斜め遠方から読み取りやすい錯視マーカの提案

堀江 大輔 ${ }^{1}$ 勝間 亮 ${ }^{1}$

Abstract

概要：近年，利用者が能動的に AR（Augmented Reality）マーカを読み込むことで位置を確定し，ナビゲー ションなどのサービスを行うことが検討されている。しかし，高精度でARマーカを読み込ませるために は，注意深くカメラをマーカの正面に向けて撮影する必要があり，利便性の点で問題がある。そこで本研究では，ヘッドマウントカメラなどを装着して歩行しているだけで斜め遠方から容易にマーカを読み込ま せることができるように，鍺視を利用した ARマーカを新たに考案した。また，通常の正方形のマーカと錯視を利用したマーカを用意し，それぞれのマーカの認識可能距離および認識可能範囲の検証を行った。

Proposal of Optical Illusion Markers Easily Recognized from Diagonal Distance

Daisuke Horie ${ }^{1} \quad$ Ryo Katsuma ${ }^{1}$

1．はじめに

スマートフォンやタブレット端末の普及により，様々な IT サービスが家や職場にいるときだけでなく外出先や移動中などでも手軽に利用できるようになった。現在スマート フォンには GPS 機能が標準搭載され，SNS などの様々な アプリケーションで位置情報が利用されている。また，ユ ビキタス化に伴い，人や物どうしがネットワークにつなが ることによって，人間がコンピュータを意識することなく高い利便性を得ることができるようになることが期待され ている．それに関連してCV（コンピュータビジョン）を利用したヘッドマウント型ウェアラブル端末の研究が世界中でなされている。これに伴って，ウェアラブル端末を利用した自動的な位置情報取得サービスへの需要が高まって いる。しかし，屋内では GPS が使用できない問題がある。

そこで，AR（Augmented Reality）マーカとよばれる付加情報を表示するためのパターン画像を用いた位置推定手法が注目されている。この方法では，印刷されたマーカを建物内に複数設置してそれらをカメラで読み取って得られ

[^0]た情報をもとに位置推定を行う。マーカはスマートフォン などのポータブル機器に付属している単眼カメラで 2 次元 コードと同様に容易に読み取ることができる。ユーザーが端末のカメラでマーカを読み取るとマーカの情報がサーバ に送られる。サーバは建物内に配置したすべてのマーカの位置情報を管理しており，ユーザーがマーカを読み取ると，端末はマーカのスナップショット画像をサーバに送信し， サーバは送られてきたマーカの情報とサーバ内のマーカの パターンファイルと照合する。一致するパターンファイル が見つかった場合，サーバはマーカの位置情報をユーザに送信する［5］．この ARマーカを用いた屋内位置推定手法 は近年特に研究されており，実用化もされている［6］［7］［8］． AR マーカを用いた位置推定手法は，電波の干渉や減衰が位置推定精度に影響を及ぼさないため，屋内での位置推定 に適している。また，カメラによりマーカを認識した瞬間 に，マーカの写り方からユーザの位置を高精度で特定でき るため，ヘッドマウント型ウェアラブル端末等によるAR ナビゲーションシステムにおいて特に適用性の高い手法と いえる。一般的に，AR技術を用いたナビゲーションシス テムは，図 1 に示すように，重要な場所をカメラ映像上に表示する。

このように，ARマーカを端末のカメラで読み取ること によって位置推定やナビゲーションを行うことができる一方で，カメラの位置と角度によってはマーカの読み取りを高確率で失敗してしまう問題が存在する。通常，ARマー カは画像が格子状に配置されており，概して正方形である。 カメラが斜め遠方からマーカを読み取る場合，歪んだマー カの入力画像を正方形画像に変換しなければならない。こ のとき，元のマーカの入力画像が極端に歪んでいると認識 に失敗しやすくなる。したがって，マーカが壁や天井など に設置してある場合，歩行中などのユーザーは一度立ち止 まってマーカの正面にカメラを向けなければいけないとい う利便性の問題がある。このとき，斜めからでもマーカを読み取ることができるように高精度な画像処理をリアルタ イムに行おうとすると，瞬間ごとの画像を大量に処理しな ければならず，処理系に膨大な負荷がかかる。一般に，壁 に設置した $15 \mathrm{~cm}^{2}$ 程度の小さなマーカは，安価なカメラ を用いて数メートルの距離から読み取れる必要がある。

そこで，低負荷でかつユーザがヘッドマウントカメラ等 を装着して歩行しているときに能動的な行動をすることな く自動でマーカを読み込ませることができるように，錯視 を利用したARマーカを新たに考案した。錯視の中には，非常に大きく歪んだ図を描いておくことで，ある特定の位置から見ると違和感のない図になるようにするものがあ る。例えば。図 2 に示したような一般に道路上に印刷され ている道路標示の「止まれ」という字は，真上から見ると非常に縦方向に延ばされているが，道路上から見ると通常 のフォントに見える。この錯視の性質を利用して，走行す る車がブレーキをかけ始める際に道路標示を真上からみる ことができない問題を解決している。この錯視の性質を利用して，図 3,4 に示すように，縦に引き伸ばしたマーカを使用することで，正方形のARマーカを用いた場合の利便性の問題を解決することができる。この例のように，マー カを歪ませることによってカメラがマーカに対して斜め遠方から接近しても，カメラには通常のマーカを正面から撮影したようにうつる。したがってユーザは，例えばヘッド マウント型カメラなどを装着することによって，マーカの正面で立ち止まってカメラを向けるなどの能動的行動を行 うことなく容易にマーカを読み取ることができる。また， この錯視を利用したマーカを読み取り可能な領域は，マー カを引きのばした方向に指向性を持つので，屋内ナビゲー ションなどでのデータ通信システムにこのマーカを適用す ることにより， 1 つのマーカのシンボルを複数の角度およ び距離から認識できるように再利用することも可能であ る。錯視を利用した ARマーカを用いたナビゲーションシ ステムの利点は以下のとおりである。
－ARマーカを認識するためにユーザは歩行を止めるな どの能動的な行動をとる必要がない。
－カメラ端末を用いて従来の正方形型のマーカよりも斜

図1 ARマーカを用いたナビゲーションの例

図2「止まれ」の道路標示

図3 歩行者から見た場合の通常の正方形型 ARマーカ

め遠方からARマーカを認識することが可能である。本論文の目的は，錯視の性質を利用したARマーカを定義し，従来の正方形型ARマーカよりも遠くから読み取る ことができることを確認することである。一般的なマーカ検出方法の詳細は第 2 章で説明する。第 3 章では，錯視を利用したマーカの形状を定義し，マーカの認識可能距離お よび認識可能範囲を三次元幾何学を用いて解析する。第4章では，実際に通常の正方形のマーカと縦方向に引き伸ば したマーカを用意し，マーカの認識可能距離および認識可能範囲を検証した実験について述べる。その結果，錯視を利用したマーカを用いた場合。通常のマーカと比較して，斜め遠方におけるマーカの認識可能距離および認識可能範囲が大幅に増加することがわかった。

2．ARToolKit を用いた ARマーカの検出方法

カメラ映像の解析を基に情報提示を行う ARは画像認識

図4 歩行者から見た場合の錯視を利用した ARマーカ

型AR と呼ばれ，リアルタイムでカメラの位置及び姿勢計算を行い映像画面に 3 次元 CG を表示する。画像認識型 ARは主に四角形のパターン画像を利用するマーカ型と現実にあるものをそのまま利用するマーカレス型に分類され る．マーカレス型は景観を損なわないため商業向けイベン トなどには適しているが，空間認識や特徴点抽出の計算量 が大きく高度な画像処理システムが要求される，発見が困難などのデメリットがある［9］．よって位置推定の際には処理が高速でユーザーの意識が向かいやすいマーカ型の方が適しているといえる。マーカ型ビジョンベースドARのラ イブラリは奈良先端科学技術大学院大学の加藤教授らの研究グループによって ARToolKit［10］が提供されている。こ の章では，ARToolKit などで用いられる最も一般的なマー力検出方法の 1 つについて説明する。

図5は，ARToolKit のマーカ検出手順を示している。ま ず，入力されたカメラ映像をグレースケール化し設定さ れた閾値をもとに2値化を行う。次に各白色領域の外接矩形を求める。外接矩形に対してマーカの輪郭線追跡を行い 4 本の折れ線で近似できた領域がマーカの候補と判断される．そのためマーカは一部分でも隠れていると検出できない。その後，マーカの黒枠の比率をもとに黒枠 を削除し，内部の四角形のパターンマッチングを行う。 この時，射影変換を用いて歪んだ四角形を正方形に直す必要がある（正規化）。検出された四角形の各頂点の座標を $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right)\left(x_{4}, y_{4}\right)$ とすると，射影後の正方形の各頂点の座標 $\left(X_{1}, Y_{1}\right)\left(X_{2}, Y_{2}\right)\left(X_{3}, Y_{3}\right)\left(X_{4}, Y_{4}\right)$ は，二次射影変換の公式によって，$X_{i}=\frac{a_{1} x_{i}+a_{2} y_{i}+a_{3}}{a_{7} x_{i}+a_{8} y_{i}+1}$ ， $Y_{i}=\frac{a_{4} x_{i}+a_{5} y_{i}+a_{6}}{a_{7} x_{i}+a_{8} y_{i}+1}$ と表すことができる［11］．ここで， $a_{1}, a_{2}, \cdots, a_{8}$ は射影変換の透視変換行列の成分を表す。 そして変換されたマーカ画像をカメラの画素値で符号化 し，サーバ内のパターンファイルと誤差範囲内で一致する場合，マーカの識別に成功する。

以上の手順において最も重大な問題は，射影変換する際 の誤差の増加にある。通常，マーカの画像は格子状に構成 されているため，マーカの理想的な形状は正方形である。正面からマーカを読み取る場合においては，単純なスケー リングによって正規化が行われるため，射影変換による誤差が少なく認識に成功しやすい。しかしカメラの進行方向 がマーカに対して斜めであるとカメラ画像上のマーカの歪 みが大きくなり，マーカの変換誤差が増加してマーカの識

図5 ARToolKit［10］を用いた ARマーカの検出手順

別に失敗する可能性が高くなる。
この問題を解決するために錯視の性質を利用したマーカ を新たに考案した。前述したように錯視マーカは縦方向に延びており，斜めの角度からマーカを見ると，マーカは正方形に近い形で見えるので，端末はより少ない誤差でマー カを読みとることができる。またいくつかのマーカ認識ソ フトウェアシステムは，最小二乗法などの高度な画像処理［12］を用いて，より正確なマーカの検出を可能とする が，そのような処理は総じて高い計算コストを必要とする。 しかし，我々の方法はマーカ認識ソフトウェアを変えるこ となく，マーカの形状のみを変化させるので低コストとい う利点がある。

3．錯視を利用した ARマーカの形状の定義お よびマーカの認識可能距離，認識可能範囲 の数式による評価

この章では，初めに錯視を利用した ARマーカの形状に ついて定義し，次に錯視マーカがマーカの認識可能距離な らびに認識可能範囲に対して与える影響などを計算式を用 いて評価する。

3.1 錯視を利用した ARマーカの形状

本節では，ARマーカ認識ソフトウェアとして ARToolKit に焦点を当て，錯視を利用したマーカの形状について定義する。以下はARToolKit におけるARの表示原理を説明 したものである．詳しい内容は文献［10］［13］に記載されて いる。

サーバ内の AR はマーカ座標で登録されており，カメラ画像に対してARを正しく配置するにはカメラに対するマー カの位置及び姿勢計算を行う必要がある。まず，ARマーカ認識ソフトウェアは，カメラの入力画像から特定したマー カの黒枠の頂点のスクリーン座標とマーカの 4 辺の座標の式を求める。次に，図 6 に示すように各辺をカメラの投影方向に引き延ばしていき，カメラの光学中心，スクリーン上のマーカの辺，対応する現実空間のマーカの辺を通る 4 つの面を作成する。このとき，スクリーン上のマーカの辺 はカメラ映像上に投影される。壁に設置した ARマーカの向かい合う辺どうしが互いに平行である場合， 3 次元空間

図 $6 s, x_{m}, y_{m}, u_{1}, u_{2}$ の位置関係
のマーカの 4 頂点はカメラの光学中心からの位置ベクトル で $s, s+x_{m}, s+y_{m}, s+x_{m}+y_{m}$ と表せる。ここで，s は カメラの光学中心からマーカの一つの頂点へのベクトルで あり，x_{m}, y_{m} は 3 次元空間のマーカの各辺のベクトルを表 す。ここで，ベクトル s は $s=\alpha x_{m}+\beta y_{m}+\gamma\left(x_{m} \times y_{m}\right)$ と表すことができる．α, β, γ はマーカの各辺ベクトルの係数を表している．$p=\alpha q+\beta r+\gamma(q \times r)$ とおくと，上述 した 4 つの面の向かい合う面の交線ベクトル u_{1}, u_{2} は，そ れぞれ向かい合う面の法線ベクトルの外積によって与えら れる。すると，u_{1}, u_{2} は式（1），（2）

$$
\begin{align*}
& u_{1}=-\gamma\left|x_{m} \times y_{m}\right|^{2} x_{m} \tag{1}\\
& u_{2}=-\gamma\left|y_{m} \times x_{m}\right|^{2} y_{m} \tag{2}
\end{align*}
$$

で表すことができる。つまり，x_{m}, y_{m} は，u_{1}, u_{2} の定数倍 として表すことができる。これによって，それぞれの交線 ベクトルを求めることでマーカの辺方向のベクトルがわか る．もしマーカの各頂点が直角であるとすると，$u_{1} \perp u_{2}$ が成り立つ。しかし実際は，u_{1}, u_{2} は変換に伴う誤差によっ て直角にはならない。そこで図7に示すように，u_{1}, u_{2} を同平面上で互いに垂直なベクトル v_{1}, v_{2} に変換することで この誤差を補正している。このことからマーカは向かい合 う辺が平行かつ各頂点が直角であればよい。従ってマーカ は正方形以外に長方形でも AR の表示が可能である。また， v_{1}, v_{2} の外積を求めることによって，マーカに垂直なベク トルが求まる。よってマーカの 3 次元回転成分を導出でき る。これを利用して，スクリーン上のマーカの頂点座標と 3 次元空間でのマーカの頂点座標から残りの平行移動成分 も求められる。
以上より本論文では，ARToolKit によるマーカの認識を容易にするため錯視を利用したマーカの形状を長方形と設定する。

3.2 錯視を利用した ARマーカの認識可能距離

次に，長方形型のマーカを認識できる距離について評価 する。第2章で述べた通り，カメラが斜め遠方から長方形型のマーカを撮影した場合，通常の正方形型のマーカを正

図7 方向ベクトル u_{1}, u_{2} の変換

面から撮影した場合と同様に認識できると考えられる。つ まり，マーカを認識できるときのカメラとマーカとの最大距離とマーカの形状が最も正方形に近い形に見えるときの カメラとマーカとの距離の間には相関があると考えられ る．よって以下では，錯視を利用したマーカの形状が最も正方形に近い形に見えるときのカメラとマーカとの距離を計算式を用いて推定する。ここでは図 8 に示したようにカ メラが壁に設置したマーカに対して平行に移動する場合を考える。各変数はそれぞれ以下の物理量を表している。

- $y_{l o n g}$ はカメラスクリーン上のマーカの長辺の長さ
- $y_{\text {short }}$ はカメラスクリーン上のマーカの短辺の長さ
- $d_{l o n g}$ は 3 次元空間上のマーカの長辺の長さ
- $d_{\text {short }}$ は 3 次元空間上のマーカの短辺の長さ
- x_{1} はマーカの形状が最も正方形に近い形に見えると きのカメラとマーカとの距離
- r はカメラと壁との垂直距離
- ε はカメラの焦点距離

図 8 より，$y_{l o n g}, y_{\text {short }}$ は式（3），（4）

$$
\begin{align*}
& y_{\text {long }}=\frac{d_{\text {long }} r \varepsilon}{\left(d_{\text {long }}+x_{1}\right) x_{1}} \tag{3}\\
& y_{\text {short }}=\frac{d_{\text {short }} \varepsilon}{x_{1}} \tag{4}
\end{align*}
$$

で表される．また，マーカが最も正方形に近い形に見える とき，$y_{l o n g}, y_{\text {short }}$ の制約条件は式（5）

$$
\begin{equation*}
y_{l o n g}=y_{\text {short }} \tag{5}
\end{equation*}
$$

で表される。このときマーカの認識率は最大となると考え られる。よって式（3），（4），（5）から x_{1} は式（6）

$$
\begin{equation*}
x_{1}=\frac{d_{\text {long }} r-d_{\text {long }} d_{\text {short }}}{d_{\text {short }}} \tag{6}
\end{equation*}
$$

で表される。次に，正方形型マーカと長方形型マーカの認識可能距離について評価するために，図 9 および表 1 に示 した正方形型マーカ A と長方形型マーカ B, C, D の 4 種類のマーカを用意した。 4 つのマーカの違いは縦横の比率 のみである。図 10 はカメラの壁からの距離を $0.5 \mathrm{~m}, 1.0 \mathrm{~m}$ ， 1.5 m とそれぞれ変化させた場合のマーカ A, B, C, D が最 も正方形に近い形に見える距離 x_{1} を表したものである。長方形型マーカ B, C, D は正方形型マーカ A と比ベてマーカ が最も正方形に近い形に見える距離 x_{1} が全体的に増加し ていることがわかる。また，カメラと壁との距離が離れる

図8 マーカが最も正方形に近い形に見える距離 x_{1}

図 9 マーカ A, B, C, D の図
表1 マーカ A, B, C, D の寸法

	長辺の長さ $[\mathrm{cm}]$	短辺の長さ $[\mathrm{cm}]$
A	9.10	9.10
B	11.35	9.05
C	13.00	7.80
D	13.00	5.15

Theoretical square distance $\left(x_{1}\right)$

図 10 マーカ A, B, C, D が最も正方形に近い形に見える距離 x_{1}

につれてマーカが最も正方形に近い形に見える距離 x_{1} が全体的に増加していることも同様に確認できる。これは， カメラが壁から離れるにしたがって斜め遠方から見たとき のマーカの歪みが小さくなるためである．

3.3 錯視を利用したマ—カの認識可能範囲

次に，長方形型マーカガマーカの認識可能範囲に及ぼす変化について計算式を用いて評価する。図11に示すよう なマーカを原点とした 3 次元極座標を考える。 (r, ϕ, λ) は カメラの光学中心の座標を表している。その他の各変数は前節で説明した通りである。 $y_{l o n g}, y_{s h o r t}$ は式（7），（8）

$$
\begin{equation*}
y_{l o n g}=\frac{\varepsilon d_{l o n g} \sqrt{1-\cos ^{2} \phi \sin ^{2} \lambda}}{r} \tag{7}
\end{equation*}
$$

図 113 次元極座標空間におけるカメラとマーカの位置関係

図 12 推定されるマーカ A, B, C, D の認識可能範囲

$$
\begin{equation*}
y_{\text {short }}=\frac{\varepsilon d_{\text {short }} \sqrt{1-\sin ^{2} \phi \sin ^{2} \lambda}}{r} \tag{8}
\end{equation*}
$$

で表される．カメラ映像上のマーカが極端に歪んでいると認識に失敗するのは前述した通りである．そこでカメラス クリーン上のマーカの縦横の比率に関する制約条件を設定 する。カメラスクリーン上のマーカの比率 $\frac{y_{\text {long }}}{y_{\text {short }}}$ に関する制約条件は式（9）

$$
\begin{equation*}
\frac{1}{\omega_{\text {ratio }}} \leq \frac{y_{\text {long }}}{y_{\text {short }}} \leq \omega_{\text {ratio }} \tag{9}
\end{equation*}
$$

で表される．ここで，$\omega_{\text {ratio }}$ はマーカ認識ソフトウェアの特性によって決定される定数であり，マーカを認識できる $\frac{y_{l o n g}}{y_{\text {short }}}$ の許容値を表している。 $\omega_{\text {ratio }}$ の値が大きくなると マーカの誤認識の発生確率が高くなる。図 12 は，$\omega_{\text {ratio }}=$ 3.0 とした時のマーカの長辺に平行な方向におけるマーカ A, B, C, D の認識可能範囲を表したものである．それぞれ の直線はマーカの認識可能範囲の下限を表しており，マー カの認識可能範囲はカメラとマーカとの距離が離れるにつ れて比例して増加することがわかる。また，長方形型マー カ B, C, D は正方形型マーカ A と比べてマーカの長辺に平行な方向において全体的に認識可能範囲が増加している ことがわかる。これは長方形型マーカはマーカの長辺に平行な方向に指向性を持つことを意味している。

4．検証実験

この章では実際に正方形型マーカと長方形型マーカを用意してマーカの認識可能距離と認識可能範囲の 2 つの測定 を行った。また，それぞれの測定において第3章での計算式による評価と実験での測定結果を比較してグラフの形状

に関する考察を行った。

4.1 使用機器など

実験は実際の環境を想定して屋内で行った。本実験では一般的に使用されている安価なオートフォーカス機能付き Web カメラである Logicool c525を使用した。画面解像度 は 1280x720 である．本実験で使用した ARToolKit［14］は図9のマーカを認識するとマーカの縁に沿って立方体を表示させる．マーカの認識率が下がると立方体が点滅状態に なる。本実験ではマーカを 5 秒間連続で認識し続けられた場合に認識成功とみなし， 5 秒間で認識できなかった瞬間 が存在すれば認識失敗とみなした。

4.2 マーカの認識可能距離の測定

マーカの認識可能距離が，マーカの形状や面積に応じて どのように変化するかを評価するため，以下の実験 $1 \sim 3$ を行った。各実験で用いたマーカ $A_{p}, A_{q}, A_{r}, E, F, G, H$ ， $I, ~ J, K$ の仕様は表 2 に示した通りである。

4．2．1 実験 1

まず，表1 のマーカ A, B, C, D を壁にカメラと同じ高さ で設置した。そして，図 13 に示すようにカメラを壁と平行に移動させた。カメラの向きは進行方向に向け固定し，常に壁と平行になるようにした。また，カメラの壁からの距離を $0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 1.5 \mathrm{~m}$ と変化させて実験を行った。そし てそれぞれのマーカ A, B, C, D においてマーカを認識で きるときのカメラとマーカとの最大距離 x を測定した。結果を図 14 に示す。図 14 から，長方形型マーカ B, C, D は正方形型マーカ A と比べて認識可能距離 x が増加してい ることが確認できる。また，カメラと壁との距離が増加す るにつれて認識可能距離 x が全体的に増加していることも同様に確認できる。

4．2．2 実験 2

また，一般的にマーカの面積が小さくなるとカメラ上の マーカの入力画像が不明瞭になり認識率が低下する。こ の性質を評価するために，マーカ A を縮小した正方形型 マーカ A_{p}, A_{q}, A_{r} をそれぞれ用意して，壁からの距離を 1 m に固定して同様の実験を行った。この結果，マーカ A ， A_{p}, A_{q}, A_{r} の認識可能距離 x はそれぞれ $2.6 \mathrm{~m}, ~ 2.3 \mathrm{~m}, ~ 2.1 \mathrm{~m}$ ， 1.3 m となった。このことから，マーカの面積が小さくなる にしたがってマーカの認識可能距離は小さくなることが確認できる。そして，長方形型マーカ B, C, D をそれぞれ縮小してマーカ A と高さをそろえた長方形型マーカ E, F, G をそれぞれ用意して，壁からの距離を $0.5 \mathrm{~m}, ~ 1.0 \mathrm{~m}, ~ 1.5 \mathrm{~m}$ と変化させて同様の実験を行った。結果を図 15 に示す。図 14 および図 15 から，長方形型マーカ E, F, G は長方形型 マーカ B, C, D とそれぞれ比較して認識可能距離 x が小さ くなっていることが確認できる。特に長方形マーカ E は正方形型マーカ A と比較しても認識可能距離 x が小さく

表2 マーカ $A_{p}, A_{q}, A_{r}, E, F, G$ の寸法

	長辺の長さ $[\mathrm{cm}]$	短辺の長さ $[\mathrm{cm}]$
A_{p}	7.28	7.28
A_{q}	5.48	5.48
A_{r}	3.61	3.61
E	9.10	7.28
F	9.10	5.48
G	9.10	3.61
H	17.3	17.3
I	18.9	15.2
J	21.6	13.8
K	27.2	10.8

なった。これは長方形型マーカ E, F, G は長方形型マーカ B, C, D と比較してそれぞれマーカの面積が小さくなって いるためである．また，図 14 および図 15 に示されるグラ フの形状は，図 10 に示したマーカの形状が最も正方形に近 い形に見えるときのカメラとマーカとの距離に関するグラ フの形状と一致した。また，長方形マーカ F, G は正方形型マーカ A と比較して，マーカの面積が減少しているのに対して認識可能距離 x が増加している。このことは，マー カを認識できるカメラとマーカとの最大距離 x がマーカの形状が最も正方形に近い形に見えるときのカメラとマーカ との距離 x_{1} に関係して増加していることを示している。

4．2．3 実験 3

また，実際にヘッドマウントカメラを装着したユーザが マーカを読み込みながら壁に沿って歩行することを想定し た場合，マーカを安定して認識できるかどうかが重要とな る．そこで，マーカの面積が等しくなるようにマーカ A ， B, C, D の大きさを変化させた大型の長方形型マーカ H ， $I, ~ J, K$ をそれぞれ用意して，壁からの距離を 1.0 m に固定 して，歩行しながらカメラを一定速度でマーカとの距離が 6.0 m の地点からマーカの方向へ平行に動かした。この時， カメラの映像を録画することでマーカを安定して認識する地点を測定した。結果を図 16 に示す。図 16 から，長方形型マーカ I, J, K は正方形型マーカ H と比較して，より遠くからマーカを安定して認識できることが確認できる。 なお，立方体が点滅状態になる（マーカの認識が不安定に なる）地点は，正方形型マーカの方が長方形型マーカより も遠い傾向がある。これは，それぞれのマーカの面積は等 しく，マーカの奥行きの幅は長方形型マーカの方が正方形型マーカよりも広くなっている一方，マーカの上下方向の幅は正方形型マーカの方が長方形型マーカよりも広くなっ ており，カメラがマーカから離れるにつれそれぞれのマー カの奥行の幅の差が小さくなり，上下方向の幅の差がマー カのパターンの認識しやすさに現れたためであると考えら れる。

図 13 マーカの認識可能距離 x

図 14 マーカ A, B, C, D の認識可能距離（実験 1）

図 15 マーカ A, E, F, G の認識可能距離（実験 2）

4．2．4 実験結果

4.3 マーカの認識可能範囲の測定

4．3．1 実験手順

まず，前節と同様にマーカ A, B, C, D をカメラと同じ高さに設置した。そして，図 17 に示すように，カメラを マーカの長辺と平行な方向にマーカから 10 cm ずつ離して いき，それぞれの地点でマーカを認識できる壁からの最大 の距離 z を測定した。また，マーカをカメラの進行方向に対して 45° ， 90° 回転させた場合についてもそれぞれ同様 の実験を行った。なお，すべての画像に対して処理を行う

Recognition distance

図 16 マーカ H, I, J, K の認識可能距離（実験 3）

図 17 マーカの認識可能範囲の測定

のはパターン識別に失敗することがあるので，ARToolKit では一度認識したマーカの位置を記憶しておき，次画像の マーカの位置と類似している場合は同じマーカとみなす処理を行っている。従って今回測定したのは認識開始地点で あり，認識履歴などを用いた補助を行わないマーカ認識ソ フトでは認識可能範囲が異なる可能性がある。

4．3．2 実験結果

図 18 はマーカの長辺に平行な方向におけるマーカ A, B ， C, D の認識可能範囲の測定結果を表したものである。ま た，長方形型マーカ B, C, D は正方形型マーカ A と比べ てマーカの長辺に平行な方向において全体的に認識可能範囲が増加していることがわかる。また，図 19 および図 20 は，マーカをカメラの進行方向に対してそれぞれ $45^{\circ} お よ$ び 90° 回転させた場合のマーカ A, B, C, D の認識可能範囲の測定結果を表したものである。図19より，マーカを 45° 回転させた場合，長方形型マーカ B, C, D と正方形型マーカ A では認識可能範囲にほとんど差がないことがわ かる。また，図 20 では逆に，マーカを 90° 回転させた場合，長方形型マーカ B, C, D は正方形型マーカ A と比べて全体的に認識可能範囲が減少していることがわかる。これ は長方形型マーカはマーカの長辺と平行な方向に指向性を持つことを意味している。また，図 18 ，図 19 および図 20 において，マーカの認識可能範囲はカメラとマーカとの距離が離れるにつれてほぼ比例して増加していることが確認 できた。このことは図 12 で推定したマーカの認識可能範囲に関するグラフの形状と一致する。

5．まとめ

本研究では，まず錯視を利用したマーカで斜めからの読

図 18 マーカを 0° 回転させた場合（マーカの長辺に平行な向き）の A, B, C, D の認識可能範囲

Recognition region

図 19 マーカを 45° 回転させた場合のマーカ A, B, C, D の認識可能範囲

図 20 マーカを 90° 回転させた場合（マーカの短辺に平行な向き） のマーカ A, B, C, D の認識可能範囲

み取りが可能になるかを調べるために，マーカの形状を定義し，マーカの認識可能距離および認識可能範囲を計算式 を用いて評価した。そして，実際に正方形型マーカと長方形型マーカを用意してそれぞれのマーカの認識できる距離 と範囲を測定した。その結果，錯視の性質を利用した AR マーカは従来の正方形型 ARマーカよりも遠くから読み取 ることができることや長辺に平行な方向に指向性を持つ ことなどが確認できた。このことから，壁などに錯視AR マーカを張り付けて歩行者に行動を促すことなくマーカを

認識させることが可能となり，ナビゲーションの質を大き く改善させることができるとわかった。

参考文献

Jeleen Chua Ching，Carolyn Domingo，Kyla Iglesia， Courtney Ngo，and Nellie Chua：＂Mobile Indoor Posi－ tioning Using Wi－fi Localization and Image Process－ ing，＂Journal of Theory and Practice of Computation， pp．242－256，（2013）．
Manikanta Kotaru，Kiran Joshi，Dinesh Bharadia，and Sachin Katti：＂SpotFi：Decimeter Level Localiza－ tion Using WiFi，＂Proc．of the 2015 ACM Confer－ ence on Special Interest Group on Data Communica－ tion（SIGCOMM＇15），pp．269－282，（2015）．
Pei Jiang，Yunzhou Zhang，Wenyan Fu，Huiyu Liu， and Xiaolin Su：＂Indoor Mobile Localization based on Wi－Fi Fingerprint fs Important Access Point，＂Jour－ nal of Distributed Sensor Networks，Vol．2015，No． 45，Article ID 429104，（2015）．
Yan Luo，Orland Hoeber and Yuanzhu Chen：＂En－ hancing Wi－Fi fingerprinting for indoor position－ ing using human－centric collaborative feedback，＂ Human－centric Computing and Information Sciences， 10．1186／2192－1962－3－2，（2013）．
Honda，S．Takahashi，I．Yoshida，K．：＂Proposal of shopping navigaiton system for low vision，＂Proc．of IPSJ SIG Technical Report，Vol．2012－IS－119，No．6， pp．1－7，（2012）．
Rencheng Sun，Yi Sui，Ran Li，and Fengjing Shao： ＂The Design of a New Marker in Augmented Real－ ity，＂Proc．of International Conference on Economics and Finance Research，pp．129－132，（2011）．
M．Kalkusch，T．Lidy，N．Knapp，G．Reitmayr，H． Kaufmann，and D．Schmalstieg：＂Structured Visual Markers for Indoor Pathfinding，＂Proc．of The First IEEE International Workshop on Augmented Reality Toolkit，pp．1－8，（2002）．
Megha Shetty，Vineet Lasrado，and Riyaz Mo－ hammed：＂Marker Based Application in Augmented Reality Using Android，＂
亀田能成：＂マーカレス AR＂，映像情報メディア学会誌 Vol．66，No．1，pp．45～51（2012）．
H．Kato and M．Billinghurst：＂Marker Tracking and HMD Calibration for a Video－based Augmented Re－ ality Conferencing System，＂Proc．of the 2nd IEEE and ACM International Workshop on Augmented Re－ ality（IWAR＇99），pp．85－94，（1999）．International Journal of Innovative Research in Computer and Communication Engineering，Vol．3，Special Issue 7， pp．146－151，（2015）．
OpenCV：Perspective Transform＜http：／／opencv．jp／ opencv－1．0．0／document／opencv ref cxcore algebra． html\＃declcv Perspective Transform $>$ 。
菅谷保之，金谷健一：＂基礎行列と射影変換の計算精度の比較：最小二乗法から超精度くりこみ法ま で＂，情報処理学会研究報告，Vol．2012－CVIM－181， No．22，pp．1－6，（2012）．
ARToolKit：Coordinate Systems，＜http：／／www．hitl． washington．edu／artoolkit／documentation／cs．htm＞
ARToolKit，＜https：／／www．hitl．washington．edu／ar－ toolkit／＞．

[^0]: 1 大阪府立大学
 Osaka Prefecture University

