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Abstract: NVIDIA cuDNN is a low-level library that provides GPU kernels frequently used in deep learning.
Specifically, cuDNN implements several equivalent convolution algorithms, whose performance and memory
footprint may vary considerably, depending on the layer dimensions. When an algorithm is automatically
selected by cuDNN, the decision is performed on a per-layer basis, and thus it often resorts to slower
algorithms that fit the workspace size constraints. We present μ-cuDNN, a transparent wrapper library for
cuDNN, which divides layer computation into several micro-batches. Based on Dynamic Programming and
Integer Linear Programming, μ-cuDNN enables faster algorithms by decreasing the workspace requirements.
We demonstrate the effectiveness of μ-cuDNN over the Caffe framework, achieving speedups of 1.63x for
AlexNet and 1.21x for ResNet-18. These results indicate that using micro-batches can seamlessly increase
the performance of deep learning, while maintaining the same memory footprint.

1. Introduction

Prevalent Deep Neural Networks (DNNs) are becoming

increasingly deeper and are trained with large batch sizes.

Specifically, state-of-the-art DNNs contain hundreds of

layers [1], [2], and utilize batch sizes in the order of

thousands [3], [4], [5].

Large batches are also favored by distributed data-parallel

deep learning frameworks, because the communication

of parameter gradients can be overlapped with their

computation. Consequently, the batch size per accelerator

(e.g., GPU) should be large to achieve better scaling. Since

the memory usage of a DNN is nearly proportional to the

layer size and the batch size, the accelerator memory tends

to be used at full capacity in most real-world cases.

This “limited memory scenario” still leaves room to

optimize with cuDNN [6], a deep learning kernel library for

NVIDIA GPUs. cuDNN provides a variety of computational

primitives for deep neural networks, and is widely used

in deep learning frameworks, such as Caffe [7] and others

[8], [9], [10]. cuDNN provides up to eight different algorithms

to perform convolutions, each of which requires different

temporary storage (workspace) schemes.

Additionally, cuDNN provides optimization functions
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to determine the best algorithm for a given maximum

workspace size, either with respect to computation time or

memory usage. Therefore, if the workspace size requested

by a fast algorithm is one byte larger than provided, cuDNN

will resort to a slower algorithm that requires less workspace.

In fact, the performance impact can be 4.51 times in the 2nd

convolutional layer of AlexNet, as shown in Fig. 1. This

is because there are considerable performance gaps among

different convolution algorithms.

In most frameworks, including Caffe, workspace is

typically allocated for each layer separately, so the total

workspace size can easily exceed the GPUmemory size. This

problem is amplified as the number of layers increase, since

users are required to reduce the workspace limit to prevent

running out of memory.

In this paper, we propose μ-cuDNN, a transparent

wrapper for cuDNN that attempts to mitigate the

aforementioned inefficiency. The contributions of this paper

are as follows:

• We present a method to automatically divide

mini-batch training into several “micro-batches”,

so that faster algorithms are utilized with tight

workspace constraints.

• We propose two different workspace policies, which

enable optimization of multiple convolutional layers

with inter-dependencies.

• We evaluate μ-cuDNN over the Caffe deep learning

framework, showing that it can mitigate the inefficiency

of cuDNN even with state-of-the-art Convolutional
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Fig. 1: Execution time of cuDNN 7.0.1 forward convolution of single-column AlexNet [11] with different workspace sizes.

The “Best” case always chooses the fastest algorithm regardless of workspace size, while in the “-1 byte” case the maximum

workspace size is limited to 1 byte less than the best algorithm.

Algorithm 1 Pseudo-code of two-dimensional convolution.

1: for(n = 0; n < N ; n++) // Mini-batch loop

2: for(k = 0; k < K; k++) // Output channel loop

3: for(h = 0; h < H; h++) // Height loop

4: for(w = 0; w < W ; w++) // Width loop

5: for(c = 0; c < C; c++) // Input channel loop

6: for(v = 0; v < V ; v++) // Kernel width loop

7: for(u = 0; u < U ; u++) // Kernel height loop

8: Y [n, k, h, w] += W [k, c, v, u]×X[n, c, h+ v, w + u];
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Fig. 2: Two-dimensional convolution. Each element of Y

is set to be a sum of element-wise products between partial

C × V × U area of X and one filter from W .

Neural Networks (CNNs), such as AlexNet and ResNet.

2. The Anatomy of Convolutional

Neural Networks

Convolution operations in Convolutional Neural Networks

(CNNs) apply multiple filters to a batch of channels

of two-dimensional data (Algorithm 1, Fig. 2). In

particular, input and output tensors are represented as

four-dimensional tensors with dimensions (N,C,H,W ),

where N is the mini-batch size, C is the number of

channels, and H and W represent image height and width,

respectively. Similarly, the filter tensor is represented as

four-dimensional (K,C, V, U) tensor, whereK is the number

of output channels and V, U represent kernel height and

width.

The two-dimensional convolution is composed of

seven-nested loops (Algorithm 1). The innermost three

loops compute the actual convolution, where one element

of the input tensor X is multiplied and accumulated to

one element of the output tensor Y . The remaining loops

iterate over all elements of Y . The key observation is that

in order to solve the problem described in Section 1, there is

no dependency inside the mini-batch loop between different

iterations. This is intuitive because in training or inference

we compute parameter gradients or outputs with respect to

different data samples, so this is equivalent to computing

N different CNNs concurrently. This observation motivates

us to apply loop splitting to the mini-batch loop, so that

we can reduce the resident workspace size.

In cuDNN, there are three operations related to

the two-dimensional convolution; Forward for forward

computation (Fig. 2), BackwardData for computing neuron

errors in back-propagation, BackwardFilter for computing

parameter gradients in back-propagation.

Although Forward and BackwardData can directly be

divided into several micro-batches, BackwardFilter cannot,

since there are output dependencies on the accumulated

parameter gradients tensor dW . However, we can still

divide the loops by running BackwardFilter multiple

times while accumulating the results, i.e., output scale

= 1 in cuDNN. Therefore, loop splitting can be achieved

by repeating cuDNN kernels one or more times for any

convolution-related operation, regardless of the underlying

method.

3. μ-cuDNN

μ-cuDNN is a transparent C++ wrapper library for

cuDNN, which can easily be integrated into most deep

learning frameworks [7], [8], [10], [12]. The key concept

of μ-cuDNN is that it automatically divides a mini-batch

to several batches (referred to as “micro-batches” in this

paper) and optimizes their sizes, to utilize faster convolution
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Fig. 3: The conceptual timeline of μ-cuDNN. “@256” means

that each computation is executed with batch-size of 256.

μ-cuDNN splits one convolution operation into one or more

disjoint subsets of the mini-batch.

algorithms (Fig. 3).

3.1 μ-cuDNN Methodology

μ-cuDNN library employs one of two workspace utilization

policies to optimize micro-batches for convolution kernels

(Fig. 4):

• Workspace Reuse (WR): WR uses one workspace

for each layer separately, sharing the space between the

internal micro-batches. In this scheme, each layer is

assumed to use the workspace exclusively, hence the

size of the single workspace is exactly the maximum

workspace size.

• Workspace Division (WD): WD allocates one

workspace per network, and assigns different segments

to each convolutional layer. WD enables small groups of

convolution operations, as in the Inception module [13],

to run concurrently with larger workspaces. In WD,

the actual workspace is managed by μ-cuDNN rather

than the deep learning framework, because conventional

frameworks allocate each workspace separately, lacking

a global view of the entire network’s workspace

requirements.

WR and WD both rely on the parameters of one

or more convolution kernel(s), mini-batch size, and

maximum workspace size. The output of μ-cuDNN is a

division of the mini-batch, and “micro-configurations”;

a pair of micro-batch size and a convolution algorithm

for each convolution micro-batch. In this paper, we

define “configuration” of a segmented convolution

kernel as “a list of micro-configurations”. For

example, if a kernel with mini-batch size of 256 is

equally divided into three micro-batches and each

of them uses algorithm X, the configuration is

represented as {(64, X), (64, X), (64, X), (64, X)}. Also

we define concatenation of two lists as +, such as

{a, b}+ {c, d} = {a, b, c, d} and {a}+ φ = {a}.

3.2 WR Algorithm

The goal of the WR policy is to optimize the total

execution time with mini-batch size of B using Dynamic

Programming (DP), given by:

T (B) = min

{
Tμ(B),

minb=1,2,...,B−1 T (b) + T (B − b)

}
,

optimize_with_DP(…) {

}

cudnnGetConvolution*Algorithm(…);
cudaMalloc(&ws, …);

// Training loop
for(…) { 

cudnnConvolution*(…, ws, …);

}

UcudnnConvolution*(…) {
cudnnConvolution*(…, ws, …);
cudnnConvolution*(…, ws, …);

}

…
…

…
…

optimize_with_ILP(…) {

}

cudnnGetConvolution*Algorithm(…);
cudnnGetConvolution*Algorithm(…);

// Training loop
for(…) { 

cudnnConvolution*(…, NULL, …);
cudnnConvolution*(…, NULL, …);

}

UcudnnConvolution*(…) {
cudnnConvolution*(…, ws+o1, …);

}

…

UcudnnConvolution*(…) {
cudnnConvolution*(…, ws+o2, …);

}

Fig. 4: Overview of WR and WD. μ-cuDNN optimizes

micro-batch sizes and internally calls cuDNN functions, via

the cuDNN interfaces.

where Tμ(b) is the fastest execution time of one convolution

kernel with micro-batch size of b, within the workspace

constraint. If the first row of the definition of T (B) is smaller

than the second row, cuDNN does not have to divide the

batch, otherwise it is beneficial to divide the batch into two

or more parts, applying the process recursively (Fig. 5).

The key point of WR is that the optimal

micro-configuration size is deterministic and independent

from other kernels. This is because in this case, we assume

that multiple kernels do not run simultaneously.

The algorithm of WR is mainly two-fold, where the

mini-batch size is B, and user-given maximum workspace

size is M :

( 1 ) For b = 1, 2, · · · , B, benchmarks all available

convolution algorithms of micro-batch size of b

with maximum workspace size of M , using cuDNN. We

define the fastest micro-configuration as cμ(b) = (a, b)

(where a is the fastest algorithm) and its execution

time as Tμ(b).

( 2 ) For b = 1, 2, · · · , B, computes T (b), the fastest

execution time for micro-batch size of b, and c(b), the

corresponding configuration, as follows (where T (0) =

0, c(0) = φ). T (b) and c(b) are memorized and reused

for further iterations.

b̂μ ← argmin
bμ=1,2,...,b

{Tμ(bμ) + T (b− bμ)}

T (b) ← Tμ(b̂μ) + T (b− b̂μ)

c(b) ← {cμ(b̂μ)}+ c(b− b̂μ)

( 3 ) Outputs the optimal configuration c(B).

3.3 WD Algorithm

In the WD scheme, configurations for multiple

convolution kernels are optimized, at the same time

the total workspace size should be less than the total

workspace limit that users specify. Therefore, WD is a

more complex problem than WR, since the configuration

of each convolution kernel is no longer independent from

others, due to the total workspace size constraint.

To solve this problem, we formulate a 0-1 Integer

Linear Programming (ILP)-based optimization algorithm
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c(256) = {(4, 60), (4, 60), (4, 60), (4, 60), (0, 16)}
T(256)

cμ = (4, 60) cμ = (4, 60) cμ = (4, 60) cμ = (4, 60) cμ = (0, 16)

Tμ(60)
cμ(60) = (4, 60)

T(196)
c(206) = {(4, 60), (4, 60), (4, 60), (0, 16)}

Tμ(60)
cμ(60) = (4, 60)

T(136)
c(156) = {(4, 60), (4, 60), (0, 16)}

Fig. 5: DP-based optimization of WR. Here it is assumed

that algorithm 4 with micro-batch size of 60 (cμ(60) =

(4, 60)) achieves better computation efficiency, hence it is

repeatedly used.

(Fig. 6). Given the set of kernels K and sets of available

configurations Ck of kernel k, WD is solved in Equation 1.

min. T =
∑
k∈K

∑
c∈Ck

Tk(c)xk,c (1)

subject to.
∑
k∈K

∑
c∈Ck

Mk(c)xk,c ≤ M (2)

∑
c∈Ck

xk,c = 1 (∀k ∈ K) (3)

xk,c ∈ {0, 1} (∀k ∈ K, ∀c ∈ Ck) (4)

Where Mk(c) and Tk(c) are the workspace size

and execution time of kernel k with configuration c,

respectively. Equation 2 limits the total workspace size to

the user-specified size M . μ-cuDNN uses configuration c on

kernel k if and only if xk,c = 1, and exactly one of them

is selected for each kernel k, according to the constraint in

Equation 3.

3.3.1 Desirable Configuration Selection

The challenging problem of the above ILP-based

algorithm is that if all possible configurations are evaluated

(i.e., all combinations of the number of micro-batch and

algorithms), the search-space is in the order of |A|B (where

A is set of algorithms) configurations for each kernel, which

makes the problem impractically large.

Here we introduce a pruning algorithm to remove

undesirable configurations from all possible configurations,

without returning any sub-optimal solutions. The resulting

desirable configuration set Ck is then input to the ILP

(Equation 1-4) to solve the entire problem.
First, we modify the DP algorithm to output a set of

configurations, rather than the fastest configuration, as
follows:

C(b) = D

⎛
⎝ ⋃

bμ=1,2,...,b

⋃
cμ∈Cμ(bμ)

⋃
c∈C(b−bμ)

({cμ}+ c)

⎞
⎠,

where Cμ(b) is a set of available micro-configurations of

micro-batch size of b, and D is a pruning function described

below. Note that this outputs c(B) of the WR algorithm as

one of its elements; c(b) ∈ C(b) and cμ(b) ∈ Cμ(b) for any

u C1

v C2

k
c Ck

M

M2(v)

T2(v)

T

x1,u = 1

x2,v = 1

xk,c = 1

cμ cμ cμ cμ

Fig. 6: ILP-based optimization of WD. The problem is

stacking “time × memory” rectangles of configurations

diagonally, and obtaining the minimum total width T ,

provided that the total height is lower than M . Each

configuration u, v, . . . , c is composed of one or more

micro-configurations such as cμ.

M(c)

T(c)

c’
c

¬[T(c)<T(c’) M(c)<M(c’)]

D

Fig. 7: The concept of desirable set. Here c cannot be in

D(C) because a c′ exists for which the condition T (c) <

T (c′) ∨M(c) < M(c′) is not satisfied.

b.
Second, we define the “desirable configuration set”

function D(C) ⊂ C as follows (Fig. 7):

D(C) = {c ∈ C|∀c′ ∈ C [T (c) < T (c′) ∨M(c) < M(c′)]},

where T (c) and M(c) is execution time and required

workspace size of a configuration set c.

This definition implies that any c ∈ D(C) is the fastest

configuration among any of the elements of D(C) which use

workspace size of M(c) or less. Conversely, if an element

c ∈ C is not in D(C), there is an element that is faster

than c and requires less workspace, hence there is no reason

to choose c, namely “undesirable”. Fig. 8 shows desirable

configurations of one layer of AlexNet.

We define the implementation of D as follows. When

a new element c is added to C, the function (i) searches

faster elements from desirable configuration candidates, (ii)

checks that M(c) is less than that of the slowest element of

the elements, (iii) adds c to candidates, and (iv) removes

candidates less desirable than c. This algorithm drastically

reduces the number of variables of Equation 1, and enables

to solve the ILP for state-of-the-art deep CNNs in practical

time.

3.4 μ-cuDNN Implementation

To enable μ-cuDNN, the only modification that needs
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Fig. 8: Desirable configurations of AlexNet conv2 (Forward)

on NVIDIA Tesla P100-SMX2 with a maximum workspace

size of 120 MiB, and a mini-batch size of 256. Colored

bars corresponding to data points represent the division of

the mini-batch and the chosen micro-batch algorithms. For

example, the top-left point divides the mini-batch into two

micro-batches of 128 and utilizes the FFT TILING algorithm.

to be performed to the code is replacing the cuDNN

handle type cudnnHandle t with Ucudnn· · ·. The μ-cuDNN

handle object is an opaque type which wraps the original

type, such that users can call any cuDNN functions

with the handle object. When the convolution operation

or benchmarking function is called with the μ-cuDNN

handle object, the μ-cuDNN library internally computes the

optimal configurations and returns a virtual algorithm ID

and zero required workspace size. This mechanism enables

users to call μ-cuDNN with minimal modification to the

original code. Indeed, the number of lines to be modified to

introduce μ-cuDNN to Caffe (v1.0) is approximately three.

The implementation of μ-cuDNN is based on overloading

a subset of cuDNN functions, and defining a cast operator

from Ucudnn· · · to cudnnHandle t which the μ-cuDNN

handle object internally holds. Using this technique,

μ-cuDNN delegates most of the functions to cuDNN, but

overrides those functions related to the convolutional layers.

The optimization algorithm in μ-cuDNN is fundamentally

based on the methodology described in Section 3.1. In

practice, μ-cuDNN provides a “batch size policy”, which

determines what micro-batch sizes are benchmarked at the

step 1 of the WR algorithm, as follows:

• all uses all batch sizes b ∈ {1, 2, 3, · · · , B}. Although

this always finds the optimal solution, it takes O(B)

time for the benchmark.

• powerOfTwo uses only power-of-two batch sizes b ∈
{20, 21, 22, · · · , B}. This saves a considerable amount

of time since it only costs O(logB) time for the

benchmark.

• undivided uses only the original mini-batch size b ∈
{B}. In WR, this option always selects the same

configuration as cuDNN, hence this option is only useful

to evaluate the overhead of μ-cuDNN.

These policies can be specified via an environment

variable or through a special library function in

μ-cuDNN. Furthermore, μ-cuDNN supports parallel

micro-configuration evaluation via an environment variable,

in which the aforementioned micro-batches are distributed

to different GPUs on the same computing node and tested

concurrently. This function assumes that the node contains

multiple homogeneous GPUs.

In addition, the optimization results are statically cached,

which skips unnecessary recomputations. This is especially

beneficial for networks that replicate convolutional layers of

the same size, such as ResNet [2].

3.5 Implementation of WD Optimization

To perform WD optimization, μ-cuDNN must know the

number of convolutional layers and corresponding layer

parameters in advance, i.e., before running any kernel. In

the current cuDNN API, however, the parameters are passed

one layer at a time, and thus there is no way to obtain all

the parameters collectively from deep learning frameworks.

To overcome this issue, we assume that the deep

learning framework calls cudnnGetConvolution*Algorithm

one time for each layer prior to the computation of

the entire network (e.g., training, inference). This is

the most straightforward use of the cuDNN interface,

as memory (including workspace) is usually allocated

before initiating computations. Due to the specific

implementation of Caffe, we add a μ-cuDNN library

call after network initialization, which ignores subsequent

cudnnGetConvolution*Algorithm calls.

When cudnnGetConvolution*Algorithm is called,

μ-cuDNN pushes the kernel parameters to an internal list,

and returns a dummy result. Note that the returned results

satisfy the semantics given by the cuDNN interface, so the

framework will not raise errors and will not allocate its own

workspaces. When cudnnConvolution* is called for the

first time, μ-cuDNN executes the optimization algorithm

(namely, WD). We use the GNU Linear Programming Kit

(GLPK) [14] as the ILP solver.

Table 1: Evaluation Environment Specification.
TSUBAME-KFC/DL TSUBAME 3

CPU Intel Xeon E5-2620×2 Intel Xeon E5-2680 v4×2
GPU NVIDIA Tesla K80×4 NVIDIA Tesla P100-SMX2×4

- 8.73 SP TFlop/s - 10.6 SP TFlop/s
- 24 GiB GDDR5 memory - 16 GiB HBM2 memory
(480 GiB/s bandwidth) (732 GiB/s bandwidth)

OS CentOS 7.3.1611 SUSE Linux
Enterprise Server 12 SP2

CUDA 8.0.61 8.0.44
cuDNN 6.0 6.0
GLPK 4.63 4.63

4. Performance Evaluation

We evaluate the performance of μ-cuDNN for two different

GPU architectures, NVIDIA Tesla K80 [15] and NVIDIA

Tesla P100-SMX2 [16], on the TSUBAME-KFC/DL

and TSUBAME 3 supercomputers, respectively. The

specifications of these supercomputers are listed in

Table 1.
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Fig. 9: Benchmark results of cudnnConvolutionForward of

AlexNet’s “conv2” layer on NVIDIA Tesla P100-SMX2. We

use 64 MiB workspace size and a mini-batch size of 256.

Numbers on each rectangle represent micro-batch sizes.

For overall evaluation, we use the Caffe [7] deep learning

framework (version 1.0). We use single-precision floating

point format and store tensors in NCHW format.

For neural networks, we use the AlexNet model defined in

Caffe, ResNet-18, and ResNet-50 from the NVIDIA branch

of Caffe [17]. We also modify data prefetching size from 4

to 16 for AlexNet and ResNet-18 for TSUBAME 3.

For workspace limit for the evaluation, we use 8 MiB and

64 MiB for each layer, which are the default workspace size

limits of Caffe and Caffe2 [12] respectively. In addition,

we use 512 MiB to investigate the case where sufficiently

large workspace is provided. To shorten the benchmarking

time, we use all GPUs in the same node with the parallel

evaluation function of μ-cuDNN, mentioned in Section 3.4.

4.1 Convolution Kernel Optimization Using WR

Fig. 9 shows the execution time of forward convolution

(cudnnConvolutionForward) of AlexNet “conv2” layer on

NVIDIA Tesla P100-SMX2. With workspace size of 64

MiB, the GEMM (GEneral Matrix-Matrix multiply)-based

algorithm is the one chosen by cuDNN, requiring only

4.3 KiB for workspace if the mini-batch is not divided.

On the other hand, FFT-based convolution [18] is more

efficient although it requires excessive amount of workspace

to store the images and filters in the frequency domain.

μ-cuDNN with powerOfTwo option successfully enables the

use of FFT within the workspace size constraints, using 48.9

MiB over micro-batches of size 32. Without micro-batches,

FFT-based convolution requires 213 MiB for workspace with

batch size of 256, which makes it infeasible to use.

The all option also enables μ-cuDNN to use Winograd

convolution [19], an algorithm that is especially efficient for

small convolution kernels, achieving 2.33 times speedup over

undivided in total.

4.2 CNN Optimization Using WR

Fig. 10 shows two timing breakdowns of Caffe (obtained

using Caffe’s “time” command) on AlexNet with two

different GPUs. The “time” command measures the

execution time of forward and backward passes of each layer

multiple times and outputs the average time, excluding the
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Fig. 10: Benchmark results of AlexNet on NVIDIA

Tesla K80 (top) and P100-SMX2 (bottom) with different

workspace sizes (8, 64, 512MiB). The labels “u”, “p” and “a”

represent undivided, powerOfTwo, and all, respectively.

We use a mini-batch size of 256.

first iteration. In this section, unless explicitly mentioned,

each layer is measured 50 times and each segment of bar

plots shows the sum of forward and backward passes of

the corresponding layer. Additionally, we only highlight

convolutional layers since the others (e.g., pooling) are out

of the scope of this paper.

One important observation from Fig. 10 is that the

performance improvement of μ-cuDNN over cuDNN (which

is equivalent to undivided) is significant when proper

amount of workspace is provided. For instance, if the

workspace size per kernel is 64 MiB, μ-cuDNN with the all

option achieves 1.81 times speedup with respect to the entire

iteration, and 2.10 times with respect to convolutions alone,

than undivided on the K80 GPU. This is because μ-cuDNN

successfully enables cuDNN to use faster algorithms, as in

the example from Section 4.1. In addition, a similar speedup

is achieved on P100-SMX2 GPU (1.40 times for the entire

iteration, and 1.63 times for convolutions alone).

In the case where workspace size is limited to 8 MiB,

μ-cuDNN cannot attain any performance improvement,

because even if the mini-batch is finely divided the specified

workspace is too small to utilize. Indeed, on P100, only one

kernel of all option seems to increase the utilization of the

workspace over undivided.

c© 2017 Information Processing Society of Japan 6

Vol.2017-HPC-162 No.22
2017/12/19



IPSJ SIG Technical Report

u 
(8

M
iB

)

p 
(8

M
iB

)

a 
(8

M
iB

)

u 
(6

4M
iB

)

p 
(6

4M
iB

)

a 
(6

4M
iB

)

u 
(5

12
M

iB
)

p 
(5

12
M

iB
)

a 
(5

12
M

iB
)

E
xe

cu
tio

n 
tim

e 
[m

s]

0

50

100

150

200

250

300

conv1
res2.1.conv1
res2.1.conv2
       :
res5.2.conv1
res5.2.conv2
etc.

Fig. 11: Benchmark results of ResNet-18 on NVIDIA Tesla

P100-SMX2 with different workspace sizes. We use a

mini-batch size of 128. Each convolutional layer name is

based on the model definition.

On the other hand, when the workspace size limit is

too large (512MiB), μ-cuDNN cannot outperform cuDNN

as well. This is because there is no benefit from dividing

the mini-batch, as all algorithms fit into the workspace

constraints. However, this workspace limit consumes

a considerable amount of workspace memory: While

undivided option consumes 2.87 GiB in total, all with

64 MiB limit only consumes 0.70 GiB, although with 4%

overhead caused by the choice of micro-batch algorithms.

From the viewpoint of the time to optimization

including kernel benchmarking and solving DP, powerOfTwo

considerably outperforms all. In particular, with 64

MiB workspace on P100 GPU, all takes 34.16 s, whereas

powerOfTwo takes 3.82 s. This result and Fig. 10 imply that

powerOfTwo is a reasonable choice to test the computation

efficiency of new CNNs quickly. Generally, the overhead of

μ-cuDNN is negligible with respect to the entire training

time, in which the forward and backward passes are

repeated hundreds of thousands of times.

Fig. 11 presents the performance breakdown of

ResNet-18 on Caffe with two GPUs. Even with

ResNet-18, in which considerable amount of time is

spent on non-convolutional layers (shown in gray in

Fig. 11), μ-cuDNN achieves 1.11 times speedup (and 1.21

times for convolutions) using all with workspace limit

of 64 MiB. Note that we cannot measure an undivided

workspace of 512 MiB for each convolutional layer on

ResNet-18, due to the GPU memory limit; the reason we

can run the benchmark here is that the workspace size

μ-cuDNN specifies is significantly lower than the limit, and

Caffe allocates as much as actually needed.

4.3 CNN Optimization Using WD

Fig. 12 shows the benchmark results of using the WD

algorithm. The adjoined bars have the same workspace

limit in total: For example, since AlexNet has five

convolutional layers and each layer has three kernels

(Forward, BackwardData, BackwardFilter), we place the
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Fig. 12: Benchmark results of AlexNet (top) and ResNet-50

(bottom) on NVIDIA Tesla P100-SMX2 with different

workspace sizes and policies (WR and WD). We use a

mini-batch size of 256 for AlexNet and 32 for ResNet-50.

Note that the adjoined bars have the same workspace limit

in total.

result with 120MiB WD workspace next to that of 8 MiB

WR workspaces.

In Fig. 12, we can see that the training time decreases as

the workspace constraints increase in both WR and WD,

but also that WD successfully manages the global memory

requirements better, attaining higher performance with the

same overall memory footprint (see Fig. 13 for breakdown).

Specifically, when 120 MiB workspace in total is provided for

AlexNet, the entire execution time with WD optimization

and all option is 1.24 times faster than the baseline (WR

with undivided option) for the entire iteration (or 1.38

times for convolution). WD also outperforms the baseline

with 960 MiB workspace in total, which can use 8 times more

memory for workspace, by 1.24 times in total execution time.

Furthermore, even for ResNet-50, which has more

fine-grained convolutional layers than AlexNet, WD achieves

1.05 times speedup for the entire iteration (or 1.14

times for convolution) with 2544 MiB of total workspace,

outperforming the original version (which consumes 5088

MiB) in terms of memory footprint as well. In addition, the

ILP for ResNet-50 is still small scale to solve in practical

time. When the workspace limit is set to 5088 MiB, the

number of 0-1 variables is 562, and the GLPK solver takes
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Fig. 13: Assigned workspace division of AlexNet on NVIDIA

Tesla P100-SMX2. “F”, “BF”, “BD” represent kernel types

(Forward, BackwardFilter, BackwardData respectively).

We use a mini-batch size of 256 for AlexNet. We set a

workspace limit of 8 MiB for WR, and a total workspace

limit of 120 MiB for WD.

5.46 ms to solve it.

The main reason that WD outperforms WR is that

in WR, if μ-cuDNN fails to find better algorithms and

micro-batch sizes to fully utilize the assigned workspace,

μ-cuDNN must abandon that workspace slot and cannot

allocate it to other kernels. On the other hand,

in WD, characteristics of different desirable workspace

sizes of different kernels (Fig. 8) are implicitly considered

in the ILP-based optimization framework. Therefore,

μ-cuDNN can assign larger proportional workspaces to

time-consuming layers if it is expected that the kernels will

be considerably faster with larger workspace.

In Fig. 13, μ-cuDNN with the WD policy spares most

of the workspace for “conv2” and “conv3” (93.7%), which

are the most time-consuming layers in the baseline (WR,

undivided). In contrast, μ-cuDNN doesn’t allocate

workspace of over 3 MiB for “conv4” and “conv5”, although

μ-cuDNN lists some faster and desirable configurations

than the baseline. For instance, the fastest configuration

of conv5 (forward), which uses FFT-based convolution

with two micro-batches, is 1.29 times faster than baseline,

although this configuration uses 109 MiB of workspace. This

observation implies that the WD does not unnecessarily

allocate workspace for a specific layer but chooses the best

combination, as defined by the ILP.

5. Related Work

Li et. al [20] indicate that the performance of various

convolution algorithms, such as GEMM-based or FFT-based

convolution, is heavily affected by the underlying memory

layout of layer tensors. In this paper, the authors propose

a heuristic to automatically tune each tensor memory

layout, as well as an efficient memory layout transformation

implementation that is inserted between convolutional layers

if needed. The proposed heuristic is, however, based on

the authors’ performance observation using conventional

convolutional layers and specific GPU architecture, and thus

there is no guarantee that the algorithm always provides

the best memory alignment for any deep neural network

and GPU architecture. On the other hand, since μ-cuDNN

uses the techniques of dynamic programming and integer

linear programming, it is mathematically guaranteed that

μ-cuDNN provides the best performance that the library

can produce, provided that each convolution is independent

from the others. In addition, μ-cuDNN can be applied for

new convolution algorithms and GPU architectures without

additional analysis, since μ-cuDNN treats the algorithms

and GPU architectures as black boxes.

Shirahata et al. [21] propose a memory reduction

algorithm that reuses memory space of neuron activations

and parameters during back propagation. The presented

algorithm nearly halves the GPU memory consumption, and

the authors imply that one of the main purposes of the

algorithm is to enable training with larger mini-batches,

which may cancel the memory footprint reduction. Thus

μ-cuDNN complements the memory reduction algorithm to

increase the mini-batch size.

6. Conclusion

In this paper, we proposed μ-cuDNN, a wrapper

library for cuDNN, which divides the mini-batch to utilize

high-performance convolution algorithms with limited

amount of memory for workspace. We have shown that

μ-cuDNN works well even with recent CNNs, which are

composed of many convolutional layers, and can easily be

integrated into existing deep learning frameworks.

The performance of μ-cuDNN demonstrated in this paper

suggests that other layer types can be optimized as well,

if they can be computed by different algorithms. This is

because μ-cuDNN does not use any special properties of

convolutions, apart from gradient accumulation.

In addition, the result of WD optimization (Fig. 13)

provides us with an insight that allocating the same

workspace memory for each convolutional layer is not

necessarily effective, and dynamic, adaptive assignment

performs better. This observation should be beneficial

for advanced deep learning frameworks that dynamically

manage GPU memory to store tensors such as neuron

data, weights and their gradients, for further memory

optimization.
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