is an x, y-minimal separator
in G′ and hence the lemma holds. □

4. Remarks
In this paper, we show that the size of a concept lattice of a
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formal context (X,Y,R) is 2min(|X|,|Y |)(|X| + |Y |)O(1), where the size
of concept lattices is measured by the number of concepts plus
the number of arcs in its Hasse diagram. We also show that this
bound is tight up to a polynomial factor.
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