
Computational Complexity of Robot Arm
Simulation Problems

Feng Tianfeng1,a) Yoshio Okamoto2 Yota Otachi3
Takashi Horiyama4 Toshiki Saitoh5 Takeaki Uno6

Ryuhei Uehara1,b)

Abstract: For a given path P and a graph G with edge lengths, we consider the weighed Eu-
lerian path problem that asks if there’s an Eulerian path of G spanned by P with edge length
constraints. We first show that this problem is strongly NP-hard even if edge lengths are quite
restricted. Then we consider two different variants of this problem. In the first variant, we
allow the edges in P to be elastic to fit the vertices of P to ones of G, our goal is to minimize
the elastic ratio. When G is a path, this problem can be solved in polynomial time by dynamic
programming. In the other variant, we allow P to cover an edge of G twice or more. We first
show that it is weakly NP-hard even if G is an edge. We thus assume that each edge of G is
covered by P exactly twice, and on one hand, we show this problem is still strongly NP-hard
even in quite restricted cases. On the other hand, the problem is polynomial time solvable
when the target graph G is a star and its edge lengths are of k different values.

Keywords: Linkage, robot arm, spanning problem

1. Introduction
A robot arm is a type of programmable mechan-

ical arm, which can be modeled by a linkage. A
linkage is a collection of fixed-length 1D segments
joined at their endpoints forming a path. (See [2]
for further details.) Namely, a linkage is a path
P = (v0, v1, . . . , vn) with length function ℓ : E → R,
where vi is an endpoint, and ei = {vi−1, vi} is an
edge in E = {{vi, vi+1} | 0 ≤ i < n}, and its length
is given by ℓ(ei). Now we consider the following sit-
uation. You are given a general target mechanism
which is modeled by a graph G = (V ′, E′), and a
robot arm modeled by a linkage P = (V,E) as above
with length function ℓ : E ∪ E′ → R. Our mission
is simulating the target graph G by the given link-
age P . The joints in P are programmable, and each
joint (or vertex) of G should be simulated by a joint

1 Japan Advanced Institute of Science and Technology
2 University of Electro-Communications
3 Kumamoto University
4 Saitama University
5 Kyushu Institute of Technology
6 National Institute of Informatics
a) ftflluy@jaist.ac.jp
b) uehara@jaist.ac.jp

of P , but we can also put some joints of P on an
internal point of an edge of G because they can be
fixed. Therefore, our mission can be formalized to
find the following mapping ϕ from P to G:
• Each edge of G should be mapped by a subpath

of P .
• Each vertex of G should be mapped from some

vertices of P .
The decision problem asks if there exists a map-

ping ϕ from P to G. That is, it asks if there is an
Eulerian path of G spanned by P such that (1) when
P visits a vertex in G, a vertex of P should be put
on it, and (2) some vertices in P can be put on in-
ternal points of edges of G. When all edges have
the same length, it is easy to solve that in linear
time since the problem is the ordinary Eulerian path
problem. In the context of formal language, there
are some variants of the Eulerian path problem with
some constraints (see [3] for a comprehensive sur-
vey). However, as far as the authors know, the robot
arm simulation problem, our variant of the Eulerian
path problem has not been investigated, while it is
quite a natural situation.

The first interesting result is that this problem is
strongly NP-hard even if edge lengths are quite re-

1ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

stricted. Precisely, it is strongly NP-hard even if P
and G consist of edges of length only 1 or 2 (Theo-
rem 1). We remind that if they consist of unit length
edges, the problem is linear time solvable. We thus
consider two different variants of this problem.

The first variant is an optimization problem. In
this variant, we consider a linkage is elastic, that is,
the length of one line segment is not fixed and can
be changed little a bit. This situation is natural in
the context of the robot arm simulation. Formally,
we allow the edges in P to be elastic to fit the ver-
tices of P to ones of G. Our goal is to minimize the
stretch/shrink ratio of each edge of P . We show that
when G is a path, this can be solved in polynomial
time by dynamic programming.

In the second variant, we allow P to cover an edge
of G twice or more. In this case, we do not allow
P to be elastic, or its ratio is fixed to 1. We first
show that it is weakly NP-hard even if G is an edge.
In fact, this problem is similar to the ruler folding
problem (see, e.g., [2]). Therefore, we introduce an-
other restriction that each edge of G is covered by
P exactly twice. We first mention that this problem
is quite easy when each edge has unit length. The
answer is yes if and only if G is connected and P

contains a certain number of edges. When G is con-
nected, P can traverse every edge twice in the way
of depth first search. This idea brought us a natu-
ral restricition that asks if we can cover G by P by
traversing edges of G exactly twice. That is, even if
G has no Eulerian path and hence P cannot simulate
G properly, we can find the feasible way to simulate
G by P in this way. From the practical viewpoint,
it seems to be reasonable when we simulate a mech-
anism by a robot arm. From the viewpoint of graph
theory, it is natural to consider the case that G is a
tree. When G is a tree, the problem is in a simple
form; P simulates G by traversing each edge twice
in the unique spanning tree of G, or G itself. How-
ever, this problem is still strongly NP-hard even in
quite restricted cases; (1) G is a star, and P consists
of edges of only two different lengths, and (2) G is
a spider, and all edges are of two different lengths.
On the other hand, the problem is polynomial time
solvable when G is a star and its edge lengths are of
k different values.

2. Preliminaries
In this paper, we only consider a simple undirected

graph G = (V,E). A path P = (v0, v1, . . . , vn) con-
sists of n + 1 vertices with n edges joining vi and
vi+1 for each i = 0, . . . , n − 1. The vertices v0 and

vn of the path are called endpoints. Let Kn,m de-
note a complete bipartite graph G = (X,Y,E) such
that |X| = n, |Y | = m, and every pair of a ver-
tex in X and a vertex in Y is joined by an edge.
A graph G = (V,E) is a tree if it is connected and
acyclic. Here a graph G is a star if and only if it is
a complete bipartite graph K1,n−1, and a graph G

is a spider if and only if G is a tree that has only
one vertex of degree greater than 2. In a star or a
spider, the unique vertex of degree greater than 3 is
called center.

Let G = (V ′, E′) and P = (V,E) be a graph and a
path (v0, v1, . . . , vn). Let ℓ : E′∪E → R be an edge-
length function of them. Then we say the linkage P

can simulate the mechanism G if each edge in G is
spanned by one subpath of P . More precisely, we
can formalize the notion of simulation by a mapping
ϕ that maps each vertex V to a point in G as follows.
For any edge e = {u, v} ∈ E′, we consider e is a line
segment (u, v) of length ℓ(e). Then the intermedi-
ate point p of distance tℓ(e) from u is denoted by
p = tv+(1− t)u, where 0 < t < 1. We note that the
endpoints of an edge e are not considered interme-
diate points of e. Now we first define a set of points
in G by V ′ and all intermediate points on edges of
E′. Then we define a mapping ϕ from V to points
of G as follows. To make it clear, we first divide V

into two subsets Ve and Vi such that each vertex in
Ve is mapped to a vertex in V ′, and each vertex in
Vi is mapped to an intermediate point of G. In our
problem, we assume that ϕ(v0) and ϕ(vn) should be
in Ve. That is, P should start and end at a vertex in
G. The mapping ϕ from Ve to V ′ is defined as fol-
lows; (1) for every v′ ∈ V ′, at least one vertex v ∈ Ve

with ϕ(v) = v′. (2) for each edge e′ = {v′, u′} ∈ E′,
there is a pair of vertices vi and vj in Ve such that
(2a) between vi and vj , there is no other vertex vk
is in Ve, and (2b) ℓ(e′) =

∑j
k=i+1 ℓ(ek). Each ver-

tex in Vi is mapped to some intermediate point in
G. Intuitively, when P simulate G, the correspond-
ing joint of the robot arm is fixed. The mapping
ϕ from Vi to the set of intermediate points in G

is defined as follows. Let vi and vj any consecu-
tive vertices in Ve, that is, there are no other ver-
tex vk ∈ Ve with i < k < j, or vk ∈ Vi for all
i < k < j. Then the mapping ϕ maps each vk ∈ Vi

to an intermediate point of {ϕ(vi), ϕ(vj)} in this
ordering with length constraint. That is, for each
i < k < j, let ϕ(vk) = tϕ(vj)+(1− t)ϕ(vi). Then we
always have 0 < t < 1 and

∑k−1
h=i

∑
ℓ({vh, vh+1}) =

tℓ({ϕ(vi), ϕ(vj)}). Then we say that the linkage P

can simulate the mechanizm G if there is a mapping

2ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

P
PB+1 P4 PB+1 P4 P4 PB+1

2

C3 m

c

Ca1
Ca2

Ca3
Ca4

Ca3m

G
1

2

1

P4

Fig. 1 Construction of P and G; bold lines are of length 2, and thin lines are of
length 1. Each Pi+1 consists of i edges and each Ci consists of i edges.

ϕ satisfying above conditions.
In this paper, we will often use the following prob-

lem to show hardness of our problems:
3-Partition
: An integer B and a multiset A of 3m integers

A = a1, a2, . . . a3m with B/4 < ai < B/2.
Output: Determine if A can be partitioned into m

multisets S1, S2, . . . , Sm such that
∑

aj∈Si
aj =

B for every i.
Without loss of generality, we can assume that∑

ai∈A ai = mB, and |Si| = 3. It is well known that
the 3-Partition problem is strongly NP-complete [1].

3. Weighted Eulerian path problem
Now we show the main theorem in this section.
Theorem 1 Let P , G, ℓ be a path, an undi-

rected graph, and a length function, respectively.
Then the weighted Eulerian path problem is strongly
NP-hard even if ℓ(e) is either 1 or 2 for any e in P

and G.
Proof. It is easy to see that the problem is in NP.
Therefore we show the hardness. We reduce the
3-Partition problem to the weighted Eulerian path
problem.

Let PB+1 be a path that consists of B consecutive
edges of length 2, and P4 be a path that consists
of 3 consecutive edges of length 1. Then the path
P is obtained by joining m subpaths PB+1 and m

subpaths P4 alternatively, that is, P is constructed
by joining PB+1, P4, PB+1 P4, . . ., P4, PB+1, and
P4. The graph G is constructed as follows. For each
i with 1 ≤ i ≤ 3m, we construct a cycle Cai of ai

edges of length 2. We also construct m cycles C3 of

3 edges of length 1. Then these 4m cycles share a
special vertex c in common. That is, G is a cactus
consists of 4m cycles, and all vertices have degree
2 except the common vertex c that has degree 8m.
The construction is illustrated in Fig. 1.

It is easy to see that it is polynomial time reduc-
tion. Thus, we show that A has a solution if and
only if P can cover G along an Euler tour in G with
satisfying the condition of the linkage simulation.
We first observe that no edge of length 2 in PB+1

in P can cover a cycle C3 in G. Therefore, when P

cover G, every C3 of G has to be covered by P4 in
P . Thus, each endpoint of P4 should be on c in G,
and no edge in PB+1 can cover edges in C3. Hence,
each subpath PB+1 in P covers exactly B edges in
the set of cycles Cai that consists of edges of length
2. Since B/4 < ai < B/2 for each i, each subpath
PB+1 covers exactly three cycles Cai , Caj and Cak

for some i, j, k with ai + aj + ak = B. Clearly, each
cover for a subpath PB+1 gives a subset of A, and
collection of these subsets gives us a solution of the
3-Partition problem and vice versa.

4. Elastic linkage problem
In this section, we consider the following problem:

Elastic linkage problem from path to path
Input: Two paths G = (V ′, E′) and P = (V,E)

with length function ℓ.
Output: a mapping ϕ with minimum elastic (or

stretch/shrink) ratio.
In this problem, we allow all edges in P to be elastic
to simulates the path G by the path P . The ratio
of an edge e is defined by l′/l, where l is the length

3ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

of the edge e in P , l′ is the length of e in P after
being stretched or shrank on G. The elastic ratio
of an edge e is defined by max {r, 1/r}, where r is
the ratio of the edge e in P . Since each vertex in
G should be mapped from only one vertex in P , the
first and last vertices in G should be mapped from
the first and last vertices in P , otherwise the elastic
ratio will be infinity. The elastic ratio of a mapping
is the maximum among elastic ratios of all edges in
P .

We show a polynomial time algorithm for this
problem based on a dynamic programming.

First, we show a technical lemma when G is just
an edge. In this case, the optimal value is achieved
when all ratios are even.

Lemma 2 Assume that G consists of an edge
e = (u0, u1). When P = (V,E) is a path, the min-
imum elastic ratio is achieved when each ratio of
e ∈ E takes the same value.
Proof. Assume the length of the edge in G is L,
E = {e1, e2, . . . , en}, each length of ei is li, each ra-
tio of ei is ri on a mapping ϕ. On the ϕ, we have
r1l1 + r2l2 + r3l3 + · · ·+ rnln = L.

Assume the maximum among ri for each 1 ≤ i ≤ n

is rk, the minimum among ri for each 1 ≤ i ≤ n is
rh. So it is obvious that� rk ≥ L/(l1 + l2 + · · ·+ ln),
1/rh ≥ (l1 + l2 + · · ·+ ln)/L.

According to the definition, the elastic ratio er of
this mapping is the maximum among ri and its re-
ciprocal for each 1 ≤ i ≤ n. That is, er equals the
maximum between rk and 1/rh.

When r1 = r2 = ... = rn, rk and 1/rh can take
the minimum. That means the minimum elastic ra-
tio can be achieved if and only if each ratio of e ∈ E

takes the same value.

Now we turn to the main theorem.
Theorem 3 We can solve the elastic linkage

problem from path to path in O(n3) time.
Proof. We assume path P=(v1, v2, . . . , vn),
the length of each edge {vi, vi+1} is li, path
G=(u1, u2, . . . , un′), the length of each edge
{uj , uj+1} is wj , and n ≥ n′ ≥ 2.

We define two functions as follows for i > i′ ≥ j:

dist(vi′ , vi) = li′ + li′+1 + · · ·+ li−1

Ser(vi′ , vi, wj) = max

{
wj

dist(vi′ , vi)
,
dist(vi′ , vi)

wj

}
That is, dist(vi′ , vi) is the length of the path

(v′i, . . . , vi), and Ser(vi′ , vi, wj) is the mini-
mum elastic ratio of all edges in the subpath
P ′ = (vi′ , vi′+1, . . . , vi) of P that covers the edge
{uj , uj+1} .

We first precompute this function as a table which
will be referred in our polynomial time algorithm.
The computation of Ser[(vi′ , vi), wj] can be done as
follows: (1) for each (vi′ , vi) with i′ < i, compute
dist(vi′ , vi) and fill in the table dist[vi′ , vi], (2) for
each j = 1, 2, . . . , n′−1, compute Ser(vi′ , vi, wj) and
fill in the table Ser[(vi′ , vi), wj].

In (1), each dist(vi′ , vi) can be computed in a con-
stant time by using dist(vi′ , vi) = dist(vi′ , vi−1) +

ℓ(ei) when we compute the values of this table in the
order of (i − i′) = 1, 2, 3, On the other hand, in
(2), each Ser(vi′ , vi, wj) can be computed in a con-
stant time. Therefore, the precomputation can be
done in O(n3) time in total. To solve the elastic link-
age problem efficiently, we define two more functions
ER(vi, uj) and M(vi, uj) as follows. ER(vi, uj) is
the minimum elastic ratio of the mappings from the
subpath P ′ = (v1, v2, . . . , vi) of P to the subpath
G′ = (u1, u2, . . . , uj) of G. Then we have the follow-
ing:

ER(vi, uj) =

{
Ser(v1, vi, w1) when j = 2
min{max{ER(vk, uj − 1), Ser(vk, vi, wj−1)} k = j − 1, j, . . . , i− 1} when j > 2

Our goal is to obtain the mapping from P to G
with elastic ratio ER(vn, un′). M(vi, uj) is a se-
quence of j vertices of path P that represents the
mapping with minimum elastic ratio from the sub-
path P ′ to the subpath G′. The first and last ver-
tices in M(vi, uj) is v1 and vi. Then we have the
following:

M(vi, uj) =

{
(v1, vi) when j = 2
(M(vτ , uj−1), vi) when j > 2,

where τ is determined by the following equation:
ER(vi, uj) = max{ER(vτ , uj−1), Ser(vτ , vi, wj−1)}

Our goal is to obtain M(vn, un′). The ER(vn, un′)

and M(vn, un′) can be obtained simultaneously by
dynamic programming technique. In the tables
of ER(vn, un′) and M(vn, un′), ER(vn, un′) and
M(vn, un′) are easy to get if the values in the
(n′ − 1)-st row are available. The table ER(vn, un′)

is filled from j = 2, that is, for vi = v2, v3, . . . , vn,
ER(vi, u2) = Ser(v1, vi, w1) have already precom-
puted, and accordingly, the first row of table
M(vn, un′) is M(vi, u2) = (v1, vi). After filling in

4ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

the first row of the tables, it is easy to get the val-
ues in the second row, the third row, up to the
(n′ − 2)-nd row and finally get ER(vn, un′) and
M(vn, un′). Each element of the table ER(vn, un′)

can be computed in O(n) time, each element of the
table M(vn, un′) can be computed in a constant
time. That is, the computation of ER(vn, un′) and
M(vn, un′) can be done in O(n3) time, the precom-
pution can be done in O(n3) time too. Therefore, the
algorism runs in O(n3) time, that means the elastic
linkage problem can be solved in polynomial time.

5. Covering problem of a tree by a
path

In this section, we focus on the traverse problem
of G by P . In this variant, we allow to P to cover
an edge of G twice or more, but each length is fixed
(or, in other words, the elastic ratio is fixed to 1).

However, in general case, this problem is similar
to the following ruler folding problem:
Ruler Folding: Given a polygonal chain with

links of integer length ℓ0, . . . , ℓn−1 and an in-
teger L, can the chain be folded flat so that its
total folded length is L?

The details of this problem and related results can
be found in [2]. For the general cover problem of G
by P , we have the following theorem:

Theorem 4 The general cover problem of G by
P is NP-complete even if G is an edge.
Proof. We can reduce the ruler folding problem to
our problem by just letting G be an edge of length
L.
We note that the ruler folding problem is weakly NP-
complete, and we have a simple pseudo-polynomial
time algorithm that runs in O(nL) time as follows;

Input: Set of integers S = ℓ0, . . . , ℓn−1 and an integer
L

Output: Determine if there is S′ ⊆ S with∑
i∈S′ ℓi = L

begin
Initialize array a[0], . . . , a[L] by 0;
Set a[0] = 1;
foreach i = 0, . . . , n− 1 do

foreach j = 0, . . . , L do
if a[j] == 1 and j + ℓi ≤ L then
a[j + ℓi] = 1;

end
end
if a[L] == 1 then output “Yes”;
else output “No”;

end

However, when we have no restriction on the tra-
verse of an edge in G, it is quite hard to solve. There-

fore we here introduce a reasonable restriction on
covers of G by P . We restrict the target graph G is
a tree T , and P can cover each edge in T at most
(or possibly exactly) twice. This idea comes from
the real simulation of a general mechanism G by
a robot arm P . In this case, a reasonable general
way consists of two steps; first, we make a spanning
tree T of G, and next, we cover T by P in a depth
first search manner. Then P covers each edge in T

exactly twice. That is, hereafter, we consider the
following tree traversal problem:
Input: A path P = (V,E) that forms a path

(v0, v1, . . . , vn) with length function ℓ : E → R,
and a tree T = (V ′, E′) with length function
ℓ : E′ → R. (We do not distinguish the length
function ℓ for P and T .)

Output: A traversal of T by P such that each edge
in T is spanned by exactly two subpaths of P ,
or “No” if it does not exist.

We first observe that it is linear time solvable when
each edge has the unit length just by depth first
search. Therefore, it is an interesting question that
asks the computational complexity when ℓ maps few
distinct values, especially, ℓ maps two distinct val-
ues, and G is a simple tree, e.g., a star or a spider.

We give three hardness results about the traversal
problem of T even if T and P are quite restricted.

Theorem 5 The traversal problem of a tree T

by a path P is strongly NP-complete in each of the
following cases: (1) T is a star K1,n−1, and P con-
sists of edges of two different lengths. (2) T is a
spider and all edges in G and P are of length p and
q, where (2a) p and q are any two positive integers
that are relatively prime, or (2b) p = 1 and q = 2.
Proof. It is clear that each of the problems is in NP,
we show hardness. We will give polynomial time re-
ductions from the 3-Partition to our problems.
(1) T is a star K1,4m+1. Among 4m + 1 edges, the
length of m + 1 edges is B, and the other 3m edges
have length ai for each i = 1, 2, . . . , 3m (Fig. 2).
The construction of P is as follows. Let P ′ be a
path that consists of 2B edges of length 1, and P ′′

be a path that consists of 2 edges of length B. Then
the path P is obtained by joining m + 1 subpaths
P ′′ and m subpaths P ′ alternatively, that is, P is
constructed by joining P ′′, P ′, P ′′, P ′ P ′′, . . ., P ′,
P ′′ as shown in Fig. 2. The construction is done in
polynomial time. Thus we show that the 3-Partition
problem has a solution if and only if the constructed
cover problem has a solution. We first observe that
P ′′ cannot cover any short edge of length ai in T .
Therefore, each P ′′ should cover each edge of length

5ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

P
P’’ P’

B

ai

T

B

1

m+1 3m

B 1 1

P’’

2B

P’ P’ P’’

Fig. 2 Reduction to K1,4m+1 and a path P .

B in T twice. Hence all of the endpoints of P ′′s (and
hence P ′) are on the central vertex of T . Therefore,
if P can cover T properly, it is easy to see that each
P ′ should cover three edges of length ai, aj , and ak
with ai + aj + ak = B exactly twice. This concludes
the proof of (1).
(2a) This reduction is similar to (1). Let P ′ be a
path that consists of 2B edges of length p, and P ′′

be a path that consists of 2 edges of length q. Then
the path P is obtained by joining m + 1 subpaths
P ′′ and m subpaths P ′ alternatively. On the other
hand, the spider T is obtained by sharing the cen-
tral vertex of 4m + 1 sub paths (Fig. 3). Among
4m+1 subpaths, m+1 paths are just edges of length
q. The other 3m subpaths are of ai edges for each
1 ≤ i ≤ 3m, and each edge has length p. Since p

and q are relatively prime, P ′′ cannot cover each of
edges of length p. Therefore, their endpoints (and
the endpoints of P ′) share the central vertex of T .
Thus each P ′ gives us the solution of the 3-Partition
as in (1), which completes the proof of (2a).

(2b) The reduction itself is the same as (2a) but
p = 1 and q = 2. In this case, we observe that
no edge of length 1 can be covered by any edge of
length 2 in P ′′. Therefore, each edge of P ′′ of length
2 should cover the edges of T of length 2. Thus each
P ′ gives us the solution of the 3-Partition as in (2a),
which completes the proof of (2b).

In Theorem 5, we show that the cover problem of a
tree by a path is NP-hard even if we strictly restrict
ourselves. Now we turn to show a polynomial time
algorithm for the case that we furthermore restrict.

Theorem 6 Let T be a star K1,n′ and the num-
ber of distinct lengths of its edges is k. Let P be
any path of length n. Without loss of generality, we
suppose 2n′ ≤ n Then the cover problem of T by
P can be solved in O(nk+1) time and O(nk) space.
That is, it is polynomial time solvable when k is a
constant.
Proof. We suppose that each edge of T has of length
in L = {ℓ1, ℓ2, . . . , ℓk}, and T contains Li edges of
length ℓi for each i. For a vertex vi in P and length
ℓj in L, we define a function pre(vi, ℓj) as follows;

pre(vi, ℓj) =

{
vk there is a vertex vk with k < i on P such that ℓ(ek) + ℓ(ek+1) + · · ·+ ℓ(ei) = ℓj

ϕ otherwise

We first precompute this function as a table which
will be referred in our polynomial time algorithm.
We refer this table as pre[vi, ℓj] which uses O(nk)

space. The computation of pre[] can be done as fol-
lows; (0) initialize pre[] by ϕ in O(nk) time, (1) sort
L in O(k log k) time, and (2) for each i = 1, 2, . . . , n

and j = 1, 2, . . . , k, the vertex vi fills the table
pre[vi′ , ℓj] = vi. In (2), the vertex vi can fill
pre[vi′ , ℓj] = vi in O(n+k) time. Therefore, the pre-
computing takes O(n(n+k)+k log k) time in O(nk)

space.
Now we turn to the computation for the cover

problem. To do that, we define a predicate
F (d1, d2, . . . , dk, vi) which is defined as follows:
When there is a cover of a subtree T ′ of T that
consists of d1 edges of length ℓ1, d2 edges of length
ℓ2, . . ., and dk edges of length ℓk by the subpath
P ′ = (v0, v1, . . . , vi) when v0 and vi are put on the
center of T , F (d1, d2, . . . , dk, vi) is true, and false
otherwise. (For notational convenience, we define

6ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

P
P’’ P’

q

ai
T

q

m+1 3m

q

P’’

2B

P’ P’ P’’

p pp

p pp

p

Fig. 3 Reduction to spider of two different lengths.

that F (d1, d2, . . . , dk, ϕ) is always false.) Thus, our
goal is to determine if F (L1, L2, . . . , Lk, vn) is true

or false. The predicate F (d1, d2, . . . , dk, vi) is deter-
mined by the following recursively;

F (d1, d2, . . . , dk, vi) =
∨

1≤j≤k

((pre(vi, ℓj) ̸= ϕ) ∧ F (d1, . . . , dj − 2, . . . , dk, pre(pre(vi, ℓj), ℓj)))

That is, for the vertex vi, we have to have two ver-
tices vi′ = pre(vi, ℓj) and vi′′ = pre(pre(vi, ℓj), ℓj)

such that ℓ(ei′) + ℓ(ei′+1) + · · · + ℓ(ei) = ℓj and
ℓ(ei′′) + ℓ(ei′′+1) + · · · + ℓ(ei′) = ℓj for some j with
1 ≤ j ≤ k. The correctness of this recursion is triv-
ial.

The predicate F (L1, L2, . . . , Lk, vn) is computed
by a dynamic programming technique. That is, the
table F [d1, d2, . . . , dk, vi] is filled from d1 = 0, d2 =

0, . . . , dk = 0 for the center vertex c, which is true.
Then, we increment in the bottom up manner; that
is, we increment as (d1, d2, . . . , dk) = (0, 0, . . . , 0, 1),
(0, 0, . . . , 1, 0), . . ., (0, 1, . . . , 0, 0), (1, 0, . . . , 0, 0),
(0, 0, . . . , 0, 2), (0, 0, . . . , 1, 1), . . ., (0, 1, . . . , 0, 1),
(1, 0, . . . , 0, 1), and so on. The number of combi-
nations of (d1, d2, . . . , dk) is L1 ·L2 · · · · ·Lk ≤ n′k =

O(nk), and the computation of F [d1, d2, . . . , dk, vi]

for the (d1, d2, . . . , dk) can be done in linear time.
Therefore, the algorithm runs in O(nk+1) time
O(nk) space.

References
[1] Demaine, E. D. and O’Rourke, J.: Geometric fold-

ing algorithms, Cambridge university press Cambridge
(2007).

[2] Garey, M. R. and Johnson, D. S.: Computers and in-
tractability. A guide to the theory of NP-completeness.
A Series of Books in the Mathematical Sciences (1979).

[3] Kupferman, O. and Vardi, G.: Eulerian Paths
with Regular Constraints, LIPIcs-Leibniz Interna-
tional Proceedings in Informatics, Vol. 58, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016).

7ⓒ 2018 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2018-AL-166 No.4
2018/1/28

