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Parallelizable Block Rosenbrock Methods for

Linear Variable-coefficient System of ODEs

Nobuyuki Esaki† and Taketomo Mitsui††

In the previous paper (Esaki and Mitsui, 2001), we proposed parallelizable ROW-type dis-
cretization methods to apply to a linear variable-coefficient system of ODEs. They showed
good performance on the parallel computing system, but, since the maximum order cannot
exceed three, they are considered not to be much practical. In the present paper, we develop
a generalized implicit Runge-Kutta method and its block upper-triangular form, named as a
block Rosenbrock method, and derive a parallelizable one. Order analysis, global convergence
and stability analysis are carried out for the fourth order scheme of the new method. Numer-
ical experiments show its practicality under a parallel computer environment by comparing
other conventional methods.

1. Introduction

We are concerned with numerical solutions
of the initial value problem (IVP) of d-
dimensional linear variable-coefficient system of
ordinary differential equations (ODEs) given by

y′ = f(t, y) = L(t)y + F (t), (1)
y(0) = y0.

Here the coefficient matrix L(t) is assumed to
be huge, sparse and stiff. The problem often
occurs in any spatial discretization method for
partial differential equations of evolution type
possessing time-varying coefficients. A typical
example can be seen in the semi-discretization
method along the characteristics for advection-
diffusion equations 6),13). Taking the property
of sparseness and stiffness of the equations into
account, we are required to develop a paral-
lelizable numerical integration method coping
with these difficulties. However, to our knowl-
edge, studies of this direction are still rare. A
Magnus-expansion method (e.g., Refs. 2), 3))
has been proposed for linear variable-coefficient
case. Also a similar way to apply a matrix com-
mutator to highly oscillatory problems was pro-
posed 9). Nevertheless they are far from a prac-
tical application because of a complicated for-
mula manipulation of the solution form. Hence-
forth, in the present paper, we will focus on the
topic developing a parallelizable discrete vari-
able method for the linear variable-coefficient
system Eq. (1).
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An IVP of ODEs with general right-hand
side function f can be solved numerically
by means of an implicit Runge-Kutta (IRK)
method which is expressed with the following
scheme 8),11).

yn+1 = yy + h

s∑
i=1

βiki, (2)

ki = f


tn + γih, yn + h

s∑
j=1

αijkj


 , (3)

for i = 1, 2, · · · , s. Note that the schemes
Eqs. (2) and (3) are often associated with its
Butcher tableau

c A

bT ,

where A, b and c stand for s-square matrix
(αij), s-dimensional vectors (βi) and (γi), re-
spectively. To cope with stiffness of the system,
the IRK schemes must be A- or AN -stable 8).
In this case, however, the method costs much
in view of its computational time, even though
the stepsize h is not constrained due to the sta-
bility. This mainly comes from the cost in solv-
ing the (nonlinear) Eq. (3) with respect to the
stage-values {ki} at every time-step tn. For a
linear system of ODEs, the problem turns out
to solve a bigger system of simultaneous linear
equations at tn.

To overcome this difficulty we proposed 5)

parallelizable ROW-type methods, by refer-
ring to the parallelizable IRK methods 7),10) for
constant-coefficient linear systems. For read-
ers’ convenience, we give a summary of our
methods 5) here. An application of IRK to
Eq. (1) reduces its stage Eq. (3) into a huge and
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sparse linear system given by Eq. (55). To par-
allelize Eq. (55), we approximate all of the ma-
trices L(tn + γih) for i = 1, 2, · · · , s in the left-
hand side of the equation by the same LC =
L(tn+Ch), whereas its right-hand side remains
as in Eq. (55). The approximated equation can
be written as

(I − hA ⊗ LC)K = Φ (4)
by introducing the Kronecker product ⊗ of ma-
trices. Here we select the formula parame-
ters so as to let the matrix A diagonalizable
as A = S−1ΛS, where Λ = diag(λi). Then
the Kronecker product of A and LC can be ex-
pressed as

A ⊗ LC

= (S−1 ⊗ I)(Λ⊗ LC)(S ⊗ I). (5)
Consequently a left-multiplication of (S⊗I) to
Eq. (4) yields

(I − h(Λ⊗ LC))U = V , (6)
which means Eq. (56). Here U and V are the
transformed K and Φ. Thus it suffices to solve
only d-dimensional linear equations

(I − hλiLC)ui = vi (7)
for each i (i = 1, 2, · · · , s), and furthermore the
computation can be carried out in parallel with
an s-CPU parallel computer. An extra work,
we have, however, to compute

K = (S−1 ⊗ I)U
in every temporal step and to assemble them
by

ki =
s∑

j=1

(S−1)ijuj ,

for i = 1, 2, · · · , s. To sum up, this approxi-
mation reduces the computational time by the
reasons
• that the size of the linear system to be

solved can be reduced
• and that each solver can perform in paral-

lel.
We derived single-stage second order and two-
stage third order schemes of this type, which
are parallelizable and possess a good stability.
However we found that its highest order cannot
exceed three. To compromize the demand of
computational cost with the required accuracy,
the order of accuracy of the numerical method
is expected to be as higher as possible. There-
fore, in the present paper we are to propose an-
other approximation of higher oder to Eq. (55)
without much loss of parallelism.

2. Block Rosenbrock Methods

Taking the linear variable-coefficient case into

account, we generalize IRK methods into the
matrix form of the stage equation as Eq. (57).
In fact, the case for Ci = γi (i = 1, 2, · · · , s) im-
plies an s-stage IRK, while the case for Ci = C
yields our ROW-type methods 5). To achieve
the aim described in the previous section, we
decompose the coefficient matrix into b blocks
in each of which the parameter Ci is equal-
ized, and take its block-upper triangular form.
That is, we consider the stage equation given
by Eq. (58). Here Akl is an (sk × sl) matrix for
k, l = 1, 2, · · · , b, LCk

denotes L(tn+Ckh) (k =
1, 2, · · · , b), while Kk and Φk are appropri-
ate block of the stage-value and the right-hand
side vectors, respectively. The proposed scheme
can be called block Rosenbrock method due to
its feature. We will assign a specified block
Rosenbrock method by the row (b, s1, · · · , sb)
where b stands for the number of blocks and si

shows the number of dimension of i-th block.
In the present paper we devote ourselves to the
method of the type (2, 2, 2). The actual compu-
tation proceeds as follows. First, the equation
in the second block

(I − hA22 ⊗ LC2)K2 = Φ2 (8)
is solved with the parallel algorithm similar to
that for Eq. (4) by applying a two-CPU paral-
lelism. Second, the equation in the first block

(I − hA11 ⊗ LC1)K1

= Φ1 + h(A12 ⊗ LC1)K2 (9)

is solved with the same algorithm as above after
the substitution for K2. Finally, the computed
stage-values are employed for Eq. (2).

From the computational point of view, when
applying a two-CPU parallel computer, the
block Rosenbrock method of the type (2,2,2)
costs almost twice more than the correspond-
ing parallelizable ROW-type method (s = 4)
in each temporal step. Considering similarly,
the computational cost of a block Rosenbrock
method with b blocks is of b times of that of
the ROW-type of the same total number of
stages, provided that we have a parallel pro-
cessor which can cover every block at the same
cost. This linear growth of costs in block Rosen-
brock methods along the number of blocks
would not be much serious, for, when the same
level of accuracy is demanded for numerical so-
lutions, a higher order method can reduce the
number of steps to achieve the pre-assigned ac-
curacy level.
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3. Order Conditions and Their
Solution

A derivation of the order conditions is carried
out by analyzing the generalized IRK method
Eq. (57) of s stages. The emerging parameters
{Ci} in the scheme can be appended to the
Butcher tableau of the IRK as

C c A

bT ,

where C = (C1, · · · , Cs)T .
As is common in the discrete variable meth-

ods for ODEs, we expand the exact and numer-
ical solutions, y(tn+1) and yn+1, respectively,
with respect to the stepsize h under the local-
ization assumption yn = y(tn). The exact so-
lution at the next step (tn + h) is expanded as
Eq. (59). In this section, for simplicity, we will
temporarily denote the functional evaluations
at tn for y, L, F and their derivatives by their
function name. That is, y(tn) by y, L(tn) by
L and so on. Then, by taking into account the
linearity of the ODE system, the higher deriva-
tives of y(t) are expressed as

y′(tn) = Ly + F,

y′′(tn) = L(Ly + F ) + L′y + F ′,
y′′′(tn) = L2(Ly + F ) + 2L′(Ly + F )

+L(L′y + F ′) + L′′y + F ′′,
y(4)(tn) = L3(Ly + F ) + 5LL′(Ly + F )

+3L′′(Ly + F ) + L2(L′y + F ′)
+3L′(L′y + F ′) + L(L′′y + F ′′)
+L′′′y + F ′′′.

Taking advantage that we are considering a
linear variable-coefficient case Eq. (1), we can
reduce formula manipulation a bit, but still
have to carry out the power series expansion
and its substitution repeatedly for the numer-
ical solution yn+1 given by Eqs. (2) and (57).
As a result, we obtain Eq. (60). By compar-
ing the coefficients of the same powers of h in
Eqs. (59) and (60) we can obtain the order con-
ditions of the method. Note that these condi-
tions are valid for the linear variable-coefficient
system. At present we are not intending to the
general system of ODEs. A detailed descrip-
tion of the analysis of the order conditions is
given in Appendix A.1. Here we only mention
the derived parameters of the (2,2,2)-type block
Rosenbrock method of fourth order in the dou-
ble precision accuracy.

α11 = 1.00625

α12 = −0.37638641839513261
α13 = −0.29985410339729551
α14 = 0.0
α21 = 0.49030606531690384
α22 = −0.12016964692177122
α23 = 0.0
α24 = 0.29985410339729551
α31 = 0.0
α32 = 0.0
α33 = 1.01087594700249180
α34 = −0.94144410279951808
α41 = 0.0
α42 = 0.0
α43 = −0.12994816623471965
α44 = 1.06051632203174594
β1 = 0.32607257743127307
β2 = 0.32607257743127307
β3 = 0.17392742256872692
β4 = 0.17392742256872692
γ1 = 0.3300094782075718
γ2 = 0.6699905217924281
γ3 = 0.0694318442029737
γ4 = 0.9305681557970262
C1 = 0.83881017107725915
C2 = 0.83881017107725915
C3 = 0.34393851177186564
C4 = 0.34393851177186564

Furthermore, the diagonal blocks A11, A22

are made to be diagonalizable through a sim-
ilarity transformation as A11 = S−1

1 Λ1S1 and
A22 = S−1

2 Λ2S2. When we denote Λi =

diag(λ
(i)
j ), Si = (s

(i)
j� ) and S−1

i = (t
(i)
j� ), the com-

ponents are given as follows:

λ
(1)
1 = 0.80726642682978542

λ
(1)
2 = 0.07881392624844334

s
(1)
11 = 1.44012843462329139

s
(1)
12 = −0.58445514346259248

s
(1)
21 = −0.72639611344244829

s
(1)
22 = 1.37401106593291927

t
(1)
11 = 0.88405955099841603

t
(1)
12 = 0.37604730014123471

t
(1)
21 = 0.46737427217218432

t
(1)
22 = 0.92660046840938308

λ
(2)
1 = 1.38634549852559605

λ
(2)
2 = 0.68504677050864169

s
(2)
11 = 0.50019556522965889

s
(2)
12 = −1.44525475035481424
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s
(2)
21 = −0.56655017298169639

s
(2)
22 = −1.42055545417733843

t
(2)
11 = 0.92885320219021638

t
(2)
12 = −0.94500323721970348

t
(2)
21 = −0.37044801090163920

t
(2)
22 = −0.32706097542244446

4. Convergence Analysis

We will show the global convergence of the
proposed block Rosenbrock method. First, we
denote a single-step discrete variable method
for Eq. (1) with a general right-hand side func-
tion f by

yn+1 = yn + hΦ(tn, yn; h), (10)
where the mapping Φ means all the stage com-
putations including ki. Therefore Φ depends
on f . The local discretization error defined by

T n+1

=
1
h
{y(tn+1) − y(tn) − hΦ(tn, y(tn), h)}

or

y(tn+1)
= y(tn) + hΦ(tn, y(tn); h) + hT n+1 (11)

turns out to be
T n+1 = A(tn, y(tn))hp + O(hp+1), (12)

for a p-th order method. The coefficient
A(tn, y(tn)) generally becomes a complicated
combination of many higher order derivatives
of f . When f is sufficiently continuously dif-
ferentiable, we can assume that for a certain
positive h0 there is a positive Ā satisfying the
inequality

‖ T n+1 ‖≤ Āhp (h ≤ h0). (13)
Under the condition, the global error en+1 de-
fined by the difference y(tn+1) and yn+1 has
the recurrence formula

en+1

= en + h{Φ(tn, y(tn); h) − Φ(tn, yn; h)}
+hT n+1 (14)

due to Eqs. (11) and (10).
Here we concentrate ourselves to the case of

(2,2,2)-type block Rosenbrock method (p = 4)
for the linear variable-coefficient system Eq. (1).
Then, when we assume the four times contin-
uous differentiability for L(t) and F (t), the
conditions above mentioned hold, and further-
more we have a Lipschitz constant L satisfying
‖ L(t)y − L(t)y∗ ‖≤ L ‖ y − y∗ ‖. We assume
that the stage equation of the generalized IRK
Eq. (57) at tn is exactly solved to give

ki = h
s∑

j=1

αijL(tn + Cih)kj

+L(tn + γih)yn + F (tn + γih).
Denoting the solution of the stage equation
with y(tn) in place of yn by k∗

i , that is,

k∗
i = h

s∑
j=1

αijL(tn + Cih)k∗
j

+L(tn + γih)y(tn) + F (tn + γih),
we have the inequality

‖ ki − k∗
i ‖ ≤ L ‖ y(tn) − yn ‖

+hL

s∑
j=1

|αij | ‖ kj − k∗
j ‖ .

As expressed in Eq. (2), the increment function
Φ depends on ki’s linearly, when the simultane-
ous stage equation (57) is solved exactly. Thus
solution of the above simultaneous inequalities
with respect to ‖ ki − k∗

i ‖ (i = 1, 2, · · · , s)
yields

‖ Φ(tn, y(tn); h) − Φ(tn, yn; h) ‖
≤ M ‖ en ‖ (15)

with a certain positive constant M . Conse-
quently, together with the inequality (13), we
can obtain the recurrence relationship

‖ en+1 ‖≤ (1 + hM) ‖ en ‖ +Āhp+1,
which derives

‖ en ‖≤ Āhp

M
((1 + hM)n − 1),

for n = 0, 1, 2, · · · , as e0 = 0. Eventually, for
the (2,2,2)-type block Rosenbrock method, we
obtain

‖ en ‖≤ Ch4 (16)
with a constant C independent of h or n.
Therefore when h tends to 0, the global error
converges to 0.

5. Stability Analysis

The numerical stability is crucial in our
block Rosenbrock methods, for we target a
linear huge and stiff system. As shown be-
low, their A-stability is rather easily estab-
lished, whereas a stability suitable to the lin-
ear variable-coefficient case can hold under a
certain restriction of the size of the stepsize
h. In the literature a parallel concept of A-
stability is called AN -stability (A-stability for
Nonautonomous system, see Refs. 4), 8)). This
means that we cannot expect AN -stability of
our methods. As we are interested in their ap-
plication with a sufficiently small stepsize h, a
confirmation of such a stepsize for the new sta-
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Fig. 1 Region of absolute stability.

bility should be, however, useful.
5.1 A-stability
Since A-stability is a necessary condition of

AN -stability, we first analyze the former of the
block Rosenbrock methods.

When the scalar test equation
y′ = λy (t ≥ 0), λ ∈ C, y(0) = y0 (17)

is solved by the block Rosenbrock method, its
absolute stability factor can be given by

R(z) =
det(I − zA + zebT )

det(I − zA)
, (18)

where z = hλ (z ∈ C) and e denotes the s-
vector all of whose components are unity. It is
right as same as that of IRK, for we are now tak-
ing the linear test Eq. (17). Therefore, defining
A-stability of the method by the criterion

|R(z)| ≤ 1 for any z ∈ C

satisfying �z ≤ 0, (19)

we choose the formula parameters of (2,2,2)-
type method so that the criterion attains.
Then, as described in Appendix A.1, the
remained freedom of α11 can serve this
aim. Our analysis shows that the condition
1.00613647058398071 ≤ α11 is sufficient for A-
stability, and we selected α11 = 1.00625. Actu-
ally, under this selection, the region of absolute
stability {z ∈ C; |R(z)| ≤ 1} is approximately
displayed in Fig. 1.

Figure 1 only shows the region of absolute
stability in the upper half plane of C as the
shadowed picture, for the region should be sym-
metric with respect to the real axis. Since the
region includes the whole left half plane, the
method is A-stable.

5.2 NA-stability
While A-stability analysis is based on the au-

tonomous linear equation, it is not sufficient
for the variable-coefficient linear system Eq. (1).
The concept of NA-stability tries to bridge
the gap by taking a scalar, linear and nonau-
tonomous (variable) equation

y′(t) = λ(t)y(t) (t ≥ 0), (20)
λ(t) ∈ C, y(0) = y0

as the test equation. Here λ(t) is an arbi-
trary varying complex-valued function. Ap-
plying an s-stage generalized IRK method,
which includes our block Rosenbrock method,
to Eq. (20), we treat different s values of the
function λ(t) both in the left- and right-hand
sides of the stage equation. Consequently, in-
troducing the notations z

(�)
i = hλ(tn + Cih)

and z
(r)
i = hλ(tn + γih) ( z

(�)
i , z

(r)
i ∈ C for

i = 1, 2, · · · , s) and the two s-square diagonal
matrices Z� = diag(z

(�)
i ) and Zr = diag(z

(r)
i ),

the NA-stability factor of the generalized IRK
can be given by

R(Z�, Zr) =
det(I − Z�A + ZrebT )

det(I − Z�A)
. (21)

Since the matrices Z� and Zr are governed with
z
(�)
i and z

(r)
i , we define the (2s)-vector z =

(zT
� , zT

r )T , which relates to the NA-stability
factor as R(z) = R(Z�, Zr).

The best stability criterion should be
R ≡ {z; |R(z)| ≤ 1}

⊃ C
2s,− ≡ {z;�zi < 0 ∀i}

and, when it holds, we call the method uncon-
ditionally NA-stable. This concept coincides
with the conventional AN -stability. The set
R will be referred to as the domain of NA-
stability of the method. When the domain R
exists but does not include the whole C2s,−, the
method is said to be conditionally NA-stable.

Consider our block Rosenbrock methods,
then we can say that it is impossible to be un-
conditionally NA-stable, for the numerator de-
terminant of the factor R(Z�, Zr) carries z

(r)
i

which contributes to the factor monotonically
increasing its magnitude when |z(r)

i | tends to
infinity. Thus we must turn our study to a
criterion of conditional NA-stability. It is still
hard to carry out completely due to the num-
ber of freedom in z which is generally of (2s)-
dimension.

To establish a conditional NA-stability, we
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Fig. 2 Regions of conditional NA-stability of the (2,2,2)-type block
Rosenbrock method.
top-left: z′0 = 0, top-right: z′0 = −0.2
bottom-left: z′0 = −0.1 + 0.5i，bottom-right: z′0 = 0.1

assume a sufficiently small stepsize h and em-
ploy the Taylor series expansion of λ(tn + γih)
or λ(tn +Cih) appearing in the scheme of block
Rosenbrock methods with respect to h. As the
symbol ci stands for either Ci or γi, we have

zi = hλ(tn + cih) ≈ hλ(tn) + cih
2λ′(tn)

for every i. Introducing the new complex pa-
rameters z0 = hλ(tn) and z′0 = h2λ′(tn), and,
with a specified formula parameters, substitut-
ing the above second order approximation into
all z

(�)
i and z

(r)
i , we obtain the approximate

NA-stability factor R̂(z0, z
′
0) satisfying

R̂(z0, z
′
0) = R(z) + O(h3). (22)

Note that R̂(z, 0) coincides with the cor-
responding absolute stability factor R(z) in
Eq. (18). We may say therefore R̂(z0, z

′
0) is a

second order approximation of the NA-stability
factor with two parameters for a small h.

After a formula manipulation by computer
for the NA-stability factor of the (2,2,2)-type
block Rosenbrock method, we derive its approx-
imant R̂(z0, z

′
0) and plot figures of the region

{z0 ∈ C; |R̂(z0, z
′
0)| ≤ 1}

for several fixed value of z′0. The results are
shown in Fig. 2. Actually the figures for z′0 =
0,−0.2,−0.1 + 0.5i and 0.1 are displayed.

From the figure, we can observe as follows.
When z′0 = 0，the top-left of Fig. 2 just co-
incides with Fig. 1 as expected. When z′0 is a
negative real number, as shown at the top-right
Fig. 2, the region includes the whole left half
plane. When z′0 has non-zero imaginary and
negative real parts, as shown at the bottom-
left of Fig. 2, the region which is no longer sym-
metric with respect to the real line tends to
shrink as its imaginary part increases in magni-
tude, but still includes the whole left half plane.
When z′0 has positive real part, as shown at the
bottom-right of Fig. 2, the region no longer in-
cludes the whole left half plane. Furthermore,
a tedious calculation in each case except the
bottom-right can derive that the NA-stability
factor is less than unity in magnitude on the
imaginary axis and that it has no singularity in
the left half-plane. Therefore we can say the
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Fig. 3 Regions of conditional NA-stability of BK24.
top-left: z′0 = 0, top-right: z′0 = −0.2
bottom-left: z′0 = −0.1 + 0.5i，bottom-right: z′0 = 0.1

(2,2,2)-type block Rosenbrock method is condi-
tionally NA-stable.

To confirm our way of analysis, we carried
out the conditional NA-stability analysis for
the two-stage fourth order Butcher-Kuntzmann
method 8). The results are displayed in Fig. 3.

From the figure, we can say that for every
combination of z0 and z′0 satisfying �z0 < 0
and �z′0 < 0 the region of conditional NA-
stability includes the left half plane, whereas
the inclusion breaks down for �z′0 > 0. These
observations coincide with the fact that BK24 is
unconditionally NA-stable, that is, AN -stable.

Consequently our way of NA-stability anal-
ysis can be reasonable. Finally our (2,2,2)-
type block Rosenbrock method is NA-stable for
sufficiently small stepsize h. Unfortunately a
quantitative knowledge of the upper bound of
NA-stable stepsize is quite hard.

6. Numerical Tests

In the present section we will show the results
of numerical experiments by the (2,2,2)-type
block Rosenbrock method for a model problem.

6.1 Convergence Behavior
To check the convergence of our method, we

carry out numerical tests with several vary-
ing stepsizes. We employ the following d-
dimensional ODEs possessing the exact solution
y(t) = g(t).

dy(t)
dt

= L(t)y(t) + g′(t) − L(t)g(t), (23)

y(0) = g(0).
As an example, we take L(t) and g(t) as follows:

L(t) = tridiag
(

1 − 1
2

sin t, 1, 1 − 1
2

cos t

)
,

g(t) = e−2t




1
2
...
d


 .

We take the system Eq. (23) suggested by the
scalar model equation of Prothero-Robinson 12).
Although it is still an artificial one, the system
is linear variable-coefficient and has its stiffness
ratio varying between some 102 and 106 in our
numerical calculations. The latter ratio appears
when d = 200 and t = 0.875. Our target sys-
tem described in 6) has its stiffness ratio of 106.
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Fig. 4 Maximum absolute errors at t = 1.0 versus the
stepsize h.

Thus we can consider Eq. (23) as a test bed to-
wards a real-life application.

We solve the above system numerically by
two methods, i.e., our (2,2,2)-type block Rosen-
brock method (abbreviated as bR224) and
the two-stage fourth order Butcher-Kuntzmann
method (abbreviated as BK24), which is known
as one of the conventional AN -stable IRK
methods. For bR224 we apply the parallelized
algorithm, but only on the sequential architec-
ture for the convergence test. The convergence
behavior is given in Fig. 4.

In Fig. 4, the symbols Order4 and Order5 are
inserted to refer to the slopes corresponding to
the convergence order O(h4) and O(h5), respec-
tively. The result of bR224 exhibits fourth or-
der of convergence, expectedly, with the varying
temporal stepsize h, while that of BK24, which
exhibits the same order, is shown for compar-
ison. Moreover, for other t’s and d’s we had
essentially the same results.

6.2 Computational Performance on
Parallel Processors

Next to check the computational performance
of the parallelized algorithm, we employ a 4-
CPU parallel cluster computing environment,
which is composed of two 2-CPU comput-
ers, VT-Alpha6 500DP2, connected by LAN of
100Mbps. The CPU clock is declared to be Al-
pha21264 500 MHz. The SDRAM of the CPUs
is operated in the distribution mode. MIMD
programs on Tru64 C-compiler are realized with
the MPICH of version 1.1, which is one of the
Message-Passing Interface (MPI) packages, on
the computer that performs as a distributed

parallel machine. For the communications be-
tween processors we employ the library function
calls, MPI Isend() and MPI Irecv(), which per-
form as immediate (nonblocking) point-to-point
communication. The default two-CPU mode is
set to run with one cluster. However, when we
employ the full clusters for the two-CPU op-
eration by allocating two jobs to each cluster
separately, computational experiments revealed
little difference in the computing time, provided
the network traffic was not so busy. Henceforth
we employ the default mode in the actual com-
putations.

We numerically solve the aforementioned test
problem up to t = 1.0 by the parallelized block
Rosenbrock method on the one and the two
CPU architectures. For comparison, we also
solve the test problem on the one CPU archi-
tecture by the two-stage fourth order Butcher-
Kuntzmann scheme, and also by the two-stage
third order ROW-type scheme 5), denoted by
ROW23, on the one and the two CPU architec-
tures. As K. Burrage1) describes, any pro-
posed parallel algorithm should be compared
with the most efficient serial codes. Thus we
take both BK24 and ROW23 as the conven-
tional methods of good stability and conver-
gence, and try to measure the total performance
of our methods by comparing with them.

Table 1 shows the statistics of the elapsed
CPU time in seconds, which derives the
speedup ratio as Table 2. Note that the CPU
time statistics is measured only for the deriva-
tion of the speedup ratio. It may vary when
the computational conditions are changed. All
the algorithms are programmed so that the ma-
trix L(t) can be solved as a full one. The way
of measurement is as follows. Set the prob-
lem dimension as 200, and measure the CPU
time of the algorithms when they gave the same
level of the maximum absolute error. This
of course means that the required numbers of
steps for the integration interval might be dif-
ferent between the algorithms, as denoted in
Appendix A.2. The level of the maximum ab-
solute error varies as 10−3, 10−4, 10−5 and 10−6.
Their performance is compared on these mea-
surement. Same process is repeated for the
problem of dimension 400.

The left-hand side in the second column of
Table 2 shows the speedup ratio of the paral-
lelized bR224, while the right-hand side that
of ROW23. That is, the ratio of the elapsed
CPU time of its 2-CPU implementation ver-
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Table 1 Elapsed CPU time (sec).

d max |error| bR224 bR224 BK24 ROW23 ROW23
1-CPU 2-CPU 1-CPU 1-CPU 2-CPU

(1) (2) (3) (4) (5)
200 1.0E-3 2.00 1.14 1.20 1.49 0.76
200 1.0E-4 3.20 1.85 2.40 3.26 1.70
200 1.0E-5 5.59 3.22 4.20 6.75 3.53
200 1.0E-6 9.97 5.74 8.27 14.35 7.48
400 1.0E-3 13.26 7.33 10.08 10.23 5.20
400 1.0E-4 21.16 11.66 20.21 22.38 11.48
400 1.0E-5 37.06 20.37 35.31 46.35 23.75
400 1.0E-6 66.15 36.35 69.26 98.46 59.38

Table 2 Speedup for elapsed CPU time.

d max |error| (1)/(2) (4)/(5) (3)/(2) (5)/(2) (3)/(5)
200 1.0E-3 1.75 1.96 1.05 0.66 1.58
200 1.0E-4 1.72 1.91 1.29 0.91 1.41
200 1.0E-5 1.73 1.91 1.30 1.09 1.19
200 1.0E-6 1.73 1.92 1.44 1.30 1.11
400 1.0E-3 1.80 1.96 1.37 0.70 1.93
400 1.0E-4 1.81 1.94 1.73 0.98 1.76
400 1.0E-5 1.81 1.95 1.73 1.16 1.49
400 1.0E-6 1.81 1.95 1.90 1.63 1.37

sus that of 1-CPU case. Since it attains 1.72–
1.75 for bR224 and 1.91–1.96 for ROW23, the
parallelization is realized properly although the
speedup ratio of bR224 is inferior to that of
ROW23.

The speedup ratio in the last column of Ta-
ble 2 exhibits the advantage of the bR224 com-
paring with the BK24 and the ROW23. The
right-hand side in the column shows results
in our previous paper 5), which implies an ad-
vantage of the parallelized ROW23 over BK24,
when the matrix L(t) becomes large in the size
but we do not need higher accuracy. While,
the left-hand side in the column shows the ad-
vantage of parallelized bR224 over sequential
BK24, especially the case of larger d, both of
which achieve the same convergence behavior
of fourth order. Next as mentioned in sec-
tion 2, the parallel computational cost of bR224
is about twice more than ROW23 in the same
number of steps, however, it is expected to
compensate the loss due to its faster conver-
gence. The middle in the column indicates the
advantage of bR224 over ROW23 when accu-
racy level becomes higher. This means that
the higher order accuracy may overcome its less
parallelism. Summing up, we can composed
a new descretization scheme, which achieves
fourth order but does not loose the parallelism
much.

Next we rearrange the algorithms to take ad-
vantage of the sparseness of the coefficient ma-

trix L(t) of the equation. This enables the al-
gorithm of both bR224 and ROW23 to solve
d-dimensional tridiagonal linear equations on
each step. (We employed the Thomas algo-
rithm.) However, BK24 cannot enjoy the tridi-
agonality and has to solve a linear system with
banded matrix of band-width (d + 1). The re-
arrangement of the program of the linear solver
much reduces the computing time in all the
cases. Due to the Thomas algorithm the com-
puting time of both bR224 and ROW23 dras-
tically decreases, and this effect becomes more
when the number of the dimension increases.
This stresses the advantage of our block Rosen-
brock methods as well. The result is shown in
Table 3. By comparing the statistics for bR224
and ROW23 in the 2-CPU mode in Table 3, in
all cases bR224 is faster than ROW23 in spite
of its less speedup ratio.

7. Concluding Remarks

We proposed a parallelizable block Rosen-
brock methods to solve the time-dependent lin-
ear stiff system of ODEs. An actually derived
totally four-stage scheme achieves fourth order,
be computable in two blocks, parallelizable in
each block with two CPUs, and can be con-
sidered practical. The method also possesses a
good NA-stability and its parallel implementa-
tion on a cluster computing environment shows
that it gives better performance than the con-
ventional methods BK24 and ROW23. We
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Table 3 CPU time (sec) when taking advantage of the sparseness.

d max |error| bR224 bR224 BK24 ROW23 ROW23
1-CPU 2-CPU 1-CPU 1-CPU 2-CPU

200 1.0E-6 0.19 0.20 3.57 0.31 0.26
400 1.0E-6 0.38 0.38 27.25 0.63 0.49
800 1.0E-6 0.75 0.63 293.80 1.26 0.80

1600 1.0E-6 1.52 1.26 3342.18 2.51 1.57

also proposed a new way for conditional NA-
stability analysis, which is efficient for a suffi-
ciently small stepsize h.
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Appendix

A.1 Analysis of the Order Conditions
First we take the conventional assumption

γi =
s∑

j=1

αij for i = 1, 2, · · · , s (24)

which, common in Runge-Kutta-type of meth-
ods, reduces the complexity of the equations.

The conditions for fourth order accuracy are
as follows.

s∑
i=1

βi = 1 (25)

s∑
i=1

βiγi =
1
2

(26)

1
2

s∑
i=1

βiγ
2
i =

1
6

(27)

s∑
i=1

βi

s∑
j=1

αijγj =
1
6

(28)

s∑
i=1

βiCiγi =
2
6

(29)

1
6

s∑
i=1

βiγ
3
i =

1
24

(30)

1
2

s∑
i=1

βi

s∑
j=1

αijγ
2
j =

1
24

(31)

s∑
i=1

βiCi

s∑
j=1

αijγj =
3
24

(32)

s∑
i=1

βi

s∑
j=1

αij

s∑
l=1

αjlγl =
1
24

(33)
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1
2

s∑
i=1

βiC
2
i γi =

3
24

(34)

s∑
i=1

βi

s∑
j=1

αijCjγj =
2
24

(35)

Hereafter we concentrate ourselves to the
(2,2,2)-type block Rosenbrock scheme which at-
tains fourth order. That is, we set a31 = a32 =
a41 = a42 = 0, C1 = C2 and C3 = C4. Next we
allocate for {γi} the roots of the shifted Legen-
dre polynomial of degree four. Thus we have

γ1 =
1
70

(
35 −

√
35(15 − 2

√
30)

)
(36)

γ2 =
1
70

(
35 +

√
35(15 − 2

√
30)

)
(37)

γ3 =
1
70

(
35 −

√
35(15 + 2

√
30)

)
(38)

γ4 =
1
70

(
35 +

√
35(15 + 2

√
30)

)
. (39)

Substitution of these into Eqs. (25), (26), (27)
and (30) determines {βi}’s uniquely, however
their exact algebraic expression is too much
complicated with many rooting symbols. In-
stead we show these parameter solutions in the
double precision accuracy.

β1 = β2 � 0.32607257743127307 (40)
β3 = β4 � 0.17392742256872692. (41)

Specification of these parameters in Eqs. (29)
and (34) implies quadratic equations for Ci’s,
whose solution is given either pair of{

C1 = 0.83881017107725915,
C3 = 0.34393851177186564 (42)

or {
C1 = 0.49452316225607418,
C3 = 0.98939482156146769.

(43)

We select the former Eq. (42).
The remained parameters {αij} are the so-

lution of Eqs. (28), (31), (32), (33), (35) and
(24), however the process is a little complicated.
Hence we give its outline. First, we eliminate 4
unknowns through Eq. (24) as

α12 = γ1 − α11 − α13 − α14 (44)
α21 = γ2 − α22 − α23 − α24 (45)
α34 = γ3 − α33 (46)
α43 = γ4 − α44. (47)

Further elimination is possible through
Eqs. (27), (30), (31) and (35), and we obtain

α13 = −0.29985410339729551 − α23 (48)
α24 = 0.29985410339729551 − α14. (49)

Finally Eqs. (28), (31) and (33) derive
α22 = −1.12641964692177122

+α11 + α14 − α23 (50)
α33 = −3.08467944220248923

+4.07011715697389420α11

−3.11953127651679558α14

−7.18964843349068978α23 (51)
α44 = −3.03503906717323509

+4.07011715697389420α11

−3.11953127651679558α14

−7.18964843349068978α23. (52)
Remaining α11, α14 and α23 as free parameters,
we arrive at the solution of the desired order
conditions. The freedom of three parameters
are employed to achieve both the diagonaliz-
ability and the stability of the scheme. The di-
agonalizability criteria of the matrices A11 and
A22 are

(α11 − α22)2 + 4α12α21 > 0 (53)
(α33 − α44)2 + 4α34α43 > 0, (54)

respectively. Here we select α14 = 0
and α23 = 0 for the simplicity. Only re-
mained freedom for α11 serves to achieve
the above criteria. Then we have the
condition α11 ≤ 0.77513030203711903 or
0.97413593153469024 ≤ α11. As described in
Section 5, the value α11 = 1.00625 attains A-
stability as well as the conditional NA-stability.
All the fixed value of the scheme parameters is
given at the last paragraph of Section 3.

A.2 Actual Total Steps to Achieve the
Accuracy

For readers’ convenience we show the total
steps of each scheme versus the required accu-
racy in Table 4.

Table 4 Total steps versus the accuracy.

d max |error| bR224 BK24 ROW23
200 1.0E-3 16 4 32
200 1.0E-4 32 8 69
200 1.0E-5 54 24 145
200 1.0E-6 62 44 307
400 1.0E-3 16 4 32
400 1.0E-4 32 8 69
400 1.0E-5 54 24 145
400 1.0E-6 107 44 307
200 1.0E-6 107 44 307
400 1.0E-6 107 44 307
800 1.0E-6 107 44 307

1600 1.0E-6 107 44 307
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A.3 Equations


I − hα11L(tn + γ1h) −hα12L(tn + γ1h) · · · −hα1sL(tn + γ1h)
−hα21L(tn + γ2h) I − hα22L(tn + γ2h) · · · −hα2sL(tn + γ2h)

...
...

. . .
...

−hαs1L(tn + γsh) −hαs2L(tn + γsh) · · · I − hαssL(tn + γsh)







k1

k2

...
ks




=




L(tn + γ1h)yn + F (tn + γ1h)
L(tn + γ2h)yn + F (tn + γ2h)

...
L(tn + γsh)yn + F (tn + γsh)


 . (55)




I − hλ1LC

I − hλ2LC
0

. . .
0 I − hλsLC







u1

u2

...
us


 =




v1

v2

...
vs


 . (56)




I − hα11L(tn + C1h) −hα12L(tn + C1h) · · · −hα1sL(tn + C1h)
−hα21L(tn + C2h) I − hα22L(tn + C2h) · · · −hα2sL(tn + C2h)

...
...

. . .
...

−hαs1L(tn + Csh) −hαs2L(tn + Csh) · · · I − hαssL(tn + Csh)







k1

k2

...
ks




=




L(tn + γ1h)yn + F (tn + γ1h)
L(tn + γ2h)yn + F (tn + γ2h)

...
L(tn + γsh)yn + F (tn + γsh)


 . (57)




I − hA11 ⊗ LC1 −hA12 ⊗ LC1 · · · −hA1b ⊗ LC1

I − hA22 ⊗ LC2 · · · −hA2b ⊗ LC2

. . .
...

0 I − hAbb ⊗ LCb







K1

K2

...
Kb


 =




Φ1

Φ2

...
Φb


 . (58)

y(tn + h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) +

h4

24
y(4)(tn) + O(h5). (59)

yn+1 = yn + h

s∑
i=1

βi(Ly + F )

+h2




s∑
i=1

βiγi(L′y + F ′) +
s∑

i=1

βi

s∑
j=1

αijL(Ly + F )




+h3




1
2

s∑
i=1

βiγ
2
i (L′′y + F ′′) +

s∑
i=1

βi

s∑
j=1

αijγjL(L′y + F ′)

+
s∑

i=1

βiCi

s∑
j=1

αijL
′(Ly + F ) +

s∑
i=1

βi

s∑
j=1

αij

s∑
l=1

αjlL
2(Ly + F )




+h4




1
6

s∑
i=1

βiγ
3
i (L′′′y + F ′′′) +

1
2

s∑
i=1

βi

s∑
j=1

αijγ
2
j L(L′′y + F ′′)

+
s∑

i=1

βiCi

s∑
j=1

αijγjL
′(L′y + F ′) +

s∑
i=1

βi

s∑
j=1

αij

s∑
l=1

αjlγlL
2(L′y + F ′)
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+
1
2

s∑
i=1

βiC
2
i

s∑
j=1

αijL
′′(Ly + F )

+


 s∑

i=1

βiCi

s∑
j=1

αij

s∑
l=1

αjl +
s∑

i=1

βi

s∑
j=1

αijCj

s∑
l=1

αjl


 LL′(Ly + F )

+
s∑

i=1

βi

s∑
j=1

αij

s∑
l=1

αjl

s∑
m=1

αlmL3(Ly + F )


 + O(h5). (60)
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