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X-NAS (eXpandable network-attached storage), a scalable, clustered file system designed
for entry-level NAS, has been developed. It enables centralized management of multiple NAS
systems and virtualizes them into a single-file-system view for different kinds of clients. The
core of X-NAS is a multi-protocol virtualized file system (MVFS), and its key feature — a
file-handle cache — improves the system scalability while maintaining X-NAS manageability.
To evaluate X-NAS scalability, an X-NAS prototype was designed and tested according to
the NFSv2 implementation. These tests indicate that an eight-way X-NAS has a 10% faster
response time and a 25% higher throughput than a conventional single NAS.

1. Introduction

Network-attached storage (NAS) is a net-
work storage system directly attached to an
IP network for efficiently managing digital
data. NAS has recently been gaining general
acceptance, because it can be managed easily
and share files among many clients running dif-
ferent operating systems with different file sys-
tems. Among the various kinds of NAS, an
entry-level NAS system is convenient in terms
of cost and ease of management for offices and
departments with no IT (information technol-
ogy) experts.

However, an entry-level NAS is not scalable;
therefore, if it becomes filled to capacity, clients
must buy another one. This means that they
then have to administer two NAS systems. Ac-
cordingly, the more NAS systems there are to
be administered, the more administration costs
will increase. To avoid such costs increases, it is
effective to buy a midrange NAS, whose capac-
ity can be expanded. However, the midrange
NAS is much more expensive than an entry-
level NAS system; therefore, clients in offices
and departments cannot afford it.

To solve the above-described problems, a low-
cost scalable NAS system must be developed.
One approach is to make use of logical vol-
ume management (LVM), a well-known disk-
expansion function. It can easily virtualize
many disk drives as a unified drive by adding
them to or removing them from an expansion
PCI slot. In the case of the entry-level NAS
with PCI connecters for adding new disk drives,
clients can easily expand the system capacity
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at low cost. However, LVM can only be accom-
plished on only one NAS system. Once a part of
the system, such as the CPU or operating sys-
tem, suffers a fault, clients cannot access any
files on the system.

Another approach is to use a clustered ar-
chitecture, which virtualizes many file systems
connected to the IP network as a single uni-
fied file system. Such a network-based clus-
tered NAS system has a larger overhead than
that of the LVM, because all NASs are man-
aged via the IP network. However, the clus-
tered NAS systems are promising in terms of
reliability and performance because they have
many CPUs and the network resources.

Under these circumstances, several scal-
able distributed file systems have been devel-
oped V~% . These scalable file systems virtual-
ize many distributed file systems connected to
the IP network as a single unified one. To spec-
ify a file system that stores file entities, they
put additional information into the file handles
(which are file identifiers). However, these sys-
tems can only be used under a UNIX environ-
ment and the file handles must be revalidated
when the system is reconfigured.

X-NAS (where X stands for expandable) >)~7)
is a scalable clustered NAS architecture de-
signed for an entry-level NAS. It can be used
for different kinds of clients, such as ones us-
ing UNIX or Windows. X-NAS is based on the
following four goals.

e Cost reduction by using entry-level NAS as

an X-NAS element

e Ease of use by providing a single-file-system

view for different kinds of clients

e Ease of management by providing a cen-

tralized management function
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e KEase of scaling-up by providing several

system-reconfiguration functions

To achieve the last three goals, X-NAS must
manage multiple NAS systems without chang-
ing client environments, even file handles. In
addition, to provide X-NAS for clients using an
entry-level NAS, X-NAS has to maintain the
manageability and performance of the entry-
level NAS. As for manageability, centralized
management is effective. However, centralized
management tends to degrade performance as
the system grows. To maintain the performance
of the entry-level NAS and improve system scal-
ability, a virtual file system with a low overhead
must thus be developed.

To meet this demand, a virtualized file sys-
tem, the core of X-NAS, has been developed.
Its key feature reduces X-NAS overhead to
improve system scalability while maintaining
manageability. X-NAS scalability was evalu-
ated by using an X-NAS prototype based on
NFSv2. The evaluation results indicate that
X-NAS incurs a lower overhead than a conven-
tional entry-level NAS and has better cost per-
formance and capacity scalability.

2. System Overview

Figure 1 shows an overview of X-NAS, which
includes one P-NAS (parent NAS) node and
many C-NAS (child NAS) nodes. A C-NAS
node is equivalent to a single NAS system,
which includes an NFS daemon® and a data
partition. Each file system on the data parti-
tion has the same directories tree as that of the
clients and is used to store file entities. P-NAS
has two special functions: a multi-protocol vir-
tualized file system, MVFS for short, and an
X-NAS manager. MVFS is a global file system
used for the virtualization and ease of manage-
ment of many C-NAS nodes. It distributes each
file entity among all data partitions. The X-
NAS manager is responsible for X-NAS man-
ageability features such as on-line reconfigura-
tion, autonomous rebalancing, and automatic
migration facilities. On-line reconfiguration en-
ables administrators to add or remove X-NAS
elements without stopping file-sharing services
for clients. In addition, autonomous rebalanc-
ing can rebalance the available disk capacity
by moving files between X-NAS members au-
tomatically and dynamically. Furthermore, au-
tomatic migration expands the capacity of the
existing NAS node by keeping the existing files-
and-directories tree. (Since the details of au-
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tonomous rebalancing and automatic migration
are discussed in another paper ®)-%) | they are not
described here.) X-NAS also moves files from
one data partition to the other partitions dur-
ing X-NAS reconfiguration.

3. MVFS

To reduce the administration cost of many
NAS systems, a multi-protocol virtualized file
system (MVFS) has been developed. MVFS is
based on NF'S and distributes all files, according
to their inode numbers, to X-NAS members.

3.1 Structure

MVES, an X-NAS core, enables the central-
ized management of many NAS nodes and pro-
vides a unified file system view for clients. Fig-
ure 2 shows the structure of MVFS. It consists
of Xnfsd, Samba?, a management partition,
an X-NAS configuration table, and a virtual-
partition (VP) mapping table.

Xnfsd, the heart of MVFES, is a wrapper of the
NFS daemon, which is the standard file system
for UNIX. The wrapper daemon receives file-
access requests from clients in place of the NFS
daemon, and it then sends them to the appro-
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priate NFS servers. Although Xnfsd emulates
NFS, it has a very simple and smart structure;
that is, it leaves almost all of the file-access
processing to the original NFS servers. It can
easily co-operate with Samba, a free software
that provides seamless file services for Win-
dows clients, because it is completely compati-
ble with NFS.

The management partition provides a unified
file system view for clients and is used to specify
the C-NAS nodes that stores the file entities.
The file system on the management partition
keeps the same files-and-directories tree as that
of the clients. However, all files on the manage-
ment partition are zero-byte-size dummy files
(Fig.2). Dummy files are used for examining
the attribute information in the files and direc-
tories. They are also used to specify the data
partitions for storing the file entities.

The X-NAS configuration table keeps setting
information such as host names of X-NAS mem-
bers and their export points. The VP mapping
table is used to specify the data partition that
stores file entities. It keeps the correspondence
between a virtual partition, which is a unit for
managing files on X-NAS, and the data par-
tition to which the virtual partition belongs.
These tables are updated during X-NAS recon-
figuration.

3.2 File-distribution Policy

Xnfsd distributes each file entity among all
data partitions via the IP network. It therefore
has to record the correspondence between each
file and the data partition that keeps the file
entity. One method is to record the correspon-
dence in a table. However, this method poses
a problem because the table size becomes huge
as the number of files increases. As a result,
such a huge table must be put on the low-speed
disk drives not the high-speed memory. Fur-
thermore, the search cost for such a huge table
is high. To achieve an efficient search in the ta-
ble on the disk, many subjects, which form the
structure of the table and the search algorithm,
should be considered.

Another method is to put additional infor-
mation, which indicates the data partition that
stores the file entity, into the file handles V~%.
In this case, when file migration is caused by
system reconfiguration, the identifier of the
data partition in the file handles becomes in-
valid. The file handles must therefore be revali-
dated. However, revalidation needs modifica-
tion of NFS client programs because the file
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handles are kept in client systems. To real-
ize these revalidation processes, client programs
must be modified. As the system grows, the
management cost of modifying the client pro-
grams increases.

To solve the above-described problems, Xnfsd
makes use of a file system on the management
partition to record the correspondence. It dis-
tributes all files among all data partitions by
using the inode numbers of dummy files that
are managed by the file system on the manage-
ment partition. Xnfsd determines a virtual file
group, namely, a virtual partition to which a
file belongs, by applying a hash function to the
inode number of the dummy file. The virtual
partition is a virtual unit for managing files and
it is invisible to clients. The number of virtual
partitions is fixed in advance. Managing all files
as a unit of virtual partitions keeps the size of
the mapping table compact. Xnfsd also records
the correspondence between the virtual parti-
tion and the data partition in the VP mapping
table.

The inode numbers of the dummy files are
unique identifiers because these files are on a
single file system of the management partition.
When the inode number of the dummy file is
Inodey and the number of the virtual partitions
is N, the identifier of the virtual partition V-
ID; of file f is given as follows:

V-ID; = InodesmodN.

Since inode numbers of dummy files are man-
aged by the file system on the management par-
tition, they are not random numbers. However,
the identifiers of the virtual partitions may be
pseudo-random because they are calculated by
applying a hash function to the inode numbers.

File-distribution using the inode number of
the dummy file has two advantages. First, even
if clients change the file name, the inode num-
ber of the file stays the same; file re-distribution
is therefore not needed. Second, inode num-
bers are included in the original file handles.
Since no additional information in file handles
is needed, file revalidation is not needed.

3.3 Operations

NFS operations, which are emulated by Xn-
fsd, can be divided into four categories ac-
cording to file-object type and process type
as shown in Table 1: file objects are cat-
egorized as files or directories; processes are
categorized as read or write. Category-1 and
category-2 NF'S operations are performed both
on the management partition and on one of the
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Table 1 Categories of NFS operations.

NFS operations
(NFSv2)

READ, STATFS, GETATTR,
LOOKUP

CREATE, WRITE, REMOVE,

File object |Process
type type

I+

File Read

2| File | Write | peNAME, SETATTR, LINK

READDIR, READLINK,
STATFS, GETATTR, LOOKUP
MKDIR, RMDIR, REMOVE,
SYMLINK, SETATTR

w

Directory| Read

S

Directory| Write

data partitions. Category-3 NFS operations are
performed only on the management partition.
Category-4 NFS operations are performed on
the management partition and all data parti-
tions, since all X-NAS members have the same
directories tree.

(1) Category-1 NFS operations:

When a UNIX client sends a READ oper-

ation for file f to X-NAS, Xnfsd receives

it in place of the NF'S daemon. Figure 3

shows the flow of this operation.

(a) Xnfsd performs disk accesses to
the management partition by us-
ing the file handle of the READ
operation and then specifies the in-
ode number of dummy file f.

(b) Xnfsd calculates the virtual parti-
tion number by applying the hash
function to the inode number, and
then specifies the data partition
that stores the file entity by refer-
ring to the VP mapping table.

(c¢) Xnfsd traces disk blocks on the
management partition by using
the inode number of dummy file f
and then gets the full path name
of file f.

(d) Xnfsd sends LOOKUP operations
with the full path name of file f
to the specified data partition, and
it then gets a local file handle of
file f on the data partition as the
response to the LOOKUPs.

(e) Xnfsd sends the READ operation
to the specified data partition by
using the local file handle, and
then reads the entity of file f.

(2) Category-2 NFS operations:

Firstly, when a client sends a CREATE

operation to make file f, Xnfsd creates

dummy file f on the management par-
tition. Secondly, it performs the above-

Scalability of X-NAS: A Clustered NAS System 71
P-NAS () -
READ — VP mapping
oA e
(a)
@ © —
(C) - dirl '
management] /d“z/')&
partition (flef fileB fileC)
LAN —— - T
VCNAS || C-NAs C-NAS
[Cnfsd ||| [nfsd 1] [Cnfsd ]
data alt il e
Paﬂitionl\‘ dir2<:k;ir3 dlfl’f;’:lﬂ der’t;:gld

Fig.3 Flow of READ operation.

described processes (b), (c), and (d). It
then sends the CREATE operation to the
specified data partition by using the local
file handle and, finally, creates the entity
of file f.
(3) Category-3 NFS operations:
When a client sends a READDIR opera-
tion to read directory D, Xnfsd reads the
entry list of directory D on the manage-
ment partition.
(4) Category-4 NFS operations:
First, when a client sends a MKDIR, op-
eration to make directory D, Xnfsd cre-
ates directory D by sending the MKDIR
operation to the management partition.
Second, it performs the above-mentioned
processes (c) and (d). In process (d),
Xnfsd sends LOOKUP operations to all
data partitions and then gets all of the lo-
cal file handles from them. Third, Xnfsd
sends the MKDIR operations with the
local file handles to all data partitions.
It then gets responses from all data par-
titions. Finally, it makes one response
from all the responses and sends it back
to the clients.
3.4 Interaction with X-NAS Manager
Xnfsd interacts with the X-NAS manager,
which is responsible for X-NAS manageability
features such as on-line reconfiguration. How-
ever, the on-line reconfiguration can add or re-
move NAS nodes easily and transparently with-
out stopping the client file-sharing services.
The core architecture of on-line reconfigura-
tion is two-layer mapping as shown in Fig. 4.
The first-layer mapping correlates the dummy
file on the management partition with the vir-
tual partition. The second-layer mapping cor-
relates the virtual partition with the data parti-
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tion. The relation between the virtual partition
and the data partition is stored in a VP map-
ping table.

All files are handled as a unit of a virtual
partition. The number of virtual partitions N
is independent of that of data partitions (as de-
scribed in Section 3.2). In terms of object bal-
ancing, it is useful to use a lot of virtual parti-
tions in a few data partitions 011 In X-NAS,
N is from approximately 100 to 1,000 times the
number of data partitions. Firstly, each vir-
tual partition is assigned at each data partition
equally. Even if the X-NAS manager moves the
virtual partition from one data partition to an-
other by on-line reconfiguration, the correspon-
dence between the file and the virtual partition
to which the file belongs is the same. On-line
reconfiguration thus simply involves updating
the VP mapping table and the X-NAS configu-
ration table.

The simplest method of file migration during
on-line reconfiguration is performed by stop-
ping the file-sharing services of clients on pur-
pose (foreground migration). In addition to
this migration method, X-NAS supports back-
ground migration. To achieve this, Xnfsd
makes use of a retrying policy of NFS clients.
It ignores a file-access request when the file ob-
ject corresponding to this file-access request is
moving between two data partitions. Since the
NFS clients get no response to the file-access
request, it resends this request until it receives
the response.

Figure 5 shows an example of on-line recon-
figuration. Firstly, the number of X-NAS mem-
bers is only two, and all virtual partitions (in
this case N is nine) are mapped to DP1 and DP2
(step 1). Secondly, X-NAS adds DP3 by on-line
reconfiguration. When the X-NAS manager re-
ceives an add command from an administrator,
it adds a new DP (DP3) to the X-NAS mem-
ber. It then updates the VP mapping table and

step 1

step 2

Fig.5 Example of on-line reconfiguration.

the X-NAS configuration table. After that, the
X-NAS manager selects some virtual partitions
(VP1, VP6, and VP9) on both DP1 and DP2
and moves them to DP3 (step 2). Although
there are several algorithms for selecting which
virtual partition to move, the current X-NAS
applies the simplest way, that is, random se-
lection®. Since these processes are performed
without disturbing the file-access requests from
clients, the clients can continuously access their
files on X-NAS.

4. Scalability

4.1 Goal

Although the X-NAS architecture has the ca-
pacity to be scaled up to a 64-NAS system,
it was considered that the first X-NAS target
market segment should be from entry-level to
midrange NAS. These reasons for this choice
are that midrange NAS is much more expen-
sive than an entry-level NAS system and that
the cost-and-performance gap between these
two NAS systems is wide. To lower the cost
compared with the expensive midrange NAS,
X-NAS uses an entry-level NAS as an X-NAS
element. To cover these market segments, X-
NAS provides the capacity to scale up to several
terabytes, i.e., equivalent to the total capacity
of ten entry-level NAS systems. Furthermore,
to provide the same manageability and perfor-
mance of the entry-level NAS even if the system
grows, X-NAS maintains the simple-and-unified
management and the performance of the entry-
level NAS.

4.2 Problems with MVFS

It is difficult to achieve compatibility be-
tween simple-and-unified management and per-
formance scalability. To reduce the manage-
ment cost of multiple NAS systems, MVFS
manages file-access requests from clients and re-
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configuration requests from the administrators
only on P-NAS. This centralized management
enables clients to use many NAS systems eas-
ily. On the other hand, a bottleneck on P-NAS
tends to occur. Especially, MVFS uses exist-
ing metadata on the management partition and
data partitions to reduce the X-NAS manage-
ment data and to eliminate file-handle revalida-
tion processing. However, the cost for specify-
ing the data partition that stores the file entity
is high. This is because processes such as spec-
ifying the full path name of the file and getting
the local file handle of the file need many disk
and network accesses (described in Section 3.3).
To reduce the overhead and to improve X-NAS
scalability, a file-handle cache was therefore de-
veloped.

4.3 File-handle Cache

The file-handle cache is a table that keeps the
correspondence between the file handle of the
dummy file, i.e., the global file handle, on the
management partition and the local file han-
dle on the data partition. It is generally kept
in the memory on P-NAS. When Xnfsd sends
LOOKUP operations and gets the local file han-
dle as a response to the appropriate data par-
tition, it registers the local file handle on the
file-handle cache along with the inode number
of the global file handle and the data parti-
tion number that keeps the file entity. Fig-
ure 6 shows the structure of the file-handle
cache. Xnfsd looks for the table by using the
hash value of the inode number of the global file
handle as an index. It then specifies the iden-
tifier of the data partition (DP) and the local
file handle (LFH) corresponding to the global
file handle.

NF'S operations with the file-handle cache are
performed as follows. When a client sends a
READ operation of file f for the first time, Xn-
fsd performs processes (a), (b), (c), and (d). As
a result, it registers the local file handle on the
file-handle cache. After that, Xnfsd can elimi-
nate processes (c¢) and (d) because it can reuse
the local file handle on the memory of P-NAS.
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The overhead incurred by accessing the man-
agement partition and the network can there-
fore be reduced.

5. Performance

To evaluate the system scalability, we mea-
sured the performance of MVFS by using an
X-NAS prototype implemented on several 1U
Linux servers. (Note that the X-NAS prototype
is now based on the NFSv2 implementation.)
Since all X-NAS functions were provided as a
user-mode process on Linux and X-NAS was
independent of the Linux kernel, it is portable.

To evaluate the overhead and scalability of X-
NAS, the industry-standard SPECsfs97 bench-
mark program '?), which measures the perfor-
mance of the NFS server, was run on the X-NAS
prototype. The evaluation index SPECsfs97
was used as throughput, that is, the number
of executed NFS operations per second when
the same number of NFS operations is offered.
Since implementation of the X-NAS prototype
is based on NFSv2, an NFSv2 working set and
the modification were used in the test. Note
that the number of mount points was only one.

5.1 Experimental Environment

Figure 7 shows a schematic of the exper-
imental environment, in which the maximum
number of X-NAS elements is fixed to eight in
our target segment. This is because the capac-
ity of a disk will be increased before X-NAS
can be expanded since the cost of disks is be-
coming much cheaper. Since a C-NAS only has
one data partition, it is the equivalent to the
original NFS server. On the other hand, P-
NAS has a management partition in addition
to a data partition. The client, C-NASs and
P-NAS are connected by 100-Megabit Ethernet
because most offices and departments that are
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Fig.8 Average response time of X-NAS without file-
handle cache.

the targets of X-NAS still use this type of LAN.
5.2 Experimental Results
5.2.1 X-NAS without File-handle
Cache

The evaluated performance, i.e., the relation-
ship between the offered load and the average
response time for all NFS operations, is shown
in Fig. 8. The average response time of X-NAS
is from five to eight times slower than that of
the original NF'S server. Figure 9 shows the
relationship between offered load and delivered
load. The delivered load indicates whether the
system can process all NAS operations of an
offered load within a benchmarking time. If
delivered load is equal to offered load, there is
no bottleneck in the system. The maximum de-
livered load for the single NF'S is 700 NFSOPS
(Fig.9). On the other hand, the throughput of
the X-NAS prototype is one seventh compared
to that of the single NFS server. Furthermore,
the average response time and the throughput
are the same in the case of both four- and eight-
way X-NASs. These results suggest that X-
NAS without a file-handle cache has no scal-
ability (as described in Section 4.2).

It was assumed that the X-NAS without the
file-handle cache has no scalability because the
overhead to specify the data partition that
stores the file entities is very high. To validate
this assumption, relative response time for each
NFS operation that appears in the SPECsfs97
benchmark program was determined.

Figure 10 shows the relative response time
of NFS operations when the average response
time for each NFS operation on a single NFS
server is equal to one. Clearly, a longer relative
response time means a higher overhead. The
figure shows that the average response times
for directory-access requests such as READ-
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Fig.10 Relative response time for NF'S operations in
the case of eight-way X-NAS.

DIR and READLINK (category-3) in X-NAS
are the same as those for requests in the sin-
gle NFS server. On the other hand, the aver-
age response times for file-access requests such
as LOOKUP and CREATE (category-1 and
category-2) are from about three to twenty-five
times slower than those for these requests in
the single NFS. Furthermore, the average re-
sponse times for directory-access requests such
as MKDIR and RMDIR (category-4) are much
slower than those for requests in the single NF'S.
Because of these overheads, a bottleneck occurs
on P-NAS. As a result, the X-NAS system with-
out the file-handle cache has no scalability and
much lower performance than the single NFS
server.

5.2.2 Effects of File-handle Cache

Figure 11 shows the average response time
for the eight-way X-NAS with a file-handle
cache. The total throughput is shown in
Fig.12. The average response time and the
throughput were measured by changing the
number of file-handle cache entries. As shown
in Fig. 11, as the number of the file-handle cache
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Fig.12 Throughput of X-NAS with file-handle cache.

entries increases, the average response time be-
comes quicker. When the file-handle cache has
480 kilo-entries, the average response time for
the eight-way X-NAS is 10% faster than that
for the single NFS server. Furthermore, the
throughput of eight-way X-NAS is 25% higher
than that of the single NFS (Fig.12). Fig-
ure 13 shows the relative response time of
NFS operations when the file-handle cache has
480 kilo-entries. Clearly, almost all relative re-
sponse times are much faster than those shown
in Fig. 10.

When the offered load is 1,000 NFSOPS, the
delivered load is sustained (i.e., load is satu-
rated) even though the number of the cache
entries increases. On the other hand, in the
case of four-way X-NAS, the maximum deliv-
ered load is 11% lower than that of the single
NFS even though the number of cache entries
increases.

6. Discussion

To investigate the above-mentioned load sat-
uration in the case of four- and eight-way X-
NASs with a file-handle cache, the average re-
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Fig.14 Average response time for READ operations.

sponse times for READ operation in the case
that the file-handle cache has 480 kilo-entries
were analyzed (Fig.14). This is because that
the total response time for READ operations
occupies about half of the benchmarking time.
The average response times for READ opera-
tions of the four-way X-NAS dramatically in-
crease when the offered load is 800 NFSOPS.
This result indicates that a bottleneck in the
disk accesses on P-NAS occurs. If the offered
loads on both the four- and eight-way X-NASs
are the same, the number of disk accesses on
one data partition of the four-way X-NAS is
double, that on the eight-way X-NAS. In addi-
tion, P-NAS has to process the disk access on
the management partition. This means that the
response time for READ operations on the four-
way X-NAS becomes much slower than that on
the eight-way X-NAS at the same offered load.

The SPEC client issues NFS operations at
constant intervals determined by the offered
load. It also issues a new NFS operation after
receiving the result of the previous operation.
However, even if the response time for NFS op-
erations became slower because of such a con-
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Fig.15 Relation between maximum throughput and

file-handle cache entries in the case of eight-
way X-NAS.

centration of disk accesses, the delivered load
is ensured as long as the response delays are
within the allowance range of the offered load.
In the case of four-way X-NAS, when the of-
fered load is 800 NFSOPS, the response delays
becomes out of range. As a result, the response
time for READ operations increases dramati-
cally, and then the delivered load is saturated.
However, if P-NAS had no data partition, this
saturation might be eliminated.

On the other hand, the average response time
for READ operations on eight-way X-NAS gets
gradually longer as the load increases (shown in
Fig.14). It can be said that in the case of eight-
way X-NAS, the bottleneck is not caused by
disk access concentration. The transfer rate of
the network was calculated by using the work-
load mix and the average file size to be ac-
cessed on the SPECsfs97 benchmark program.
As a result, it was found that the bottleneck is
caused by low network transfer rate. (Note that
the evaluation environment consisted of a 100-
Megabit Ethernet as the network.) However, if
the Gigabit Ethernet is used, the network bot-
tleneck can be reduced.

The relation between the maximum through-
put and the number of the file-handle cache en-
tries in the case of eight-way X-NAS is shown
in Fig.15. When the file-handle cache has
about 480 kilo-entries, the maximum through-
put is sustained. This means that the number
of file-handle cache entries is sufficient on the
SPECsfs97 benchmark program. According to
our previous research, the average file size of of-
fice documents for an entry-level NAS is about
from 100 to 300 kilobytes®. Since the average
file size to be accessed on this benchmark pro-
gram is much smaller than that, this number of
file-handle cache entries is sufficient in practical
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use.

Figure 16 shows the scalability of X-NAS:
the more the number of X-NAS elements, the
higher the X-NAS throughput. The results
of the performance evaluation described above
show that X-NAS provides a quicker response
time and a higher throughput than a single
NFS server. This result verifies that X-NAS
has better cost performance and capacity scal-
ability while maintaining the performance and
the manageability of entry-level NAS.

7. Related Work

There have been several studies on scalable
distributed file systems based on NFSD~%_ In
particular, DiFFS2):3) and Slice®) resemble X-
NAS in terms of design principles. DiFFS de-
livers high performance because it is distributed
among many partitions. It puts additional in-
formation, i.e., the partition ID, into a file han-
dle. Slice, developed at Duke University, is also
close to X-NAS in terms of its partition ap-
proach and use of directory servers. The parti-
tion used in Slice is a single server. Slice also
puts a file ID as a routing key in each file handle,
S0 it can be easily reconfigured. Furthermore,
the NAS switch ) uses the same approach as
DiFFS and Slice in that it puts an identifier of
NAS, which stores the file entity, into each file
handle. File handles must therefore be reval-
idated in the case of on-line reconfiguration.
All the above-described systems need modifi-
cation of client programs in order to support
file-handle revalidation processes.

X-NAS is a scalable clustered architecture
based on a standard NFS file system. It can
provide file-sharing services for many kinds of
client OS. To specify the file location, it uses
the inode number instead of additional infor-
mation in each file handle. In the case of sys-
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tem reconfiguration, revalidation of file handles
is therefore not needed. Furthermore, its file-
distribution method is completely invisible to
a client’s environment. The file handle cache
therefore enables locations of files, which are
frequently used, to be kept in the memory. As
a result, the overhead incurred when specifying
the file locations can be significantly reduced
and X-NAS scalability can be improved.

8. Future Work

When the number of NAS elements is more
than ten, the performance of the current X-
NAS is not sufficient, because the file-access
requests on the current X-NAS are managed
by one P-NAS. To solve this problem, hard-
ware and software improvements to deal with
the network bottleneck should be considered.
One hardware improvement is to use a Giga-
bit Ethernet and a software one is to change
the transmitting policy, which directly returns
the responses of the file-access requests from
the data partitions to the client. As for Giga-
bit Ethernet, parts of many 100-Megabit LANs
are being upgraded to Gigabit Ethernet sys-
tems. The benefit of Gigabit Ethernet will be
manifested when all of such networks (such as
routers, switching hubs and Ethernet) are re-
placed. Generally, 100-Megabit Ethernet is still
the mainstream technology in the offices and
departments that are the X-NAS targets. We
thus that the evaluation of X-NAS using Giga-
bit Ethernet is an important future work.

If the network bottleneck were eliminated, a
CPU bottleneck would occur. However, the
CPU usage is less than 30% on the current
P-NAS when the number of X-NAS members
is eight. The CPU bottleneck can thus be re-
duced by raising the CPU frequency and by us-
ing an on-chip multiprocessor to deal with the
CPU bottleneck. Moreover, using many NASs
as the entry points for file-access requests is
also effective. However, in terms of the ease
of management and ease of use of the multiple
NAS systems, to handle multiple entry points is
hard for entry-level NAS users. Current X-NAS
therefore manages file-access requests and ad-
ministration requests on one entry point. The
authors thus consider that some virtualization
methods of multiple entry points must be de-
veloped in the future.

Regarding the reliability of X-NAS, a single
point of failure is also a problem. However, it
can be solved by X-NAS clustering, details of
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which will be discussed in another paper.
9. Conclusions

X-NAS, a scalable clustered NAS designed for
an entry-level NAS, has been developed. The
X-NAS core, a so-called multiple-protocol vir-
tualized file system (MVFS), enables central-
ized management of many NAS nodes and pro-
vides a single file-system view for clients run-
ning different operating systems.

Xnfsd, which is the heart of MVFS, is a
smart-code wrapper daemon that completely
emulates the NFS daemon and distributes all
file-access requests into many NFS servers. Its
file-distribution policy based on inode numbers
is useful for renaming of files and directories
as well as for system reconfiguration. The file-
handle cache, which keeps the correspondence
between the global file handle on the manage-
ment partition and the local file handle on each
data partition, can improve the X-NAS cost-
performance and scalability.

An X-NAS prototype, an eight-way clustered
system based on NFSv2 running the SPECsfs97
benchmark program has a 10% faster response
time and 25% higher throughput than a single
NFS server. In other words, X-NAS not only
improves the performance of the single NAS
system but also provides a unified-file-system
view for both UNIX and Windows clients.
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