
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Safe Low-level Code Generation in Coq Using
Monomorphization and Monadification

Akira Tanaka1,a) Reynald Affeldt1,b) Jacques Garrigue2,c)

Received: April 8, 2017, Accepted: August 9, 2017

Abstract: Our goal is the production of formally-verified pieces of low-level code. Low-level code is typically writ-
ten in C, so as to enable efficient manipulation of data at the bit-level and easy access to built-in features of CPUs.
Proof-assistants arguably provide the most rigorous approach to formal verification of computer programs. Unfortu-
nately, they only allow for extraction of runnable code in high-level languages such as ML. Of course it is possible to
embed C snippets into ML programs, but this results in a complicated extraction process and the performance of the
output program becomes difficult to anticipate. In this paper, we propose a new code generation scheme for the Coq
proof-assistant that directly generates provably-safe C code. It is implemented in the form of plugins. The generation
of C source code is done by a plugin performing beforehand monomorphization of Coq programs. The correctness
of monomorphization can be proved within Coq. Code generation allows for user-guided changes of data structures.
It is therefore possible to do formal verification using proof-friendly data structures, while enjoying optimized C rep-
resentations in the output code. In order to ensure the safety of this transformation, we propose a new customizable
monadification algorithm in the form of another plugin. Using monadification, one can ensure by the insertion of the
right monads the preservation of critical invariants, such as the absence of overflows or complexity properties. We
provide several examples to illustrate our approach, including a realistic use-case: the rank algorithm from succinct
data structures.

Keywords: Coq, C, monomorphization, monadification, code generation

1. Introduction

1.1 Main Motivation
In this research, we address the general topic of producing for-

mally verified pieces of critical code. Our original and main mo-
tivation [26] is the formal verification of code for succinct data
structures. These are data structures for big data analysis that
use a minimal amount of computer memory [19]. While we will
see that our results are not restricted to this sole application, we
will use it as an example for the sake of concreteness. Succinct
data structures are typically written in C (or C++) because they
manipulate data at the bit-level. In particular, with succinct data
structures, one typically wants to take advantage of built-in func-
tions for features of recent CPUs (e.g., __builtin_popcount).
However, proof-assistants used for formal verification typically
only allow for extraction of code in higher-level languages such
as OCaml. This is why, in our previous work [26], we resorted
to embedding of C snippets into OCaml code. However, this re-
sulted in an arguably involved process for code extraction.

1.2 Problems with the Standard Approach to Code Extrac-
tion

Taking a step back, we came to realize that, in the context of

1 National Institute of Advanced Industrial Science and Technology
(AIST), AIST Tsukuba Central 1, Tsukuba, Ibaraki 305–8560, Japan

2 Graduate School of Mathematics, Nagoya University, Nagoya, Aichi
464–8602, Japan

a) tanaka-akira@aist.go.jp
b) reynald.affeldt@aist.go.jp
c) garrigue@math.nagoya-u.ac.jp

our research, the Coq extraction [13] facility suffers many defects
and prevents improvements. Here are the main issues that we
have identified:
• Efficiency It is not easy to use native features of processors

such as 64bit integers, SSE, __builtin_popcount, etc.
• Robustness Extraction is not robust. It is too sensitive to

customization (Appendix A.1 provides an example in which
customization causes the code generator to fail to preserve
tail recursion). There are some high-level options to mitigate
inefficiencies (for example, to enforce selective inlining with
the Extraction Inline command) but they do not address
the unpredictability of the code generator. To achieve robust-
ness, we believe that it is important to improve flexibility so
as to be able to obtain carefully-crafted code.

• Correctness In practice, Coq natural numbers are often ex-
tracted to OCaml integers but this is unsafe in general be-
cause the range of the latter is limited. There is no generic
mechanism to guarantee the safety of such a translation.

• Modularity The implementation of the extraction facility
should be more modular. Since it is part of the trusted base,
an implementation with well-identified modules is obviously
desirable. In its current form, the extraction facility does
not lend itself well to modifications and extensions. Indeed,
modified extraction with new language support requires the
user to build and install modified versions of Coq (see the
many such back-ends in Section 8.3).

• Type-specificity Low-level C uses types to optimize the rep-
resentation of values. However, Coq extraction attempts to
translate all of Gallina (the language of the Coq proof assis-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 The structure of our verification and code generation scheme.

tant), including polymorphism and dependent types, and as
a result only supports uniform translation. This prevents the
generation of efficient C code, and does not allow to change
the translation of a function according to its type.

1.3 Our Approach to Low-level Code Generation
To overcome the issues explained in Section 1.2, we propose

a new approach for the generation of efficient code from a Coq
program. Here are our main design decisions:
• C Code Generation Use C as the output language so as

to be able to use easily the processors’ native features and
goto statements to achieve tail recursion (this addresses the
Efficiency and Robustness issues). Indeed, in our case, there
is no strong reason to use the OCaml code generated by the
default extraction facility of Coq.

• Monomorphization Use monomorphization to specialize
polymorphic functions and avoid uniform translation (this
addresses the Type-specificity issue).

• Monadification Use monadification to be able to assert the
correctness of the change of data structures (e.g., from Coq
natural numbers to C’s ints). This provides a way to assess
the safety of the extraction (this addresses the Correctness
issue). See Section 1.4 just below for background informa-
tion about monadification for Gallina.

• Plugins Use plugins to build our new code generation
scheme (this addresses the Modularity issue). Indeed, there
is no strong reason to try to reuse or extend the current
Coq extraction facility. One could think of adding a new
“MiniML-to-C” layer to the latter but this is made compli-
cated by the fact that MiniML lacks explicit type information
(the difficulties caused by this lack of type information are il-
lustrated in Ref. [9]). Concretely, we provide one plugin for
monomorphization and C code generation, and one plugin
for monadification. This has many benefits. The correctness
of the monomorphization plugin can be asserted indepen-
dently inside Coq. At the time of this writing, the C code
generation is trusted but small because it does not (need to)

cover the full Gallina language (for example, there is no need
to handle polymorphism that C lacks). On the practical side,
plugins can be installed individually and used with a stan-
dard Coq installation, possibly for another purpose.

Figure 1 summarizes our approach by showing how we gen-
erate a working C program from a Gallina program and how we
formally establish its properties.

1.4 Monadification for Coq
The basic idea of Monadification is to see a Gallina term not

as a pure lambda-term, but as a possibly effectful program writ-
ten in a strict functional programming language, such as ML.
This is done by transforming the original term into a new Gallina
term, where all effects are encapsulated in a monad. The choice
of the specific monad, and in particular which constructions are
to be interpreted as monadic actions, depends on the effect we
want to consider. This means parameterizing on the monadic
triple, which is a parameterized type “M” together with two
functions “bind : ∀ab, M a → (a → M b) → M b” and
“return : ∀a, a → M a”, while selectively converting some spe-
cific functions into monadic actions, causing effects in the monad.
By observing these effects, it becomes possible to prove that in-
variants required by our translation scheme (into C) are indeed
enforced. See Section 3.4 for basic examples and Section 6.5 for
a realistic application.

In the practical context of code generation, it is not reason-
able to perform monadification manually. Manual monadifica-
tion is obviously error-prone. It is also repetitive, especially when
one needs to monadify the same program with different monads
(for example, when one needs a monad to prove that the pro-
gram never fails and another to establish complexity). Last, it
is a daunting task; for example, when we want to introduce a
monadic action for a very basic function, such as S (the Coq suc-
cessor function for natural numbers), it forces us to monadify not
only the target program, but also large parts of the Coq standard
library.

In this work, we introduce a new monadification algorithm and

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

apply it to Gallina. We explain the basic idea of this algorithm
in Section 3.1 and provide a detailed description in Section 3.2.
Although automatic monadification itself is not a new idea, ex-
isting approaches turn out to be unsatisfactory for the purpose of
generating C code from Gallina; this is discussed in Section 8.5.

1.5 Outline of This Paper
This paper is organized as follows.
We first explain how we carry out the generation of C code in

Sections 2–4. In Section 2, we explain the monomorphization
plugin. In Section 3, we explain the monadification plugin. In
Section 4, we explain the generation of C code.

Then, we perform several experiments to evaluate our scheme
for the generation of C code in Sections 5–7. In Section 5, we
test our monadification plugin using the SSReflect implementa-
tion of lists. In Section 6, we demonstrate our approach to C code
generation with the example of the rank algorithm for succinct
data structures. In Section 7, we evaluate more precisely the size
of the trusted base our approach introduces.

Finally, we review related work in Section 8 and conclude in
Section 9.

2. Monomorphization

Monomorphization is the action of specializing (polymorphic)
definitions w.r.t. type arguments. It is an important step towards
generation of C code, which does not enjoy polymorphism. We
have implemented monomorphization as a Coq plugin. When its
input is a non-recursive function (i.e., fun and Definition con-
structs), the correctness of the output can be checked automat-
ically inside Coq using the reflexivity tactic. We illustrate
monomorphization with a simple example in Section 2.1 and fur-
ther discuss design decisions in Sections 2.2–2.6.

2.1 Simple Example of Monomorphization
We illustrate our monomorphization plugin with the example

of a polymorphic definition of pair-swapping *1:

Definition swap {A B : Type} (p : A ∗ B) :=
let (a, b) := p in (b, a).
Definition swap_bb p := @swap bool bool p.

The Monomorphization command monomorphizes a function
as well as related data structures. For example, monomorphizing
swap_bb also monomorphizes the swap function and the pair
constructor (i.e., (_, _)) (see Section 2.3 for details). Concretely,
the command

Monomorphization swap_bb.

outputs the following monomorphized definitions:

Definition _pair_bool_bool :=
@pair bool bool : bool→ bool→ bool ∗ bool.
Definition _swap_bool_bool (p : bool ∗ bool) :=
let (a, b) := p in _pair_bool_bool b a.
Definition _swap_bb p :=
_swap_bool_bool p : bool ∗ bool→ bool ∗ bool.

*1 @ is used in Coq to avoid automatic filling of implicit arguments.

We can make sure that the semantics of the resulting function has
not been altered by proving equality between the polymorphic
and the monomorphized definitions:

Goal swap_bb = _swap_bb. Proof. reflexivity. Qed.

In this proof, reflexivity checks that swap_bb and _swap_bb
are convertible. It succeeds because the proof amounts to β-
reduction which is part of the conversion rule in Coq *2.

2.2 Overview of the Monomorphization Process
Let us describe informally the process of (function) monomor-

phization as implemented by our plugin. The main command is:

Monomorphization function name0 function name1 . . .

It triggers traversal in depth-first order of the functions given in
input. Type arguments are discovered at application sites (so, in
particular, the functions given in input should not have type argu-
ments). More precisely, when Monomorphization finds a func-
tion with its actual type arguments, it defines a function special-
ized w.r.t. these arguments and the function is examined to find
further function/constructor invocations.

Constructors of inductive types are treated similarly to func-
tions. They are monomorphized and specialized functions to
invoke the constructors with type arguments are defined (as
_pair_bool_bool in the above example).

Not only global definitions, but also local definitions by let
expressions are the target of monomorphization. Such definitions
are copied for each actual type arguments and nested lets are
generated. For illustration, let us consider the following function:

Definition foo :=
let id := (fun (T : Type) (x : T)⇒ x) in
(id bool true, id nat 0).

Monomorphization of foo causes the locally-defined polymor-
phic function id to be monomorphized into id and id0:

Definition _foo :=
let id := fun x : bool⇒ x in
let id0 := fun x : nat⇒ x in
let b := _true in
let b0 := id b in
let n := _O in
let n0 := id0 n in
_pair_bool_nat b0 n0

2.3 User Control of the Program Traversal
As seen in the example in Section 2.1, monomorphization pro-

ceeds by specializing definitions. However, not all definitions are
worth specializing and some are not even traversable. In order to
control the program traversal, our plugin provides the following
command:

Terminate Monomorphization function type arguments . . .

For example, one does not need to specialize functions

*2 The case of recursive functions cannot be as easily automated because
the conversion rule does not handle the fix and Fixpoint constructs.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

that map directly to C instructions. This is the case of
the function addn that performs addition of two natural
numbers: it directly maps to the + operator in C. One
can prevent its monomorphization by executing the command
Terminate Monomorphization addn.

Functions may use opaque definitions that are not traversable
at all. For example, the function divn that performs division of
two natural numbers rely on the boolean equality between nat-
ural numbers. In SSReflect, this equality is defined by the ex-
pression @eq_op nat_eqType a b (hidden by the overloaded no-
tation ==) where nat_eqType contains eqnP which is opaque.
One can prevent the monomorphization of divn with the com-
mand Terminate Monomorphization divn.

2.4 Insertions of let Expressions
We chose to have the Monomorphization command insert lo-

cal variables through let expressions. The purpose is to avoid
nested expressions to facilitate code generation.

This transformation is perfectly safe: since the Coq conver-
sion rule reduces let expressions (this is called ζ-reduction), the
correctness can be proved using the reflexivity tactic. The
result is similar to A-normal form [6]. A-normal form restricts
nested expressions to constant, variable or lambda expression.
We restricted nested expression only to variable since constant
and lambda expression are complex operations for our C code
generator: a constant is compiled to zero-argument function call
and a lambda expression needs closure allocation (closure is not
supported yet, see Section 9.1 for more insights).

The example of the rank_init function below illustrates the
insertion of let expression. The function contains an expression
let w1 := neq0 (bitlen (n %/ sz1 ∗ sz1)) in ... and it is trans-
lated with the additional variables n0, n1 and n2:

Definition _rank_init (b : bool) (s : bits) :=
...
let n0 := _divn n sz1 in
let n1 := _muln n0 sz1 in
let n2 := _bitlen n1 in
let w1 := _neq0 n2 in
...

2.5 About the Supported Subset of Gallina
Our monomorphization plugin does not need to support the full

Gallina language. Indeed, we want to generate C code from re-
sembling Gallina programs; there is therefore no need to support
all the abstraction features of Gallina. Concretely, we require the
user to write programs in the “ML-polymorphic subset” of Gal-
lina. This can be achieved by abiding to the following rules:
• Type arguments must be made explicit. (This is required by

Gallina.)
• A polymorphic function must be defined by a let-binding (or

by a global definition) such as let f (T : Type) x := ... in
Type arguments must be placed in leading positions; for ex-
ample, fun (x : nat) (T : Type)⇒ ... is prohibited.

• Polymorphic functions must be instantiated to be monomor-
phic, i.e., all occurrences of a polymorphic function must be

applied to type arguments immediately. For example, if f is
defined by let f (T : Type) x := ... in ..., it must appear as
f t. First-class polymorphism is not supported.

• Functions with polymorphic recursion are not supported.
Recursive function application cannot change the type
of arguments. For example, t must be T itself in
Fixpoint f (T : Type) x := ... (f t y)

• As a consequence, recursive inductive types must not
change the type of their arguments. For example, t must
be T itself in Inductive I (T : Type) := ... | C : ...→ I t
→ ...→ I T | This is allowed in SML and supported by
the monomorphization of MLton [15], but is of little use
without polymorphic recursion.

2.6 Naming Rule for Monomorphization
We conclude this section with the naming rules for monomor-

phized functions. We chose rules such that the generated code is
still readable.

Concretely, we use the original name (without module names),
prefixed with an underscore, and append underscore-prefixed
type arguments. For example, when Coq.Init.Datatypes.pair
of type ∀ A B : Type, A→ B→ A ∗ B (this is the example from
Section 2.1) is specialized for two bools, it generates the
monomorphized function with name _pair_bool_bool.

The naming rules defined above require in particular that com-
plex types be turned into names. If a type is an inductive type
without parameters, the name is unchanged (e.g., bool). If a type
is an inductive type with parameters, such as I t1 . . . tn, the pa-
rameter types are translated recursively and they are concatenated
as I_t1_..._tn. If a type is a function type, such as t1 → t2, t1 and t2
are translated recursively and they are concatenated as t1_to_t2.

3. Monadification

In this section, we explain how we achieve Monadification for
Coq as briefly explained in the introduction (Section 1.4).

We start by explaining the basic idea of our monadification al-
gorithm in Section 3.1. We then explain our monadification algo-
rithm in details in Section 3.2. We explain the implementation of
this algorithm as a Coq plugin in Section 3.3. Finally, we provide
concrete examples of monadification as performed by our plugin
in Section 3.4: application of monadification to the detection of
integer overflow (Section 3.4.1), buffer overrun (Section 3.4.2),
and proof about complexity (Section 3.4.3).

Comparison with related work, including why they fail to ful-
fill our purpose, is deferred to Section 8.5.

3.1 The Idea of the Monadification Algorithm
When we implement Coq nat using C’s int, we would like to

prove that integer overflow never happens. However we cannot
prove that n+ 1− 1 may overflow since n+ 1− 1 and n are equiv-
alent in Coq. We use monadification and the option monad to
make such program failures provable. Unless stated otherwise *3,
we will be using the option monad, which captures program fail-
ures: the Some constructor represents success, while the None

*3 Section 3.4.3 defines another monad to count constructor calls for exam-
ple.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

constructor represents failure *4:

Definition ret {A} (x : A) := Some x.
Definition bind {A} {B}

(x' : option A) (f : A→ option B) :=
match x' with

| None⇒ None
| Some x⇒ f x
end.

We introduce Haskell-like notations for the monad:

Notation “'return' t” := (ret t) (at level 100).
Notation “x�= y” := (bind x y)
(at level 65, left associativity).

When we show that a function f x never fails, we prove
∀x, condition → fM x = Some (f x) where fM is the monadified
function of f. The monadification maps some specific functions
whose behavior differs in Coq and in the target language, such
as addition in C, to monadic actions which return None when the
target language behavior may differ. condition is a condition suf-
ficient for f x to have the same behavior in Coq and in the target
language.

As this proposition is easier to prove if f and fM are similar, we
would like to modify the code as little as possible, i.e. to introduce
as few bind and ret operations as possible. Every time we apply
a function whose result is in the monad, we need to insert a bind
operation in the code, so we want to avoid introducing too many
monadic constructors while monadifying.

Our main target is C programs. A multiple argument C func-
tion has no effect before the last argument is given. So, a two-
arguments function, f : t1 → t2 → t, can be monadified to rep-
resent effects as fM : t1 → t2 → M t, or f itself if f has no
effect. Inserting the monad for all subexpressions, fM' : M (t1 →
M (t2 → M t)), is not required. fM needs less bind’s in its ap-
plication than fM'. fM is invoked as fM a b but fM' is invoked as
fM'�= fun g⇒ g a�= fun h⇒ h b.

We generalized this idea. Our monadification algorithm tries
to insert as few monads as possible: f : t1 → . . . → tk → tk+1 →
. . . → tn is transformed to fM : t1 → . . . → tk → M (tk+1 →
M (. . . → M (tn−1 → M tn) . . .)) for some k, chosen as big as
allowed. We call k the impure arity of f since it is the number
of arguments before the first effect occurs. Also, we consider the
impure arity of a pure function as the arity of the pure function
plus one. The monadification algorithm propagates impure arities
and transforms expressions.

In particular, when it detects that a function has no effect (i.e.,
no monadic action), the function is kept as it is, without defining
any monadified version. In such a case, we do not need to prove
the equality between the original definition and the monadified
definition.

3.2 Algorithm
In this section we present the concrete monadification algo-

rithm. It takes as input a Coq program, composed of functions

*4 This monad corresponds to the partiality monad in Ref. [16].

Fig. 2 Syntax for A-normal form programs.

we want to monadify and their dependencies, together with in-
formation about pure functions, which should not be monadified,
and special functions, which are mapped to monadic actions.

As said above, our algorithm attempts to introduce the small-
est possible number of monadic wrappers, and to do that it infers
the impure arity of functions. There is however a caveat here: in
some cases, we cannot infer the exact impure arity. For instance,
higher-order functions have no way to know whether their argu-
ment functions have effects or not. So we have to assume the
worse (i.e., wrap the monad for each arrow). Yet the actual func-
tion we pass as argument may have a larger impure arity. This
means that it is not sufficient only to add bind at application
points, and ret when we want a result to be in the monad; we
also need to introduce some extra wrapping on functions when
we want to decrease their impure arity.
3.2.1 Syntax

In Fig. 2, we define the syntax of our programs (as a subset
of Gallina). Our types do not include type abbreviations: we
assume they are already expanded. More importantly, we only
allow values as right hand sides of definitions d, and we require
that expressions e be in A-normal form [6], i.e., we only allow
application of values to values (v v), which makes sequencing
of side-effects explicit. The transformation from the full syn-
tax to A-normal forms is standard, and we give here a few of
its rules (which are to be applied repeatedly until a normal form
is reached).

v nv → let x : t = nv in v x

nv e → let x : t = nv in x e

match nv with {. . .}
→ let x : t = nv in match x with {. . .}

Here we assume that the type annotation t can be inferred from
the context.
3.2.2 Transformation of Types

As said above, the impure arity is the number of arguments we
have to apply before possibly exposing an effect. This number
is similar to the type variable strength used for SML/NJ’s weak
type variables [7]. The impure arity is both an input and an output
of the term transformation function [[e]]ρ, and is used as a guide
when transforming types, in Fig. 3. If the impure arity is 0, then
the corresponding term should be seen as a computation, and its
type is wrapped in the monad. If the impure arity is greater than
0, then we can still view this term as pure, and we do not need to
wrap its type. For inductive and function types, we need to apply

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 Transformation of types.

Fig. 4 Transformation and impure arity for terms.

this transformation recursively (independently of whether the im-
pure arity is 0 or not). On the left hand side of the arrow, or for
parameters of inductive types, we do not know the real impure
arity of the argument, so we must assume the worst; in a call-by-
value language this means an impure arity of 1 (values themselves
do not cause effects). On the right hand side of the arrow, since
we are considering the term after one application, we have to de-
crease the impure arity by 1, or keep 0 if the term was already
impure (contrary to full fledged effect systems, which annotate
effects on each arrow, we only track the first effect, and assume
that all subsequent arrows may be effectful). Note that we do not
transform inductive types definitions, and as a result this transfor-
mation does not support having impure functions as arguments
of constructors inside inductive definitions. Transforming induc-
tive type definitions is not difficult in itself, but the resulting code
would be rather inefficient, and this would make it difficult to
reuse existing proofs on such data structures, so we just avoid it.
On the other hand, it is fine to use function types as parameters,
i.e., return a pair of functions for instance (pair is an inductive
type in Coq).
3.2.3 Transformation of Terms

In Fig. 4, we define the transformation on terms [[e]]ρ, which
should of course match the intended type. It takes as input a
term e and two bindings: ν from constant or constructor names
to constant names, and ρ from variables and constant or construc-
tor names to their impure arities (at least 1); and returns a pair of
a term and its impure arity. ν does not change during the trans-
formation of a term, so we omit it in the notation. These bindings

Fig. 5 Auxiliary functions for the transformation.

are initialized according to the parameters of monadification. I.e.,
to associate an action to a special constant or constructor, one
sets ν(c) to the action and ρ(c) to its arity. Interestingly, this can
also be used to have the transformation ignore some functions,
which are deemed pure, by setting ν(c) = c and ρ(c) = ar(c) + 1.
ar(c) denotes the arity of c, which is inferred from its type. This
means that no monad will be inserted for these functions, and
that their definition will be used unchanged. Note that, to keep
the transformation coherent, higher-order functions cannot be de-
clared (or inferred) to be pure; but they may be called unchanged
inside functions declared pure. By convention, we also require
that in other cases, the name of the action be different from the
constant it is bound to, i.e., ν(c) = c only for pure functions or
constructors.

The transformation uses five auxiliary functions (see Fig. 5). ↓i
j

lowers the impure arity from i to j, wrapping the monad M wher-
ever the impure arity is lowered to 0. The order of the clauses
is relevant: e ↓i+2

j will only be eta-expanded if e is not of the
form (fun x : t ⇒ b), otherwise the previous clauses shall be
used. FA counts the number of outside abstractions of a term, as
a rough approximation of its impure arity, to be used only when
transforming recursive functions. pure decides whether a defini-
tion should be handled as pure or not (i.e., there is no need to
monadify it). This requires that it only contains pure constants
and constructors, and that its type should be first-order. ν̂ and ρ̂
extend ν and ρ for constructors, stating that constructors are pure
by default.

Let us get back to the transformation. On types, we use the
transformation for types, and return 1 as impure arity (no side
effect). On variables, constants, and constructors, the transfor-
mation does nothing, and returns just their assumed impure arity.
For a constructor C, this would usually be ar(C) + 1, i.e., the
arity of the constructor plus 1, assuming no side-effect, but we
may choose to replace a constructor by an action to make some
observation, such as counting the number of times a constructor
was used. In any case, since values cannot have immediate side-
effects, the impure arity should be at least 1.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 Transformation of programs.

For functions, we assume that the argument has an impure arity
of 1, and increase the impure arity of the result by 1. Conversely
for applications, we decrease the impure arity of the function by
1 (since it is a value, its impure arity must be at least 1).

For let-expressions, we have 2 cases, depending on the impure
arity of the bound expression. If it is 0, then it may have side-
effects, so we insert a monadic bind, and lower the impure arity
of the body to 0. If it is not less than 1, then there is no immedi-
ate effect, and the impure arity is that of the body, assuming the
inferred arity for the bound expression.

The remaining cases just propagate the impure arity. For fix, we
need to make a conservative assumption for recursive calls, using
FA. For match, we lower all the branches to the lowest inferred
impure arity.
3.2.4 Transformation of Programs

Finally, in Fig. 6, [[P]]ν,ρ takes a program P, and generates new
bindings for parts of P which need to be transformed. These new
bindings come in addition to the existing ones, which are kept
unchanged. When transforming a binding c := v, one first has to
decide whether a new binding is required. This can be avoided
either if ν(c) is defined, meaning that c is declared as pure or as a
monadic action, or if v is inferred pure, which requires extending
ν and ρ to declare it as pure in the remainder of the program. Oth-
erwise, a fresh name is generated, and a new transformed binding
is added, extending ν and ρ to have the remainder of the program
use this new binding.
3.2.5 Correctness of the Transformation

We have not formally proved that the transformation preserves
typing. However, the result of the transformation goes through
Coq’s type checker, so if typing were broken, this would be dis-
covered at that point. We have not formally proved that the in-
tended call-by-value semantics is preserved either. However, we
can easily check that it is the case in absence of side-effects, by
proving that e and [[e]]ρ are equal for the identity monad.

3.3 Implementation of Monadification
In this section, we explain the commands that our plugin pro-

vides to control the algorithm explained in the previous section
(Section 3.2).
3.3.1 Monad Registration

Our plugin registers a monad by means of the following com-
mands:

Monadify Type type constructor

Monadify Return return function

Monadify Bind bind function

Monadify Type, Monadify Return and Monadify Bind regis-
ters the monadic triple. For example, the option monad already
seen in Section 3.1 is registered as follows:

Monadify Type option.
Monadify Return @ret.
Monadify Bind @bind.

3.3.2 Monadification Traversal
The following command triggers monadification:

Monadification function/constructor . . .

Monadification x ... monadifies a function or a constructor x.
It also monadifies functions and constructors referenced from x.
Concretely, it traverses functions/constructors from the function/-
constructor specified as an argument. The traversal is depth-first
order and may define monadified function in post-order.

The naming convention for monadified definitions is as fol-
lows. The name of the monadified definition is the concatenation
of the original name without module names and “M”. For exam-
ple, mathcomp.ssreflect.ssrnat.addn becomes addnM. If the
name is already in use, apostrophes are appended until an unused
name is found.
3.3.3 Control of Monadification

To control monadification, it is possible to declare be-
forehand some functions to have or not side-effects. For
each function or constructor traversed, if it is declared with
Monadify Action, it is considered to have side-effect. If it is
declared with Monadify Pure, it is considered to have no side-
effect. Monadify Pure cannot take a higher order function be-
cause higher order functions may have effects when given an ef-
fectful function as argument. In the absence of a specific declara-
tion, constructors are considered to have no side-effect and func-
tions are examined as follows. Higher-order functions or func-
tions referencing a function or constructor which has a side-effect,
are considered to have a side-effect and a monadified definition is
created. Otherwise they are considered to be pure.

We now explain the precise syntax and semantics of commands
controlling monadification:

Monadify Action function/constructor⇒ action

Monadify Pure function . . .

Monadify Action x⇒ y declares that x has a side-effect. When
x is a n-arguments function or constructor of type t1 → . . . →
tn → t, y should be a function with the type t1 → . . .→ tn → M t.
x is replaced with y during the monadification. This prevents the
monadification of x (i.e., monadification does not transform the
definition of x).
Monadify Pure x ... specifies that the monadified definition

should use the function x directly without monadification. This
prevents the monadification of x even if it contains actions.

The last command implemented by our plugin is Monadify
Reset. It removes the information registered by Monadify
Type, Monadify Return, Monadify Bind, Monadify Action,
Monadify Pure.

3.4 Examples of Application of Monadification
3.4.1 Integer Overflow

The following function computes the kth power of a:

Fixpoint pow a k :=

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

match k with

| O⇒ 1
| S k'⇒ a ∗ pow a k'
end.

Our goal is to ensure the absence of integer overflow when natu-
ral numbers (of type nat) are replaced by finite-size integers. For
that purpose, we introduce monadic versions of arithmetic func-
tions that perform overflow tests:

(* check overflow on muln and S. *)

Definition check x :=
if Nat.log2 x < 32 then Some x else None.
Definition mulM a b := check (a ∗ b).
Definition SM a := check a.+1.

We now monadify the pow function using the monad defined
above (and the commands explained in Sections 3.3.2 and 3.3.3):

Monadify Action muln⇒ mulM.
Monadify Action S⇒ SM.
Monadification pow.

The result of the monadification of pow is as follows:

Fixpoint powM (a k : nat) :=
match k with

| 0⇒ SM 0
| S k'⇒ powM a k'�= mulM a
end.

As a result, we can make clear under which conditions the orig-
inal function pow and its monadified version powM are semanti-
cally equivalent:

Theorem powM_ok :
∀ a b, Nat.log2 (pow a b) < 32→
(powM a b) = Some (pow a b).
Proof. ... Qed.

In other words, we have established that we can safely replace
natural numbers with 32-bit integers as long as the precondition
of the above theorem is met.
3.4.2 Buffer Overrun

The following example is a monadified function that fails when
the nth function (that perform access to list elements given their
indices) is used with an out-of-bounds index:

Definition nthM {T} (x0 : T) s n :=
if n < size s then Some (nth x0 s n) else None.
Monadify Action nth⇒ @nthM.

We will develop more in details this example with a realistic
application to buffer overrun detection in Section 6.5.1.
3.4.3 Complexity Check

There are two list-reversal functions in the Coq standard li-
brary: the naive definition rev

Fixpoint rev (l:list A) : list A :=
match l with

| []⇒ []
| x :: l'⇒ rev l' ++ [x]
end.

and the tail-recursive definition rev' (in Coq.Lists.List)

Fixpoint rev_append (l l': list A) : list A :=
match l with

| []⇒ l'
| a::l⇒ rev_append l (a::l')
end.
Definition rev' l : list A := rev_append l [].

Let us introduce the following monad in order to count the
number of explicit cons invocations at the Coq level:

Definition counter_with A : Type := nat ∗ A.
Definition ret {A} (x : A) := (0, x).
Definition bind {A} {B}

(x' : counter_with A) (f : A→ counter_with B) :=
let (m, x) := x' in
let (n, y) := f x in
(m+n, y).

Monadify Type counter_with.
Monadify Return @ret.
Monadify Bind @bind.

Definition consM {T} (hd : T) tl := (1, cons hd tl).
Monadify Action cons⇒ @consM.

Using the above monad, we can prove that rev performs n(n+1)
2

(where n is the length of the input list) invocations of cons
whereas rev'only performs n such calls:

Monadification rev rev'.
Lemma NumConsInRev T s : revM T s =
(((length s) ∗ (length s).+1)./2, rev s).
Lemma NumConsInRev' T s : rev'M T s = (length s, rev' s).

This provides a formal evidence that the time complexity of rev
is at least quadratic while rev' is at least linear.

4. Generation of C Code

The generation of C from Gallina is implemented in the
monomorphization plugin. We explain how datatypes are handled
in Section 4.2, how code is generated for functions in Section 4.3,
and for expressions in Section 4.4. This will make clear which
subset of Gallina is supported. Section 4.1 provides a practical
overview of the plugin implementation, in particular the naming
convention for generated functions. See Section 6.3 for an exten-
sive example of code generation.

4.1 Plugin Input/Output and Naming Conventions
The generation of C code is performed by the following com-

mand:

GenC function name0 function name1 . . .

Input functions are expected to be monomorphized (as explained
in Section 2). The output (i.e., the source code of generated C
functions) is displayed in the terminal for coqtop, or in the mes-
sage window of CoqIDE.

The name of generated C functions is built using the name of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the input Coq function and its arity. Consider a Coq module m

and a function m.c of type t1 → ... → tn → t. The name of the
generated C function becomes the name of the Coq function pre-
fixed with n and the number of arguments, i.e., nnc (the module
name is stripped). For example, the generated C function name
for the monomorphized, two-arguments function Top._addn *5 is
n2_addn. The arity is computed using the formal arguments of
the function definition and the actual arguments of the function
invocation *6.

Besides the name of the generated C function, one also needs
to care about the names of generated types and variables. Let us
provide a bit more insight to help understand the C code gener-
ated in Sections 4.3, 4.4, and later.
• The generated C function contains local variables (in addi-

tion to function arguments). They correspond to variables
bound by let and fun. Gallina allows for conflicting names
because they are just for display: internally, Coq uses de
Bruijn indices. In C, we generate unique variable names us-
ing a global counter i, so that the variable N becomes vi_N
(see Section 6.3 for an example).

• Characters unusable in a C identifier (such as the apostro-
phe ') are substituted with an underscore.

• The generated C code contains types such as the return type
of the function, which are generated according to the naming
rules explained in Section 2.6.

4.2 Implementation of Inductive Types
The implementation of C datatypes is not generated automati-

cally: it must be provided by the user. Of course, one expects the
implementation of basic datatypes such as integers to be standard
and indeed we can provide default implementations for them. But
in general, there is a great flexibility in the choice of representa-
tion and the user often wants a specific implementation in order
to take advantage of the C language execution performance. We
claim that user-customizable implementation of datatypes is ac-
tually a must-have feature for C code generation.

Concretely, for each inductive type used by the Coq function,
the user provides a C version of (1) its type, (2) a constructor,
(3) field accessors, and (4) several macros for the switch state-
ment *7. See Section 4.4.4 for explanations about how the field
accessors and the macros for the switch statements are used.

Here follow examples of basic Gallina datatypes implemented
in C (Section 6.4 provides more examples).
4.2.1 Implementation of Pairs of Booleans

The example shown in Section 2.1 uses the type prod bool
boolwhich itself uses the inductive types bool and prod defined
in Coq standard library (module Coq.Init.Datatypes):

Inductive bool : Set := true : bool | false : bool.

*5 More precisely, this is the monomorphized version of mathcomp.
ssreflect.ssrnat.addn, which performs addition of natural num-
bers.

*6 If the number of formal arguments and the number of actual arguments
are different (e.g., in the case of partial application), an error occurs. We
plan to handle partial application in future work (see Section 9.1 for de-
tails).

*7 In the case of a polymorphic type, the user has to provide them for each
monomorphic instance.

Inductive prod (A B : Type) : Type :=
pair : A→ B→ prod A B.

In C, the bool type can be implemented using bool of
stdbool.h as follows:

#include <stdbool.h> /* defines bool type */

#define n0_true() true

#define n0_false() false

#define sw_bool(b) (b)

#define case_true_bool default

#define case_false_bool case false

In C, prod bool bool can be implemented by using the
lower 2 bits of int to represent the two bools:

#define prod_bool_bool int

#define n2_pair_bool_bool(x, y) ((x) | ((y) << 1))

#define field0_pair_prod_bool_bool(v) ((v) & 1)

#define field1_pair_prod_bool_bool(v) (((v) & 2) >> 1)

4.2.2 Implementation of Natural Numbers
The Coq natural numbers nat are defined in the Coq standard

library (module Coq.Init.Datatypes) as follows:

Inductive nat : Set := O : nat | S : nat→ nat.
In C, we can implement nat using uint64_t:

#define nat uint64_t

The O constructor of natural number can be implemented by the
integer 0 with a cast, and the successor constructor S can be im-
plemented as an increment by one:

#define n0_O() ((nat)0)

#define n1_S(n) ((n)+1)

There is only one field accessor for successors of natural num-
bers, implemented as the predecessor function:

#define field0_S_nat(n) ((n)-1)

Last, one provides a function and labels for switch statements
(we explain how they are used in Section 4.4.4):

#define sw_nat(n) (n)

#define case_O_nat case 0

#define case_S_nat default

Using the above implementation, we can now provide efficient
functions to perform arithmetic operations on “natural numbers”
using C operators:

#define n2_addn(a,b) ((a)+(b))

#define n2_subn(a,b) ((a)-(b))

#define n2_muln(a,b) ((a)*(b))

#define n2_divn(a,b) ((a)/(b))

#define n2_modn(a,b) ((a)%(b))

They are safe as long as the application does not use values
greater than or equal to 264 (which is provable using our monadi-
fication plugin, as explained in Section 3).

4.3 From Coq Functions to C Functions
An important feature of our generation scheme is that it sup-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

ports proper tail recursion (i.e., tail recursion without stack con-
sumption). The current extraction facility of Coq fails to provide
this feature (see Appendix A.1 for a concrete example). This
partly comes from the fact that Gallina has no loop construct
but recursion to process arbitrary-size data. In contrast, C enjoys
goto statements, which we can take advantage of.

Let us explain how we generate C code for function definitions.
For that purpose, we consider a Coq constant c, which is a func-
tion of type t1 → ... → tn → t. The name of the generated C
function is nnc (as explained in Section 4.1).

When c is not recursive, we generate the following definition:

t nnc(t1 x1, ..., tn xn)

{ /* body */ }

(The translation of the body is the matter of Section 4.4.)
Let us now assume that c is a non-mutually recursive function.

In this case, we add a label for tail recursion in front of the func-
tion body:

t nnc(t1 x1, ..., tn xn)

{ nnc:; /* body */ }

The case of mutually recursive functions is more technical and
explained in Appendix A.2.

The final case is when c is a constant definition belonging to
an inductive type. It is considered as a zero-argument function.
Concretely, Definition c : t := e. where t is an inductive type is
translated to:

t n0c(void)

{ /* code for e */ }

4.4 Expression Translation
In this section, we explain how we generate C code for Gallina

expressions *8: (local) variables, let expressions, (global) con-
stants, function application, and match expressions.

Since we need a trustful code generation, we do not perform
any optimization. Also, we do not support higher-order functions
(such as map). In other words, we are not trying to implement a
full-fledged ML-to-C compiler.
4.4.1 Variables and let Expressions

The translation of Coq variables and let expressions is direct.
A (local) variable in Coq is translated to a local variable in C. For
example, the let expression

let x : t := e in b

is translated to a variable initialization:

t x = /* code for e */; /* code for b */

If one cannot translate e to a C expression (in the case of a
match expression for example), a variable declaration and an as-
signment to it are generated:

t x; /* code for e to assign x */; /* code for b */

4.4.2 Constants
After the monomorphization, the type of a Coq constant should

*8 In Sections 4.2 and 4.3 we were dealing with inductive types and func-
tion declarations that are defined using the Inductive and Definition
commands; technically, they are part of the Vernacular language of Coq,
not Gallina.

be a function type or an inductive type.
At the time of this writing, a function should appear at the func-

tion position of an application because we do not support closures
yet. The C code generation for this kind of function application
is described in Section 4.4.3.

For a constant definition using an inductive type, a zero-
argument function call is generated, as explained in Section 4.3.
This is because a constant definition is translated to a zero-
argument function definition.
4.4.3 Function Applications

The basic idea is to translate a function application in Coq to
a function call in C. In particular, this is the case when one finds
at function position a Coq constant that is a function. This basic
idea extends to recursive calls.

There is nevertheless a special case of uttermost importance
for predictability of tail recursion. It is when one finds at func-
tion position a local variable referencing a recursive function and

when this application is at tail position. In this case, we generate
(1) assignments to arguments and (2) a goto statement.
4.4.4 match Expressions

A match expression is translated to a switch statement.
Let us consider the match expression match e0 with {Ci x1

. . . xar(Ci) ⇒ ei}ni=1, where the expression e0 has an inductive type
t = I t1 . . . tm. I is defined as follows:

Inductive I (T1 . . . Tm : Type) :=
...
| Ci : ti1 → ...→ tiar(Ci) → I T1 . . . Tm

...

The match expression is translated to the following switch state-
ment:

switch (sw_t(e0))

{

/* branches of match, i = 1 . . . n */
...

case_Ci_t: {

/* obtain the field values, j = 1 . . . ar(Ci) */
...

t′i j xi j = field(j − 1)_Ci_t(e0);

...

/* code for ei */

}

...

}

The monomorphic type t′i j is the polymorphic type ti j in which
T1 . . .Tm have been instantiated with t1 . . . tm.

The constructs sw_t, case_Ci_t, and field j_Ci_t have been
provided by the user (see Section 4.2):
• sw_t is a function which returns an integer that identifies the

constructor of e0;
• case_Ci_t is a macro which expands to the default label

or to a case label;
• field j_Ci_t is the field accessor to the jth argument of con-

structor Ci (j is a zero-origin index).
If I has only one constructor, e1 is always chosen. Therefore, only

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the code to obtain field values and the code for e1 (and no switch
statement) are generated. In this case, sw_t and case_Ci_t are
not used.

5. Validating Experiment: Monadification of
SSReflect’s seq.v

As a validating experiment, we tested the monadification plu-
gin by attempting to monadify the 49 list-related functions de-
fined in the seq.v file of SSReflect: all, allpairs, behead,
belast, cat, catrev, constant, count, drop, filter, find,
flatten, foldl, foldr, has, head, incr_nth, index, iota,
iter, last, map, mask, mkseq, ncons, nilp, nth, ohead,
pairmap, perm_eq, pmap, rem, reshape, rev, rot, rotr,
scanl, seqn, set_nth, shape, size, subseq, sumn, take,
undup, uniq, unzip1, unzip2 and zip.

We registered S and cons as monadic actions, meaning that
all functions constructing natural numbers or lists would require
monadification.

Only 7 functions did not call (transitively) S or cons, and as
a result were deemed pure and not monadified: behead, drop,
head, last, nth, ohead and subseq.

Of the remaining 42 functions, 36 were successfully monad-
ified, and proved semantically equal to the original by applying
the identity monad.

6 functions could not be monadified, and had to be declared
pure, together with 2 other internal definitions, to complete the
monadification. Namely constant, index, perm_eq, undup,
uniq, nat_eqType and seq_eqType use higher-order construc-
tors, and seqn uses a dependent type. These are the 2 categories
of types which our translation does not support.
seq.v itself is not representative of the code we expect users

to write, but our goal here was rather to show that it is possible
to translate code relying on existing libraries. From this point of
view, the fact that a small number of functions cannot be used
directly should not be a major problem.

6. A Realistic Application: the rank Algo-
rithm

In this section, we illustrate our scheme for the generation of C
code using a realistic example: the rank algorithm (Section 6.1).
For the sake of clarity, our explanations focus on only one of
the sub-routines. First, we display and comment on the result of
monomorphization (Section 6.2) and of the generation of C code
(Section 6.3). Second, we explain the C implementation of the
data structures (Section 6.4). Last, we explain how to use monad-
ification to (1) guarantee the absence of integer overflows and
buffer overruns despite the change of data structures from natural
numbers to finite-size integers (Section 6.5.1), and (2) prove the
time complexity of the algorithm (Section 6.5.2).

6.1 Background: the rank Algorithm
The rank algorithm is an algorithm for succinct data structures

(see Section 1.1). It can be implemented as a function that counts
bits in a prefix of a bitstring.

rank can be defined naively in Gallina by counting the b (0 or
1) bits in the first i bits of the bitstring s:

Definition rank b i s := count_mem b (take i s).

The problem with such an implementation is that its time com-
plexity is O(i).

The true rank algorithm has time complexity O(1), using pre-
processed auxiliary data of size o(n), which is generated in O(n)
time complexity (where n is the length of s). In Ref. [26], we im-
plemented this algorithm using the function rank_init (already
used as an illustrating example in Section 2.4) to perform pre-
processing and the function rank_lookup. We also proved that
these functions are correct in the sense that they implement the
same operation as the naive rank function seen above:

Lemma RankCorrect b s i : i <= bsize s→
rank_lookup (rank_init b s) i = rank b i s.

6.2 Monomorphization of the rank Function
Hereafter, we focus on one sub-routine of the rank algorithm,

namely the buildDir2 function. (The complete source code can
be found online [27].) It is a function that deals with the construc-
tion of the auxiliary data referred to in Section 6.1:

Fixpoint buildDir2 b s sz2 c i D2 m2 :=
if c is cp.+1 then
let m := bcount b i sz2 s in
buildDir2 b s sz2

cp (i + sz2) (pushD D2 m2) (m2 + m)
else

(D2, m2).

We first monomorphize the buildDir2 function to the
_buildDir2 function using the Monomorphization command
(Section 2.2):

Fixpoint _buildDir2 b s sz2 c i D2 m2 :=
match c with

| 0⇒ _pair_DArr_nat D2 m2
| cp.+1⇒
let m := _bcount b i sz2 s in
let n := _addn i sz2 in
let d := _pushD D2 m2 in
let n0 := _addn m2 m in
_buildDir2 b s sz2 cp n d n0

end.

We observe in particular that the polymorphic Gallina
constructor invocation (D2, m2) is monomorphized to
_pair_DArr_nat D2 m2.

6.3 C Code Generation for the rank Function
We now generate C code for the function _buildDir2 ob-

tained by monomorphization in Section 6.2. For that purpose, we
use the GenC command (Section 4.1). It generates the following
n7_buildDir2 C function *9:

prod_DArr_nat

n7_buildDir2(bool v10_b, bits v9_s, nat v8_sz2,

*9 As explained in Section 4.1, the prefix n7 is generated because the func-
tion has 7 arguments.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

nat v7_c, nat v6_i, DArr v5_D2, nat v4_m2)

{

n7_buildDir2:;

switch (sw_nat(v7_c))

{

case_O_nat: {

return n2_pair_DArr_nat(v5_D2, v4_m2);

}

case_S_nat: {

nat v12_cp = field0_S_nat(v7_c);

nat v13_m = n4_bcount(v10_b,v6_i,v8_sz2,

v9_s);

nat v14_n = n2_addn(v6_i, v8_sz2);

DArr v15_d = n2_pushD(v5_D2, v4_m2);

nat v16_n = n2_addn(v4_m2, v13_m);

v7_c = v12_cp;

v6_i = v14_n;

v5_D2 = v15_d;

v4_m2 = v16_n;

goto n7_buildDir2;

}

}

}

We observe that the Gallina function arguments b, s, etc.,
are translated to the C function arguments v10_b, v9_s,
etc. Gallina variables such as cp, m, etc., are translated to
C variables, v12_cp, v13_m, etc *10. The Gallina if ex-
pression (actually, syntactic sugar for a match expression) is
translated to a switch statement. The Gallina function call
_pair_DArr_nat D2 m2 is translated to the C function invoca-
tion n2_pair_DArr_nat(v5_D2, v4_m2). The Gallina non-
tail function invocations, bcount, etc., are translated to the C
function invocations n4_bcount, etc. In contrast, the Gallina
tail recursion to buildDir2 is translated to assignments to for-
mal arguments (v7_c = v12_cp, etc.) and a goto statement
(goto n7_buildDir2).

As already stated above, buildDir2 is only one sub-routine of
the rank algorithm. We also generate C functions for the Gallina
functions pred, neq0, buildDir1, buildDir, rank_init and
rank_lookup. Among these functions, pred (notation “.−1” in
SSReflect) is defined in the Coq standard library. The complete
script to generate the C source code of the rank function and the
C source code in itself can be found online [27].

6.4 C Data Types and Primitives for the rank Function
6.4.1 C Data Types Provided by the User

As already explained in Section 4.2, we need to provide C
implementations of Gallina inductive types for our generated C
code to be runnable. Regarding the rank algorithm, we im-
plement the C data types corresponding to the following induc-
tive types: bits, DArr, prod_DArr_DArr, prod_DArr_nat,
prod_prod_DArr_DArr_nat, and Aux. We also use the C
implementation of bool and nat described in Sections 4.2.1
and 4.2.2.

*10 The prefix vi makes variable names unique, as explained in Section 4.1.

Most of the types above (except bits and DArr, which are
discussed below) are implemented with simple structs whose
fields correspond to the constructor arguments. This is possible
because they have only one constructor. They are defined as a
non-pointer type, so that no heap memory is used. For example,
here follows the implementation of prod_DArr_DArr. Its con-
structor (n2_pair_DArr_DArr) is implemented as a compound
literal:

typedef struct {

DArr D1;

DArr D2;

} prod_DArr_DArr;

#define n2_pair_DArr_DArr(D1, D2) \

((prod_DArr_DArr){ (D1), (D2) })

The field accessors are references to structure members:

#define field0_pair_prod_DArr_DArr(x) ((x).D1)

#define field1_pair_prod_DArr_DArr(x) ((x).D2)

The implementations of bits and DArr are more involved.
The Gallina type bits is a wrapper for seq bool, but we im-

plement it as a bitstring because it is more memory-efficient, can
be built in linear-time, and provide arbitrary element-lookup in
constant-time. Concretely, bits is a C struct that contains a
pointer to a bits_heap struct that is allocated in the heap to
store the actual contents (see Ref. [26], Section 4.2 for details):

typedef struct {

uint64_t *buf;

nat len; /* current length [bit] */

nat max; /* maximum length [bit] */

} bits_heap;

typedef struct {

bits_heap *heap;

nat len; /* expected length [bit] */

} bits;

We do not provide the constructor and field accessors for bits
because they convert from/to the seq bool type, which is too
memory-consuming. For fast processing, we provide the C func-
tions n1_bsize and n4_bcount:

#define n1_bsize(s) ((s).len)

nat n4_bcount(bool b, nat n, nat m, bits bs)

The Gallina type DArr implements an array of small integers
whose elements are less than 2w. It is implemented using bits.
We assume 0 < w (assumption to be justified using monadifica-
tion in Section 6.5.1):

typedef struct {

nat w;

bits s;

} DArr;

DArr n1_emptyD(nat w) { ... }

DArr n2_pushD(DArr d, nat n) { ... }

nat n2_lookupD(DArr d, nat i) { ... }

#define n1_sizeD(d) (n1_bsize(d) / (d).w)

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

6.4.2 C Primitives Provided by the User
In addition to C data types, the user has the possibility to

provide hand-written functions. It happens that, in the case
of our rank function, the user actually has to do so because
there are a few functions that rely on the euclidean division of
SSReflect (this limitation was already mentioned in Section 2.3).
This is the case for example of the bitlen function. Fortu-
nately, it can be implemented much more efficiently (and, from
a programmer’s viewpoint, more naturally) using the gcc builtin
__builtin_clzl as follows:

static inline nat

n1_bitlen(nat n)

{

if (n == 0) return 0;

assert(64 <= sizeof(long) * CHAR_BIT);

return 64 - __builtin_clzl(n);

}

6.5 Monadification of the rank Function
6.5.1 rank Function Never Fails

In this section, we use our monadification plugin (Section 3)
to show that our rank algorithm written in Coq (more precisely,
the rank_init and rank_lookup functions discussed in Sec-
tions 6.1 and 6.2) does not suffer from integer overflow and buffer
overrun problems (and therefore that the change of data structures
explained in Section 6.4 is safe).

Of course, the absence of integer overflows and buffer over-
runs is conditional. More precisely, we prove that rank_init
and rank_lookup never fail as long as the length of the input bit-
string is less than 264. This is the best implementation (in terms
of the number of inputs it can handle) that one can achieve using
the uint64_t integral type (which is used as the return type of
the rank function).

In order to check potential integer overflows for addition, mul-
tiplication and the successor function, we introduce the following
monadic actions:

Definition W := 64.
Definition check x := if log2 x < W then Some x
else None.
Definition addM a b := check (a + b).
Definition mulM a b := check (a ∗ b).
Definition SM a := check a.+1.
Monadify Action addn⇒ addM.
Monadify Action muln⇒ mulM.
Monadify Action S⇒ SM.

We also check for divisions by zero with the following monadic
actions:

Definition divM a b := if b is 0 then None
else Some (a %/ b).
Definition modM a b := if b is 0 then None
else Some (a %% b).
Monadify Action divn⇒ divM.
Monadify Action modn⇒ modM.

Regarding buffer overrun, we identify a potential issue with the

bcount function. bcount b n m s counts the number of b (0 or
1) bits within the m bits following the index n into the bitstring
s. The following monadic version ensures the absence of buffer
overruns (see line 2) *11:

1 Definition bcountM (b : bool) n m (s : bits) :=
2 if n + m <= bsize s then

3 check (bcount b n m s)
4 else

5 None.
6 Monadify Action bcount⇒ bcountM.

There is also a number of requirements to be met for the DArr
C data structure seen in Section 6.4.

As described in Section 6.4, our C-level implementation of
DArr assumes that 0 < w. We check this assumption in the func-
tion emptyD:

Definition emptyDM w := if w is 0 then None
else Some (emptyD w).
Monadify Action emptyD⇒ emptyDM.

The array of small integers, DArr, uses only w bits for a single
element. The element must therefore be less than 2w. We check
this condition in the function pushD:

Definition pushDM D v := let: darr w d := D in
if v < 2 ˆ w then Some (pushD D v) else None.
Monadify Action pushD⇒ pushDM.

When performing lookups within Darr, the index must be less
than the length of the array. We check this condition in lookupD:

Definition lookupDM D i :=
if i < sizeD D then check (lookupD D i) else None.
Monadify Action lookupD⇒ lookupDM.

Now that all the above monadic actions have been registered,
we can use the Monadification command to generate monadic
versions of rank_init and rank_lookup, and then prove for-
mally that the monadic versions behave as the original versions:

Lemma RankSuccess b s i :
let n := bsize s in log2 n < W→ i <= n→
(rank_initM b s�= fun aux⇒ rank_lookupM aux i) =
Some (rank_lookup (rank_init b s) i).

The lemma RankSuccess is a formal evidence that once the
Gallina code of the rank algorithm is turned into C, the data struc-
tures introduced in Section 6.4 are safe, and that the C code will
not fail because of integer overflows, buffer overruns, etc.
6.5.2 The Complexity of rank Function

In this section, we use the monadification plugin to establish
the complexity of our rank function.

We compute the number of bits examined in rank_init and
rank_lookup. Since rank_init and rank_lookup use bcount
to examine bits in the input bitstring, we use the monad described
in Section 3.4.3 with the following action:

Definition bcountM (b : bool) n m (s : bits) :=

*11 It also checks for the absence of integer overflows at line 3.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

(m, bcount b n m s).
Monadify Action bcount⇒ bcountM.

The following lemma shows that the number of bits examined
by rank_init is O(n):

Lemma RankInitNumBitsExamined b s :
let n := bsize s in rank_initM b s =
(n%/ (bitlen n).+1 ∗ (bitlen n).+1, rank_init b s).

The following lemma shows that the number of bits examined
by rank_lookup is O(1) when uint64_t is used as described in
Section 6.5.1:

Lemma RankLookupNumBitsExamined b s i :
let aux := rank_init b s in
let n := bsize s in rank_lookupM aux i =
(i%% (bitlen n).+1, rank_lookup aux i).

It is because the maximum of i%% (bitlen n).+1 is 64 when
log2 n < 64. (Usually it is implemented using a table or an in-
struction such as POPCNT on recent Intel CPUs.)

This is the expected time complexity of the rank function for
the succinct data structures *12.

7. Evaluation of the Trusted Base of Our C
Code Generation Scheme

It turns out that our C code generation scheme only modestly
increases Coq’s trusted base.

The main piece we add to Coq’s trusted base is the C code
generator (Section 4). It is part of the monomorphization plugin
that also contains the implementation of monomorphization (Sec-
tion 2). This plugin consists of the OCaml source files shown in
Table 1. Among these files, we do not count monomorph.ml as
part of the trusted base because the result of monomorphization
can be verified inside Coq (as explained in Section 2.1). That is
why we claim that the monomorphization plugin adds less than
1,000 lines of code to the trusted base.

This is small in comparison to the standard Coq extraction
OCaml code. This is of course no surprise, since we only target a
subset of Gallina (see Section 2.5). For reference, Table 2 shows
the OCaml source files that constitute the Coq standard extrac-
tion (plugins/extraction directory in Coq 8.6). We can see
that the extraction to OCaml code adds more than 6,000 lines to
the trusted base (this does not include haskell.ml, scheme.ml,
json.ml, and big.ml).

The implementation of C data structures should be regarded as
part of the trusted base. In our generation scheme, they must be
provided by the user (see Section 4.2) but this is not different from
standard extraction to OCaml code where there is often a need to

Table 1 Number of lines of the C code generator.

filename lines contents
g_monomorph.ml4 30 register commands
monoutil.ml 136 utilities
monomorph.ml 710 monomorphization
genc.ml 696 C code generator

*12 The time of operations other than bcount is proportional to bcount’s
at most. bcount is invoked at the innermost recursion (function
buildDir2) in rank init. rank lookup has no recursion.

replace automatically generated OCaml data structures with more
efficient ones.

This comparison does not take into account the monadification
plugin (Section 3) because its main role is to guarantee the safe
use of fixed-size integer types (e.g., uint64_t in C and int in
OCaml) in lieu of natural numbers (integer overflows, array ac-
cesses, etc.). Its use is relevant to both our C code generation
scheme and the standard Coq extraction.

8. Related Work

8.1 Generation of C code from Gallina via JSON
coq2c [20] is a tool written in Haskell to convert Gallina pro-

grams written in a monadic style to C. It uses as an intermediate
representation the JSON output generated by the standard Coq
extraction facility. The main purpose of coq2c is the Pip [21] pro-
tokernel.

coq2c targets Gallina programs written in an imperative style
using a monad, whereas our plugins target programs in purely
functional style. coq2c itself is not proved, so that it comes as
an addition to the trusted base. In our case, only the C code gen-
erator (without monomorphization) is added to the trusted base;
it is therefore smaller than the Coq standard extraction facility
extended with coq2c.

8.2 Gallina to C Compiler Written in Gallina
The CertiCoq project [2] has been developing a compiler from

Gallina to C. It does not use the standard Coq extraction facility.
The compiler is written in Gallina and proved in Coq. It provides
a way to run Gallina programs in a certified environment using
the CompCert C compiler [14].

CertiCoq tries to generate optimized code, that therefore does
not look like hand-written C code. Developers are considering
modifying CompCert to support a different calling convention
in order to support proper tail calls, whereas our C generation
scheme supports only proper tail recursion as a design decision.

8.3 Standard Coq Extraction
There exist several extensions of the Coq extraction facility

that support various languages: Scala *13 [9], SML *14, Erlang *15,

Table 2 Number of lines of the standard Coq extraction.

filename lines contents
g_extraction.ml4 152 register commands
common.ml 648 utilities
extract_env.ml 682 extraction commands
extraction.ml 1098 from Coq terms to MiniML
mlutil.ml 1524 utilities over ML types
modutil.ml 411 functions upon ML modules
table.ml 921 parameters for extraction
ocaml.ml 773 OCaml code generator
haskell.ml 398 Haskell code generator
scheme.ml 236 Scheme code generator
json.ml 274 JSON generator
big.ml 154 utilities for ExtrOcamlZBigInt.v

*13 https://github.com/hemmi/coq2scala for Coq 8.4pl2
*14 https://github.com/fetburner/Coq2SML for Coq 8.4pl4
*15 https://github.com/tcarstens/verlang for Coq 8.4pl2

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Rust *16, Ruby *17, Python *18.
They do not seem to be maintained, since they have not been

updated to the current version of Coq (version 8.6). It is difficult
to use them with a newer Coq version without compiling Coq be-
cause they are distributed in the form of patches or as a modified
Coq distribution. In comparison, our extraction mechanism is
easier to test with a newer Coq version because it is implemented
as plugins that can be used without installing Coq itself.

8.4 Monomorphization
Many languages use monomorphization, which produces spe-

cialized copies of code: Ada generics [17], C++ template [24], D
template [1], Pizza’s heterogeneous translation [18], MLton [4],
[30], and Rust [3]. Monomorphization is common for system pro-
gramming languages. It is efficient and obeys C++’s zero-overhead
principle [25]. Monomorphization can cause exponential code
bloat in the worst case, but it is not a problem in practice.

Our monomorphization is similar to MLton’s, which is no sur-
prise since Gallina is similar to ML (see Section 2.5 for more
insights).

8.5 Monadification
Previous work about monadification are inadequate for our

purpose because they introduce too many or too few monads com-
pared to our needs (see Section 3.1). There are also technical
reasons for which they cannot be used directly in Coq.
8.5.1 Hatcliff and Danvy’s Monadification

Hatcliff and Danvy described monadification algorithms for
several evaluation strategies including call-by-value [8]. Their al-
gorithm encapsulates all values into the monad, including func-
tions, which are completely currified. For example, the two-
arguments function f : t1 → t2 → t3 is transformed to f ′ :
M (t1 → M (t2 → M t3)), and the application f a b is trans-
formed to

f ′ �= λg. a′ �= λx. g x �= λh. b′ �= λy. h y

where a′ : M t1 and b′ : M t2 are monadified versions of a and b.
We have already explained in Section 3.1 why the systematic

insertion of the type constructor M is not satisfactory. In addi-
tion, although Hatcliff and Danvy’s transformation works well for
the simply typed lambda-calculus, it cannot be used as such for
Gallina. Indeed, Coq may reject the result because (1) the detec-
tion of the decreasing argument of structural recursion fails when
it is not the first argument, and (2) type-checking may fail when
type arguments are passed via monadic operations. Appendix A.3
provides concrete examples of these technical problems.

Our monadification algorithm tries to preserve the original def-
initions as much as possible, and, as a consequence, retains type
arguments and decreasing arguments as regular arguments. Prob-
lem (2) above could also be solved by applying after monadifica-
tion the monad law (return x) �= f ≡ f x but this provides only
a partial solution.

*16 https://github.com/pirapira/coq2rust for Coq 8.4
*17 https://github.com/mzp/coq-ruby for Coq 8.4
*18 http://coqcots.gforge.inria.fr/coq8.4pl3-python/ for Coq 8.4pl3

8.5.2 Erwig’s Monadification
Erwig proposed a monadification algorithm that performs se-

lective introduction of monads [5]. It tries to insert much less
monads than Hatcliff and Danvy’s algorithm by transforming

f : t1 → . . .→ tk → tk+1 → . . .→ tn

to

f ′ : t1 → . . .→ tk → M (tk+1 → . . .→ tn).

As explained in Section 3.1, these are not the positions at which
we expect monads to appear because some effects may still hap-
pen after further applications. Moreover, the monad used needs
to be runnable, i.e., it should have an operation “run : M t → t”,
which allows to discard the monad, possibly causing a runtime
exception if there is no value to return. This is not suitable for
Coq, which has no exception mechanism, and would defeat our
goal of using monads to prove properties of programs.

The modification algorithm we introduced in Section 3 per-
forms a selective introduction of monads, but is not as aggressive
as Erwig’s.

8.6 C Code Generation
There exist several compilers that produce C code as an output

but they all stumble on difficulties inherent to C:
• A C compiler cannot implement proper tail call with usual

calling conventions [22].
• C has no special mechanism to detect integer overflow.
• It is difficult to implement closures and garbage collection in

C.
Our C code generator generates proper tail recursion (not

proper tail call) using goto, the absence of dynamic integer over-
flow can be ensured by proofs using monadification, and a con-
servative garbage collector such as the Boehm GC can be used.
We do not support closures yet.

Bigloo [23] is a Scheme compiler which generates C code.
Pre-Scheme [11] is a statically typed Scheme subset for the
Scheme48 [10] virtual machine implementation. They implement
proper tail recursion using goto similarly to us. They check inte-
ger overflow dynamically. Bigloo uses Boehm GC. Pre-Scheme
has no GC (because it is used to implement Scheme48’s GC).

sml2c [29] is a Standard ML compiler that generates C code
based on SML/NJ. It uses the UUO driver (trampoline) for proper
tail call. As a consequence, function calls have an overhead com-
parable with native function calls in C. Also, function arguments
are passed via global variables. The generated C code is there-
fore very different from the ML source code. Integer overflow is
checked dynamically. sml2c uses the GC of SML/NJ.

8.7 Native Code Generation
Recently, LLVM [12] is becoming popular as a compiler

framework providing portable code generation. This is a new
approach to native code generation. However, using an LLVM
backend makes it difficult to obtain information (function signa-
tures and macros) in C header files. They are important to use fea-
tures provided by the compiler and the operating system. Also,
LLVM is not usable if some project requires a (non-LLVM) C

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

compiler supported by a vendor.

9. Conclusion

In this paper, we proposed a new scheme for code generation
that outputs provably-safe C code for the Coq proof-assistant.
Concretely, we introduced one plugin for monomorphization
(Section 2) and C code generation (Section 4). Monomorphiza-
tion transforms in a provable way polymorphic functions written
in Gallina to monomorphic functions, so as to facilitate C code
generation. Thanks to this pre-processing, the translation to C
code becomes direct. It provides efficient code, preserving in par-
ticular tail recursion and using optimized data structures to imple-
ment Coq inductive types. If the C data structure and the Coq in-
ductive type behave differently (such as C’s int and Coq’s nat),
one can prove that the difference does not cause any problem us-
ing our monadification plugin (Section 3). We demonstrated the
usability of our monadification plugin with the seq.v library of
SSReflect (Section 5). As a realistic use-case, we used the rank
algorithm of succinct data structures (Section 6) for which we
generated C code using customized data structures (uint64_t
for Coq’s nat and a memory-efficient bitstring data structure).
Thanks to our approach, we were able to prove not only func-
tional correctness, but also to ensure formally the good behavior
of C data structures, as well as the time complexity of the rank
algorithm. We argued that our approach relies on a small trusted
base (Section 7), and therefore provides a trustful and pragmatic
generation scheme for verified, realistic low-level C code.

9.1 Future Work
As short-term future work, we plan a number of technical im-

provements: provide default implementations for standard induc-
tive types (so as to reduce the user’s burden), address the issue
of name conflicts that the naming rules of Section 2.6 may cause
(at the time of this writing, one candidate solution is to use name
mangling like in C++).

As a next step, we plan to support a pluggable GC and closures.
It is important to be able to choose between various GCs in the
event that the generated code is linked to, say, OCaml or Ruby (in
which case, the GC of the latter should be used). Closures would
make it possible to support partial application. Concretely, we
would like to be able to define functions with less arguments than
the formal ones and functions that return closures. The issues of
GC and closures are related because both mechanisms need to be
compatible.

Regarding use-cases, we plan to experiment our scheme for
C code generation with other algorithms for succinct data struc-
tures, such as the select function or wavelet trees.

As mid-term future work, we will investigate extension of
monomorphization to other arguments than type arguments so as
to open the door to the generation of even more efficient code. For
example, it would make it possible to specialize the rank function
w.r.t. one of its arguments (say, sz2 instantiated with 64); small
blocks would then be accessible in an aligned manner so as to
use the POPCNT instruction of recent Intel CPUs. We will also
investigate support for destructive update. For that purpose, we
are considering implementing a Coq plugin to perform linear typ-

ing. Using this plugin, it would be possible to detect, for C code
generated in pure functional style, when destructive update can
be performed safely.

Acknowledgments This work is supported by JSPS KAKE-
NHI Grant Number 15K12013.

References

[1] Alexandrescu, A.: The D programming language, Addison-Wesley
Professional (2010).

[2] Anand, A., Appel, A.W., Morrisett, G., Paraskevopoulou, Z., Pollack,
R., Bélanger, O.S., Sozeau, M. and Weaver, M.: CertiCoq: A veri-
fied compiler for Coq, The Third International Workshop on Coq for
Programming Languages (2017).

[3] Anderson, B., Bergstrom, L., Goregaokar, M., Matthews, J.,
McAllister, K., Moffitt, J. and Sapin, S.: Engineering the servo web
browser engine using Rust, 38th International Conf. Software Engi-
neering Companion (ICSE 2016), pp.81–89 (2016).

[4] Cejtin, H., Jagannathan, S. and Weeks, S.: Flow-directed closure con-
version for typed languages, European Symp. Programming (ESOP
2000), LNCS, Vol.1782, pp.56–71 (2000).

[5] Erwig, M. and Ren, D.: Monadification of functional programs, Sci-
ence of Computer Programming, Vol.52, No.1–3, pp.101–129 (2004).

[6] Flanagan, C., Sabry, A., Duba, B.F. and Felleisen, M.: The Essence
of Compiling with Continuations, ACM SIGPLAN Conf. Program-
ming Language Design and Implementation (PLDI 1993), pp.243–247
(1993).

[7] Greiner, J.: Weak polymorphism can be sound, Journal of Functional
Programming, Vol.6, No.1, pp.111–141 (1996).

[8] Hatcliff, J. and Danvy, O.: A generic account of continuation-
passing styles, 21st ACM Symp. Principles of Programming Lan-
guages (POPL 1994), pp.458–471 (1994).

[9] Hemmi, K., Tanabe, Y., Imai, Y. and Hagiya, M.: Verified Code Ex-
traction from Coq to Scala (in Japanese), 31st JSSST Annual Meet-
ing of the Japan Society for Software Science and Technology (JSSST
2014) (2014).

[10] Kelsey, R.A. and Rees, J.A.: A tractable Scheme implementation, Lisp
and Symbolic Computation, Vol.7, No.4, pp.315–335 (1994).

[11] Kelsey, R.A.: Pre-Scheme: A Scheme Dialect for Systems Program-
ming (online), available from 〈http://mumble.net/˜kelsey/papers/
prescheme.ps.gz〉 (accessed 2017-11-07).

[12] Lattner, C. and Adve, V.: LLVM: A compilation framework for life-
long program analysis & transformation, Proc. International Sympo-
sium on Code Generation and Optimization: Feedback-directed and
runtime optimization, IEEE Computer Society (2004).

[13] Letouzey, P.: Certified functional programming: Program extraction
within Coq proof assistant, PhD thesis, Université Paris-Sud, France
(2004).

[14] Leroy, X.: Formal verification of a realistic compiler, Comm. ACM,
Vol.52, No.7, pp.107–115 (2009).

[15] MLton: Monomorphise (online), available from 〈http://mlton.org/
Monomorphise〉 (accessed 2017-05-02).

[16] Moggi, E.: Notions of computation and monads, Information and
Computation, Vol.93, No.1, pp.55–92 (1991).

[17] Morrison, R., Dearle, A., Connor, R.C.H. and Brown, A.L.: An ad hoc
approach to the implementation of polymorphism, ACM Trans. Prog.
Lang. Syst., Vol.13, No.3, pp.342–371 (1991).

[18] Odersky, M. and Wadler, P.: Pizza into Java: Translating theory into
practice, 24th ACM SIGPLAN-SIGACT Symp. Principles of Program-
ming Languages (POPL 1997), Paris, pp.146–159 (1997).

[19] Okanohara, D.: The world of fast character string analysis (In
Japanese), Iwanami Shoten (2012).

[20] Oudjail, V. and Hym, S.: coq2c (online), available from
〈https://github.com/2xs/coq2c〉 (accessed 2017-05-02).

[21] The Pip Development Team: The Pip Protokernel (online), available
from 〈http://pip.univ-lille1.fr/〉 (accessed 2017-05-02).

[22] Probst, M.: Proper tail recursion in C, Diplomarbeit, Institute of Com-
puter Languages, Vienna University of Technology (2001).

[23] Serrano, M. and Weis, P.: Bigloo: A portable and optimizing com-
piler for strict functional languages, International Symp. Static Analy-
sis (SAS 1995), LNCS, Vol.983, pp.366–381 (1995).

[24] Stroustrup, B.: The C++ Programming Language, Third Edition,
Addison-Wesley (1997).

[25] Stroustrup, B.: Abstraction and the C++ machine model, International
Conference on Embedded Software and Systems, LNCS, Vol.3605,
pp.1–13, Springer Berlin Heidelberg (2004).

[26] Tanaka, A., Affeldt, R. and Garrigue, J.: Formal Verification of the
rank Algorithm for Succinct Data Structures, 18th International Con-
ference on Formal Engineering Methods (ICFEM 2016), pp.242–260

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

(2016).
[27] Tanaka, A., Affeldt, R. and Garrigue, J.: Formal Verification

of the rank Algorithm for Succinct Data Structures, project web-
site, available from 〈https://staff.aist.go.jp/tanaka-akira/succinct/〉 (ac-
cessed 2017-07-12). Contains references to plugins’ implementation
and Coq scripts for this article.

[28] Tanaka, A.: Coq Bug 4312 - ocamlopt can not optimize tail call in a
extracted function (online), available from 〈https://coq.inria.fr/bugs/
show bug.cgi?id=4312〉 (accessed 2017-05-02).

[29] Tarditi, D., Lee, P. and Acharya, A.: No assembly required: Compil-
ing standard ML to C, ACM Letters on Programming Languages and
Systems, Vol.1, No.2, pp.161–177 (1992).

[30] Tolmach, A.P. and Oliva, D.: From ML to Ada: Strongly-typed lan-
guage interoperability via source translation, Journal of Functional
Programming, Vol.8, No.4, pp.367–412 (1998).

Appendix

A.1 Extraction Robustness w.r.t. Tail Recur-
sion

This section provides a concrete illustration for the issue
Robustness.

Extraction is not robust and too sensitive to customization. In
particular, when one customizes the match construct, this leads to
the introduction of anonymous functions and tail recursion may
not be preserved by extraction and leads to stack consumption *19.

For example, the following Coq function extracted and com-
piled with ocamlopt (the native compiler of OCaml) consumes
stack [28]:

Fixpoint f (i a1 a2 a3 a4 a5 a6 a7 a8 a9 : nat) :=
match i with

| O⇒ O
| S j⇒ f j a1 a2 a3 a4 a5 a6 a7 a8 a9
end.
Require Import ExtrOcamlNatInt.
Extraction f.

Here is the result of extraction to OCaml:

let rec f i a1 a2 a3 a4 a5 a6 a7 a8 a9 =

(fun fO fS n→ if n=0 then fO () else fS (n−1))
(fun _→ 0)
(fun j→ f j a1 a2 a3 a4 a5 a6 a7 a8 a9)
i

The extracted code consists of mutually recursive functions: f
and two anonymous functions (fun fO fS → ...) (from the
module ExtrOcamlNatInt of the Coq standard library) and
(fun j → ...), which corresponds to a branch of the origi-
nal match construct. Although all recursive calls are tail call, on
the AMD64 architecture, ocamlopt fails to compile them so as to
avoid stack consumption.

A.2 Generation of C Code for Mutually Re-
cursive Coq Functions

Mutually recursive functions in Coq are defined as follows:

Fixpoint c1 (x11 : t11) ... (x1n1 : t1n1) : t1 := ...
...

*19 We observe that this happens with native compilation when the num-
ber of arguments is greater than the number of registers. The bytecode
generator does not seem to suffer from this defect.

with ci (xi1 : ti1) ... (xini : tini) : ti := ...
...
with cm (xm1 : tm1) ... (xmnm : tmnm) : tm := ...

We generate C code in such a way that tail recursion between
functions is translated to gotos to avoid stack consumption. A
C function bodyfunc is generated that contains all the functions’
bodies. This function takes as arguments (1) one argument to
choose a function body and (2) actual arguments for the chosen
function. These actual arguments are passed via a void* pointer
to a struct. Similarly, the return value of each body is passed via
a void* pointer. We generate entry functions nnici, which build
the struct for the arguments and the return buffer, and invoke
bodyfunc.

More precisely, the generated code is as follows (1–4):

1. Declaration of structs The structs for arguments are de-
clared:

/* struct definitions for arguments, i = 1 . . .m */
... struct ci { ti1 xi1; ...; tini xini; }; ...

2. Forward Declaration of bodyfunc A forward declaration is
necessary because the entry functions invoke bodyfunc. It takes
an int to choose a function, a pointer to the arguments, and a
pointer to the buffer for the return value:

void bodyfunc(int i, void *argsp, void *retp);

3. Generation of Entry Functions They store the arguments to a
struct and invoke bodyfunc with the int that identifies the ap-
propriate body (zero-origin). The return value should be stored in
ret:

/* entry functions, i = 1 . . .m */
...

ti nnici(ti1 xi1, ..., tini xini) {

struct ci args = { xi1, ..., xini };

ti ret;

bodyfunc(i − 1, &args, &ret);
return ret;

}

...

4. Generation of bodyfunc It contains at the top declarations of ar-
guments which can be assignable by any function involved in tail
recursion. A switch statement is used for dispatching to func-
tions’ bodies. In each case, the arguments are retrieved from the
struct and a label is declared for tail recursion. The function
body is translated in such a way that the result is assigned to the
return value buffer provided by the entry function. After that, the
control-flow returns to the entry function:

/* body function */

void bodyfunc(int i, void *argsp, void *retp)

{ /* argument declarations, i = 1 . . .m, j = 1 . . . ni */

... ti j xi j; ...

/* dispatch to the specified function body */

switch (i) {

default: /* suppress warning */

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

/* function bodies, i = 1 . . .m */
...

case i − 1: {
/* argument retrieval, j = 1 . . . ni */

... xi j = ((struct ci *)argsp)→xi j; ...

nnici:; /* label for tail recursion */

/* body to assign (*(ti*)retp)) */

return;

}

...

}

}

There is a number of opportunities for simplifications in the
above generic transformation scheme:
• struct for arguments can be eliminated if the arguments are

the same for all functions.
• The return value buffer can be eliminated if the return type

is the same for all functions.
• The label for tail recursion can be eliminated if the function

is not tail-called.
• If the function is always tail-called, the entry function and

the case label can be eliminated.
• If only one function can be called as a non-tail call, the entry

function and bodyfunc can be merged to one function and the
switch statement can be eliminated.

A.3 Hatcliff and Danvy’s Monadification Ap-
plied to Gallina

This section provides concrete evidence that Hatcliff and
Danvy’s monadification algorithm cannot be used directly in Coq.
We have observed in particular failures to identify the decreas-
ing argument and type-checking issues (as mentioned in Sec-
tion 8.5.1).

Example of Failed Detection of the Decreasing Argument The
following function is a Gallina implementation of the “power
function”:

(* direct style: *)

Fixpoint pow a k := match k with
| O⇒ 1
| S k'⇒ a ∗ pow a k'
end.

Coq infers that it terminates by detecting that k is its decreasing
argument. Once the power function has been monadified, the de-
tection of the decreasing argument fails because it is not passed
directly to the f binder of the fix operator for recursive func-
tions:

(* monadic style: *)

Definition powM := return fix f a := return fun k⇒
match k with

| O⇒ return 1
| S k'⇒ f a�= fun g⇒ g k'�= fun b⇒ return a ∗ b
end.
(* Error: Recursive definition of f is ill-formed.

Recursive call to f has principal argument

equal to "a" instead of a subterm of "a". *)

Example of Type-check Failure for a Monadified Function The
example below shows that the monadification of the polymorphic
identity function fails to type-check when applied to the type of
natural numbers because Coq does not infer that the type argu-
ment T is in fact nat:

(* direct style: *)

Definition id T (x : T) := x.
Check id nat 1.
(* monadic style: *)

Definition idM := return fun T⇒
return fun (x : T)⇒ return x.
Check idM�= fun f⇒

(return nat)�= fun T⇒
f T�= fun g⇒
(return 1)�= fun x⇒
g x.

(* Error: The term "x" has type "nat" while it is

expected to have type "T". *)

Akira Tanaka was born in 1972. He re-
ceived his Ph.D. from JAIST in 2000.
His research interest is programming lan-
guages. He is currently a Senior Re-
searcher at AIST.

Reynald Affeldt received his M.S. and
Ph.D. degrees in computer science from
the University of Tokyo in 2001 and 2004
respectively. He was a Research Scien-
tist in the Graduate School of Information
Science and Technology of the University
of Tokyo, and joined AIST in 2005 as
a Research Scientist specializing in soft-

ware verification applied to secure computing. He is now a mem-
ber of the Information Technology Research Institute.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Jacques Garrigue received his M.S. de-
gree from University Paris 7, and D.S.
degree from the University of Tokyo in
1995. He is alumnus of École Normale
Supérieure in Paris. He was Research As-
sociate at Kyoto University from 1995 to
2004, and has been Associate Professor at
Nagoya University since 2004. His inter-

ests are in the theory of programming languages, particularly type
systems and proof of programs. He is a member of IPSJ, JSSST
and ACM.

c© 2018 Information Processing Society of Japan

