
Vol. 45 No. SIG 11(ACS 7) IPSJ Transactions on Advanced Computing Systems Oct. 2004

Regular Paper

Expedite: An Operating System Extension to Support

Low-latency Communication in Non-dedicated Clusters

Hideo Saito,† Kenjiro Taura† and Takashi Chikayama†

We propose and evaluate Expedite, a simple operating system extension that allows parallel
applications to communicate with low latency in non-dedicated clusters. We extend the UNIX
API to allow a process to set the O EXPEDITE flag of a socket, and revise the Linux scheduler
so that a process is given a large priority boost when data arrives on a socket with the
O EXPEDITE flag set. Fairness is maintained by giving the boost only to processes that block
most of the time, and by making the priority boost decay quickly. We describe an MPI
implementation that takes advantage of this facility. Experiments show that the latency of
collective operations such as MPI Scatter() can be reduced with our facility, even when many
high-priority processes are running in the background.

1. Introduction

1.1 Motivation
Clusters of workstations are rapidly replacing

specialized supercomputing platforms. Over 40
percent of the machines on the TOP500 List 5)

are clusters—three years ago, they represented
just 10 percent.

Such clusters are often non-dedicated—while
one user runs a parallel application, other
users may be writing or compiling code. In
the future, parallel applications may be run-
ning side by side with word processors and
databases. In this kind of environment, parallel
applications must often wait to be given CPU
time. This wait—called a scheduling delay—
lengthens communication latency and lowers
the performance of parallel computation.

Yet scheduling delays can be avoided. It
is the lack of support by operating systems
that causes parallel applications to suffer these
delays—commodity operating systems were not
designed to support parallel applications with
other applications running in the background.
Our motivation is to give common operating
systems functionality to support parallel appli-
cations in non-dedicated clusters.

1.2 Background
A parallel application can receive messages by

either polling or blocking. Continuously polling
is the fastest way to recognize incoming mes-
sages. However, there are environments and
applications in which polling is not desirable.

† Department of Information and Communication En-
gineering, Faculty of Engineering, The University of
Tokyo

For example, we can improve the performance
of an application by overlapping computation
and communication. In a non-dedicated clus-
ter, we can also improve the performance of the
cluster as a whole by letting processes of other
users run while waiting for messages.

Instead of polling, parallel applications may
use a separate, blocking thread to handle mes-
sages. This thread would spend most of its
time waiting for messages, but once a message
arrives, it must be dispatched as quickly as
possible—parallel applications require low la-
tency for high performance, and scheduling de-
lays increase latency.

Current operating systems, such as Linux,
give high priority to processes that block often.
As a result, blocking message handlers typically
have high priority upon the arrival of a message.
However, operating systems give equally high
priorities to other processes that frequently per-
form blocking I/O or just sleep often. Thus,
in a non-dedicated cluster, a message handler
must compete with many other processes to
be dispatched. When another process wins the
competition and is dispatched first, the message
handler must wait, increasing message latency.

For example, top and the blocking message
handler of a parallel application are both given
high priorities by operating systems. Thus, if
top wakes up at the same time that a message
arrives, operating systems are as likely to dis-
patch top as they are to dispatch the message
handler. However, it would be much more de-
sirable to let the message handler run first—
top would not be noticeably affected by a few
hundred microseconds’ delay, but the parallel
application would be.

229



230 IPSJ Transactions on Advanced Computing Systems Oct. 2004

In this paper, we propose Expedite, a sim-
ple operating system extension to allow parallel
applications to communicate with low latency
in non-dedicated clusters. We implement Ex-
pedite by making simple changes to the UNIX
API and the Linux kernel. We extend the sys-
tem call fcntl() so that it can set the descrip-
tor flag O EXPEDITE. We revise the Linux sched-
uler so that a process is temporarily given a
large priority boost when it receives data on a
socket with the O EXPEDITE flag set. We pre-
serve fairness by applying the priority boosts
only to processes that consume little CPU time.
In effect, Expedite allows applications to have a
separate, “responsive” thread that is normally
sleeping, but given high priority when a mes-
sage arrives.

The rest of this paper is organized as fol-
lows. In Section 2, we discuss related work.
We present the Expedite facility in Section 3.
We discuss some simple experiments using the
ping-pong test in Section 4, and then discuss a
case study using MPI in Section 5. Finally, we
conclude in Section 6.

2. Related Work

Today’s popular operating systems use
scheduling heuristics to dispatch interactive
processes, such as editors and word processors,
shortly after input. The basic mechanism is to
maintain high priorities for processes that block
often as employed by Linux 2), or to give a prior-
ity boost upon unblocking as employed by Win-
dows. These schemes work fine for parallel ap-
plications as well, as long as they compete only
with compute-mostly background load. Prob-
lems remain when a parallel application com-
petes with processes that block often, such as
interactive jobs, I/O-centric jobs, network dae-
mons, and monitoring tools. Our proposal is
a mechanism with which an application can
ask the operating system to give a special kind
of priority boost. The special boost is much
larger than normal ones but decays much more
quickly.

If only the needs of the message handler had
to be addressed, a real-time operating system
could be used. On commodity operating sys-
tems, real-time scheduling policies, which can
raise the priorities of certain processes, could
be used. Either solution would guarantee that
the message handler is dispatched as soon as a
message arrives. Yet such a guarantee gives cer-
tain processes an unfair advantage—this is not

desirable in a shared environment, where the
needs of many processes of many users must be
addressed.

Schedulers with short dispatch delays have
been studied extensively in the past. High
resolution timers have been used in some sys-
tems such as RT-Mach 6). However, the fre-
quent interrupts caused by such timers pro-
duce an overhead that affects the performance
of throughput-oriented applications. The over-
head can be lowered by using soft timers 1), but
this approach requires an overhaul of the ex-
isting timing mechanism of operating systems.
Moreover, a high resolution timer mechanism
is not useful to user-level applications without
a responsive kernel, so a redesign of the oper-
ating systems themselves is necessary with this
approach.

Research has also been performed to sup-
port time-sensitive applications on commodity
operating systems. For example, proportion-
based scheduling can be used to provide time-
sensitive tasks low-latency scheduling while pre-
venting them from consuming too much exe-
cution time. However, standard proportion-
period scheduling requires an estimation of the
proportion and period requirements of a process
in advance, which is not realistic in a general-
purpose environment. Time-Sensitive Linux 3)

tries to address this by automatically assigning
allocations to such tasks, but this approach still
requires application-specific progress rate met-
rics, such as the fill-level of a bounded buffer of
a producer or consumer.

3. Design and Implementation of Ex-
pedite

3.1 Overview
We design Expedite so that a parallel appli-

cation can have a separate, “responsive” that
is normally sleeping, but dispatched immedi-
ately after message arrival. A message-handling
thread uses Expedite by setting the O EXPEDITE
flag of a socket and blocking until a mes-
sage arrives. When a message arrives on the
socket, Expedite gives the thread a large prior-
ity boost, preventing other processes from being
dispatched first.

Expedite preserves fairness by only giving
priority boosts to processes that consume little
CPU time. Thus, a thread that blocks while
waiting for messages benefits from Expedite,
while a process that continuously polls for mes-
sages does not.



Vol. 45 No. SIG 11(ACS 7) An OS Extension to Support Low-latency Communication 231

We implement Expedite with just a few
changes to the Linux operating system. It does
not require a redesign of the kernel or an over-
haul of the existing timing mechanism as some
attempts to support real-time systems do—it
fits right into the existing code, minimizing the
effects that it has on other parts of the operat-
ing system.

The simple design of Expedite also makes it
possible to implement Expedite on many other
operating systems besides Linux. Fcntl(), the
interface that we use for Expedite, is available
on other UNIX systems and even on some non-
UNIX operating systems. The implementation
we describe is specific to Linux, but similar
modifications can be made to other operating
systems that use priority-based schedulers and
use thread libraries with a 1:1 scheduling model.
Thus, non-dedicated clusters running a variety
of operating systems can use Expedite to sup-
port parallel computation.

3.2 The Linux Scheduler
The scheduling cycle in Linux is called an

epoch. At the beginning of an epoch, the sched-
uler allocates a time quantum to each process.
For a process with the default priority, the time
quantum is 6 ticks of the interrupt timer.☆ This
value is decremented each time the process is
running at the time of a timer interrupt, which
occurs once every 10 milliseconds. The epoch
continues until all processes in the run queue,
the list of processes ready to run, have ex-
hausted their ticks; a new epoch begins at this
time, and processes are once again allocated
time quanta.
Schedule() is called at certain times to al-

locate the CPU to processes. The function is
called when the current process has used up its
time quantum and a new process must be dis-
patched. It is also called when the current pro-
cess blocks. Furthermore, it is called on return
from interrupts and exceptions, before resum-
ing execution of a user process. Schedule()
calculates a value called goodness for each pro-
cess in the run queue and dispatches the pro-
cess whose goodness is the largest. In the de-
fault scheduling policy, SCHED OTHER, goodness
is calculated as follows:

goodness = counter - nice;

Here, counter is the number of ticks that the

☆ For the i386 architecture.

process has left in this epoch, and nice is a
value that the user can set to statically raise or
lower the priority.

Processes that sleep or block while waiting for
I/O are removed from the run queue so that
schedule() does not select them. Such pro-
cesses have ticks left over when an epoch ends.
Half of these ticks are carried over to the next
epoch, raising their priorities. Counter of a pro-
cess that continues to block or run only occa-
sionally will converge to 11.

A non-dedicated cluster potentially has many
processes that perform I/O or sleep. The Linux
scheduler does not distinguish among them,
giving them equally high priorities upon waking
up. Thus, the scheduler may dispatch top or
emacs, which can tolerate delays of millisecond
order, before it dispatches the message handler
of a parallel application, which can only toler-
ate delays of microsecond order.

3.3 Implementation of Expedite
The Expedite facility allows a process to de-

clare if it wants to be given a priority boost
upon the completion of certain I/O. This is ac-
complished by setting the O EXPEDITE flag of a
socket descriptor using the system call fcntl():

fcntl(fd, F_SETFL, O_EXPEDITE);

If select() or read() is called to perform
I/O on a socket with the O EXPEDITE flag set,
the expedite flag in the process descriptor of
the calling process is set:

if (file->f_flags & O_EXPEDITE)
current->expedite = 1;

When the scheduler encounters a process that
runs only occasionally and has its expedite flag
set, the scheduler gives that process a large pri-
ority boost—enough to guarantee it higher pri-
ority than all other processes. We can identify
a process that runs only occasionally, because
such a process accumulates ticks. We give the
boost to processes that have 10 or 11 ticks:

if (p->expedite && p->counter >= 10)
goodness += 100;

The process is given the priority boost until it
is successfully dispatched. Once the process has
been dispatched, normal scheduling resumes—
the process runs with normal priority until it
calls select() or read() again.



232 IPSJ Transactions on Advanced Computing Systems Oct. 2004

By setting the O EXPEDITE flag of certain
socket descriptors, we let the operating system
know when we need to be given a short time
slice with little delay. This allows the operating
system to give the message handler of a paral-
lel application just enough time to respond to
a message that has just arrived.

3.4 Fairness
A process is not able to use Expedite to steal

long periods of time from processes with higher
priority. While Expedite may cause a pro-
cess with lower priority using O EXPEDITE to be
scheduled over a process with higher priority,
Expedite only gives short time slices to pro-
cesses that it prioritizes—until the next time
that schedule() is called. As schedule() is
called upon every timer interrupt, the time slice
given by Expedite is at most 10 milliseconds. If
an exception or interrupt causes schedule() to
be called earlier, the time slice will be shorter.

We also prevent a process from gaining fre-
quent priority boosts by using Expedite and
blocking and unblocking often. A process that
runs often loses ticks quickly, so such a process
will not have the 10 ticks necessary to be given
a priority boost. This is not a problem for mes-
sage handlers, because they have an excess of
ticks—they are blocking most of the time, and
when they do run, they only run for a short
while.

3.5 Applications of Expedite
The type of operations that benefit most

from Expedite is short operations performed
in response to requests from a remote node.
Such operations can run independently from
the “main” thread of an application. An exam-
ple is the collective operations of MPI, such as
MPI Scatter or MPI Bcast, which forward mes-
sages along a tree. By having a separate thread
for collective operations, forwarding can be car-
ried out independently from the main thread.
With Expedite, such forwarding is guaranteed
to be scheduled quickly even with high-priority
background load. Another, perhaps more im-
portant application will be the remote memory
operations of MPI-2 (get, put, and accumulate).
Besides MPI, there are many frameworks that
benefit from having message handlers that are
predictably scheduled quickly, such as dynamic
load distribution, distributed shared memory,
and data migration.

4. Experiment Using the Ping-Pong
Benchmark

In this section, we evaluate the basic con-
cepts of Expedite by performing the ping-pong
test under various conditions. As the ping-pong
process spends most of its time blocking, it has
high priority upon message arrival. We show,
however, that with the existing Linux kernel,
background processes that also have priority
can cause the ping-pong process’ being dis-
patched to be delayed and lengthen the round-
trip time. We are able to reduce this delay by
using Expedite and giving the ping-pong pro-
cess a large priority boost when it receives a
message. Our experiments show that this tech-
nique works even when multiple processes use
Expedite. We also show that Expedite does not
break fairness greatly, because it only boosts
the priority of a process that consumes little
CPU time.

We use two 866 MHz Pentium III machines
with 1 GB RAM for our experiments. Both ma-
chines run the Linux 2.4.25 kernel, and are con-
nected to a 100-Mbps Ethernet network.

4.1 Effects of Background Processes
In the first experiment, we show how different

background processes affect the round-trip time
of ping-pong messages. We use 500-byte mes-
sages, and ping every 50 milliseconds. In one
trial, we run in the background compute-only,
a process that continuously computes the Fi-
bonacci series. In a second trial, we add to the
background two copies of sleep-mostly, a pro-
cess that repeatedly computes for 5 milliseconds
then sleeps for 45 milliseconds.

Figure 1 shows the results. Compute-only,
despite using 99% of the CPU, caused
no scheduling delays. However, when
sleep-mostly was added, the ping-pong pro-
cess occasionally suffered delays of millisecond-
order. The ping-pong process had high priority,
but so did sleep-mostly. When the scheduler
dispatched sleep-mostly first, the ping-pong
process had to wait.

4.2 Reducing Scheduling Delays with
Expedite

In the second experiment, we show that by
using Expedite, we can reduce the schedul-
ing delays caused by a high-priority pro-
cess running in the background. We per-
form the ping-pong test with compute-only
and sleep-mostly running in the background
again, but this time we have the ping-pong pro-



Vol. 45 No. SIG 11(ACS 7) An OS Extension to Support Low-latency Communication 233

(a) compute-only in BG

(b) sleep-mostly in BG

Fig. 1 Round-trip time of ping-pong messages with
the existing Linux kernel.

cess block on sockets with the O EXPEDITE flag
set. As the ping-pong process is normally block-
ing, it accumulates ticks. Thus, when a “ping”
or a “pong” arrives, it has the 10 ticks neces-
sary to be given a priority boost by the sched-
uler. This prevents sleep-mostly from being
scheduled before the ping-pong process.

Figure 2 shows the results. This time,
sleep-mostly did not cause any significant de-
lays.

4.3 Effects of Multiple Processes Us-
ing Expedite

In the next experiment, we show that mul-
tiple processes can use Expedite to reduce
scheduling delays without a large side-effect on
other processes. We have ten pairs of processes
perform the ping-pong test on two nodes, and
run compute-only and sleep-mostly in the
background. In the first trial, none of the pro-
cesses uses Expedite. In the second trial, nine
of the pairs use Expedite, and one does not.

Figure 3 shows the results. In the first trial,
all pairs suffer scheduling delays. In the second
trial, the nine pairs that used Expedite stopped
suffering delays, but the last pair that did not

(a) compute-only in BG

(b) sleep-mostly in BG

Fig. 2 Round-trip time of ping-pong messages with
Expedite.

use Expedite continued to suffer delays.
While Expedite simultaneously helped nine

pairs of processes perform low-latency commu-
nication, it did not affect the performance of
other processes much. The pair of processes
that did not use Expedite suffered slight delays
(Fig. 4), but much smaller ones compared to
those caused by sleep-mostly. The through-
put of compute-only and sleep-mostly (mea-
sured by the number of Fibonacci numbers
computed per second) decreased by less than
one percent.

4.4 Fairness
The last experiment shows that a process

that sets the O EXPEDITE flag and consumes
a lot of execution time does not break fair-
ness. We run compute-only and two copies
of sleep-mostly in the background, and have
the ping-pong process consume CPU time by
performing some extra computation—it com-
putes the 16th element of the Fibonacci series
18 times after sending each “pong.” This takes
1.6 milliseconds.

Figure 5 shows the results. Scheduling de-
lays occurred even though Expedite was used—



234 IPSJ Transactions on Advanced Computing Systems Oct. 2004

(a) No pairs using Expedite

(b) 9 pairs using Expedite

Fig. 3 Round-trip time when 10 pairs of processes
simultaneously performed the ping-pong test.

and they occurred just as many times as when
Expedite was not used. Expedite did not help
the ping-pong process, because the extra com-
putation made it impossible for the process to
maintain 10 ticks.

5. Low-Latency Collective Operations
with Expedite

In this section, we discuss a case study us-
ing MPI to show how Expedite can improve
the performance of parallel computation in a
non-dedicated cluster. We begin by showing
that top—a process commonly used by clus-
ter users—running in the background can have
a large effect on a collective operation such as
MPI Scatter(), especially in polling implemen-
tations such as MPICH 4). We then show that
a blocking implementation performs better, but
is still affected by background processes. Fi-
nally, we show that we can improve the perfor-
mance of the blocking implementation by using
Expedite.

5.1 Polling Implementation of MPI
Many implementations of MPI poll for mes-

sages in order to avoid the overhead of con-
text switching that comes with blocking. In

(a) Other pairs not using Expedite

(b) 9 other pairs using Expedite

Fig. 4 Round-trip times for the pair that did not use
Expedite.

Fig. 5 Round-trip time when the ping-pong process
performed 1.6 milliseconds of computation after
sending each “pong.”

MPICH, for example, messages are polled for
whenever an MPI call such as MPI Send() or
MPI Recv() is made. The process blocks only
if the desired message is not found at the time
of polling.

However, for collective operations such as
MPI Scatter(), not polling until an MPI call
is made can delay the entire operation. In
MPICH, MPI Scatter() is performed by for-
warding messages along a tree (Fig. 6). Thus,



Vol. 45 No. SIG 11(ACS 7) An OS Extension to Support Low-latency Communication 235

Fig. 6 The tree used in an eight-node MPI Scatter().

if a non-leaf node delays calling MPI Scatter(),
all its children are delayed as well. In an eight-
node MPI Scatter(), for example, a delay in
rank 4 would propagate down the tree and also
cause delays in ranks 5, 6, and 7.

We perform an experiment to show how
the delay caused on one node during an
MPI Scatter() can propagate to other nodes
and cause delays there as well. We perform
an eight-node MPI Scatter() in which each
node performs some computation before calling
MPI Scatter(). We use mpich-1.2.5.2 as our
MPI library, and on rank 4, we run 4 copies of
top updating with a one-second delay (top -d
1) in the background. The amount of compu-
tation that each node performs before calling
MPI Scatter() is the same (120 milliseconds
without background computation). However,
rank 4 takes longer to reach MPI Scatter(), be-
cause it must compete with top. We perform an
MPI Barrier() after the MPI Scatter(), and
repeat the experiment 35,000 times.

Figure 7 (a) shows the average time that
each node spent inside MPI Scatter(). Ranks
5, 6, and 7 waited for over six milliseconds un-
til MPI Scatter() was called on rank 4. Co-
existing with top, the computation preceding
MPI Scatter() was delayed on rank 4. As the
call to MPI Scatter() could not finish on ranks
5 and 6 until rank 4 passed the message along,
the delay in rank 4 also caused a delay in ranks
5 and 6. This in turn caused a delay in rank 7.

5.2 Collective Operations Using
Blocking Wait

Next, in order to reduce the propagation of
delays, we revise MPICH so that collective op-
erations such as MPI Scatter() are handled by
a separate message-handling thread that blocks
while it waits for messages. When the message-
handling thread receives a message, it passes
the message along to its children, regardless of

(a) Polling Implementation (MPICH)

(b) Blocking Implementation (Based on MPICH)

(c) Blocking Implementation with Expedite

Fig. 7 The time that each node spent on MPI Scatter()
with top running on rank 4. Average of 35,000
trials.

whether the main thread has already made the
call to MPI Scatter(). Thus, even if a non-leaf
node delays making the call to MPI Scatter(),
its children are not delayed.

Figure 7 (b) shows the average time that
each node spent on the MPI Scatter() opera-
tion when we repeat the previous experiment
with the revised implementation. We com-
pute the time spent on the operation as the
sum of the time spent inside MPI Scatter()
and inside the message handler before the call
to MPI Scatter(). The wait that ranks 5, 6,



236 IPSJ Transactions on Advanced Computing Systems Oct. 2004

and 7 suffered was successfully reduced by over
5 milliseconds. On rank 4, the computation
preceding MPI Scatter() was still delayed by
top. However, the message-handling thread re-
ceived and passed along messages independent
of whether the main thread had made the call
to MPI Scatter(). Thus, the scatter operation
did not pause while waiting for rank 4 to call
MPI Scatter(), and ranks 5 and 6 were not
made to wait as in the polling implementation.

However, ranks 5, 6, and 7 still spent 500
microseconds longer inside MPI Scatter() than
when there were no background processes. This
is because when a message arrived to rank 4,
the message-handling thread had to compete
with background processes to be dispatched.
As both top and the message-handling thread
were blocking most of the time, both had high
priorities upon waking up. Thus, if top had just
woken up when a message arrived, the scheduler
sometimes dispatched top first. This schedul-
ing delay caused ranks 5 and 6 to wait inside
MPI Scatter(). This in turn caused rank 7 to
wait.

5.3 Eliminating Scheduling Delays
with Expedite

Finally, we further revise the blocking imple-
mentation in order to reduce unwanted schedul-
ing delays: we have the message-handling
thread wait for messages on a socket with the
O EXPEDITE flag set. As the message-handling
thread only runs occasionally, we expect it to
be given a priority boost upon message arrival.

Figure 7 (c) shows the results. The time spent
on MPI Scatter was almost the same as when
there were no background processes. When
a message arrived on rank 4, the message-
handling thread had to compete with back-
ground processes to be dispatched. Using Ex-
pedite, however, the message-handling thread
was given a priority boost. Thus, the message-
handling thread won the competition, and was
dispatched without a scheduling delay. As the
message-handling thread on rank 4 was able to
pass on the scatter message promptly, ranks 5,
6, and 7 were not made to wait unnecessarily.

6. Conclusions

In this paper, we proposed and evaluated Ex-
pedite, an operating system extension to allow
applications to use a separate, blocking thread
to communicate with low latency in a non-
dedicated cluster.

Expedite was able to prevent background

processes from delaying ping-pong messages.
With the existing Linux kernel, a blocking ping-
pong process suffered scheduling delays of over
5 milliseconds. By using Expedite, these delays
were eliminated.

Expedite was also able to support collective
operations in MPI. With MPICH, top running
on one of the nodes delayed the scatter opera-
tion by over 6 milliseconds. By adding a sepa-
rate thread to handle scatter messages and us-
ing Expedite, the delays were eliminated.

While Expedite supported parallel applica-
tions, it did so fairly. Expedite supported
blocking message-handling threads while they
consumed little CPU time, but it ceased to pro-
vide support when they consumed too much
time.

As non-dedicated clusters become more and
more popular, an operating system extension
such as Expedite will be very effective in sup-
porting low-latency communication.

References

1) Aron, M. and Druschel, P.: Soft timers: Ef-
ficient microsecond software timer support for
network processing, ACM Trans.Comput. Syst.
(2000).

2) Bovet, D. and Cesati, M.: Understanding the
Linux Kernel, O’Reilly & Associates (2001).

3) Goel, A., Abeni, L., Krasic, C., Snow, J. and
Walpole, J.: Supporting Time-Sensitive Appli-
cations on a Commodity OS, 5th Symposium
on Operating System Design and Implementa-
tion (2002).

4) http://www unix.mcs.anl.gov/mpi/mpich/:
MPICH.

5) http://www.top500.org/: TOP500 Supercom-
puter sites.

6) Savage, S. and Tokuda, H.: RT-Mach timers:
Exporting time to the user, USENIX 3rd Mach
Symposium (2003).

(Received January 31, 2004)
(Accepted April 27, 2004)

Hideo Saito is an M.S. can-
didate in Information and Com-
munication Engineering at The
University of Tokyo. He was
born in Boston, USA in 1981.
He received his B.S. degree
from The University of Tokyo in

March, 2004. His major research interests are
parallel/distributed systems and operating sys-
tems.



Vol. 45 No. SIG 11(ACS 7) An OS Extension to Support Low-latency Communication 237

Kenjiro Taura is associate
professor of Information and
Communication Engineering at
The University of Tokyo. He
was born in 1969 and received
his B.S., M.S., and Ph.D. de-
grees from The University of

Tokyo in 1992, 1994, and 1997. His research in-
terests include parallel/distributed computing
and programming languages. He is a member
of ACM and IEEE.

Takashi Chikayama is pro-
fessor of Frontier Informatics at
The University of Tokyo. He
was born in Tokyo, Japan in
1953. He received his B.S., M.S.,
and Ph.D. degrees from The
University of Tokyo in 1977,

1980, and 1982. He worked for the Institute
for New Generation Computer Technology from
1982 until 1995, when he became associate pro-
fessor of Electronic Engineering at The Univer-
sity of Tokyo. His recent research activities
include concurrent and parallel programming
systems, parallel processing applications, and a
unified computation complexity model for dis-
tributed and parallel processing.


