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1 Introduction

We address the problem of selecting the optimal sta-
tus for a general form of classifier model, namely the
status that leads to the minimum expected classifica-
tion error called Bayes error rate. The optimum classi-
fier status corresponds to a classification boundary sur-
rounded by uncertain samples, namely samples whose
posterior probability is equal for the two most proba-
ble classes. However, accurate estimation of posterior
probabilities using finite data inevitably requires the
specification of a classifier model whose status must
be optimally, which in turn requires accurate posterior
probability estimation. To break this vicious circle,
we propose a two-step procedure, which first identifies
training samples surrounding the estimated boundary,
and then assesses their uncertainty without the need
for a model specification. Experimental results on syn-
thetic data and benchmark real life data show the po-
tential of our approach to select the optimal classifier
status.

2 Background and Outline of Proposed
Method

In the standard statistical approach to pattern clas-
sification, the ultimate goal of classifier training is
to achieve the minimum expected classification error
through an optimal setting of classifier parameters,
whose accurate estimation inevitably needs to observe
an infinite amount of training samples. In practice,
only a finite amount of training data is available, which
raises the issue of over-fitting: achieving perfect classi-
fication error on finite training data does not guarantee
a low expected classification error.

Various methods have been vigorously investigated
to select the optimal model based on the estimation
of the expected classification error. Though cross-
validation provides a practical solution to avoid over-
fitting, it reduces the amount of data available for train-
ing, and requires a cumbersome search. Leave-one-out
is an extreme case of cross-validation which keeps all
but for one samples for training, however its high com-
putational time restricts it to small datasets. By con-
trast to cross-validation, bootstrap methods [1] allow
sampling with replacement. Although the resulting
replication of the data can artificially avoid reducing
the available data for training, it can also reduce the
reliability of the estimate. Several approaches perform
model selection without the use of a validation set, by
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making the most of the information available in the
training set. For example, information criteria such
as Akaike Information Criterion [2] (AIC) and Bayes
Information Criterion [3] (BIC) can directly estimate
the expected error in the context of sample distribu-
tion estimation, however classification tasks focus on
class boundary estimation. Another example is Struc-
tural Risk Minimization [4] (SRM), which provides up-
per bounds on the expected error for any classification
task. However the estimated upper bound can be fairly
loose.

Sampling procedures such as [5] and [6] provide an
alternative approach to direct error estimation. They
focus instead on selecting samples deemed informative
for classification (hopefully samples located near the
ideal Bayes boundary) by attributing weights to the
training samples. Intuitively, emphasizing correct clas-
sification on informative samples constraints the esti-
mated boundary to approach the Bayes boundary, and
therefore a classifier status which correctly classifies
such samples should be appropriate. One point is, per-
formance can significantly change from one weighting
scheme to another [7], and how to define the appropri-
ate weighting is still a research issue.

By contrast to previous approaches, our proposed
method does not directly aim at estimating the ex-
pected classification error. It instead focuses on the
boundary, which should approach the Bayes risk sta-
tus, and is referred to as Bayes boundary in the paper.
Boundary status is assessed based on the uncertainty
of its salient training samples, though we do not at-
tempt to attribute a measure of uncertainty to samples
individually, and rather the set of salient samples as a
whole. The main idea is that uncertain training sam-
ples around the Bayes boundary can be indifferently
labelled as either one of the two classes. The resulting
method can be applied to a general form of classifier
which we describe in Section 3. Section 4 details the
extraction of boundary salient samples and their use
to select a classifier status. Finally, Section 5 experi-
mentally analyzes the behavior of our model selection
method on synthetic data as well as on real life data.
Table 1 summarizes the main notations used in the pa-
per.

3 Discriminative training

We consider a task of classifying a given input sam-
ple x extracted from the infinite feature space X into
one of J classes (C1, . . . , CJ). For the convenience of
later discussions, we assume x to be of fixed dimension,
though the framework can also handle variable-length
patterns. The classification process C() takes the fol-



Table 1: Notations
x pattern sample
J number of classes
N number of training samples
T training set
B∗ Bayes boundary
Λ classifier model parameters to be

trained
B(Λ) estimated boundary
S(Λ) extracted boundary salient samples for

B(Λ)

Ŝ set containing the same pattern sam-
ples as in S except that class labels are
flipped

p(x; Λ) projection of x on B(Λ)
NN(x) nearest neighbour of x in T
P set of prototypes for a given classifier
gj() discriminant function for class Cj
nfeatures number of features for a given dataset

lowing general form:

C(x) = Ck iff k = arg max
j
gj(x; Λ), (1)

where gj(x; Λ) is a discriminant function of Cj , which
is differentiable in class model parameters Λ to be
trained. The value of gj(x; Λ) represents the degree
to which x belongs to class Cj , j ∈ [1, J ].

Training of Λ is performed to achieve the Bayes
boundary. To evaluate a trial classification in the train-
ing, we use the following misclassification measure, as-
suming that a training sample x belongs to class Cy:

dy(x; Λ) = −gy(x; Λ) + log

[
1

J − 1

∑
j,j 6=y

eψgj(x;Λ)

]1/ψ

,

(2)

where ψ > 0. In particular, in the two-class case, (2)
is simplified as

dy(x; Λ) = −gy(x; Λ) + gi(x; Λ), (3)

where i refers to the incorrect class index for sample
x. Estimated boundary B(Λ) corresponds to an equal
score between the two classes, namely

B(Λ) =
{
x|dy(x; Λ) = 0

}
. (4)

4 Proposed Procedure for Optimal
Classifier Status Selection

4.1 Bayes boundary

For the sake of simplicity we consider the two-class
case (J = 2). However extension to the multi-class
case is straightforward because classes can be consid-
ered pairwise. If the joint probability underlying the
data distribution is known, then we can choose the deci-
sion boundary which leads to the lowest expected clas-
sification error, or in other words, the Bayes risk. The

minimum probability of making a mistake is obtained
if input sample x is assigned to the class for which the
joint probability P (Cj ,x), j = 1, 2 is the largest [8].
Therefore the optimal Bayes boundary corresponds to
samples which satisfy (see Figure 1)

P (C1,x) = P (C2,x). (5)

The quality condition described by (5) is our starting
point to choose the classifier status.

Figure 1: Two-class one dimensional example, and its
Bayes boundary x∗. Perfect classification on T would
lead to a boundary located somewhere on the thick
black interval ( 6= x∗).

Although the true joint probabilities are unknown
unless infinite training data is available, we can check
whether the estimated boundary satisfies the necessary
and sufficient condition in (5) for the Bayes boundary.
Indeed, (5) means that samples on B∗ as a whole are
perfectly ambiguous in terms of class label. Therefore
assigning the opposite class label for all samples on B∗

should not perturb the joint probability distribution.
From now on, we will refer to such operation on the es-
timated boundary salient samples as “class label flip”.

We expect the data distribution to be robust to the
class label flip on B∗, hence an estimated boundary
which barely changes after class label flip would corre-
spond to a classifier status close to the Bayes status.
Because B∗ provides the highest generalization perfor-
mance, we can thus select the classifier status which has
the highest generalization performance. Two practical
issues remain: the extraction of the set S(Λ) of esti-
mated boundary salient samples from T (Section 4.3),
and the measure of the amount of perturbation on the
data distribution induced by the class label flip (Sec-
tion 4.4). Before entering these details, we summarize
our proposed model selection procedure in Algorithm
1.

4.2 Method Overview

In the following, gj() refers to a general form of dis-
criminant function, whose parameters are automati-
cally determined by training procedure, but whose hy-
perparameters are yet to set through model selection.
The proposed procedure simply measures the difference
∆(Λ) between the boundary estimated by the classifier



trained on the original training set, and the boundary
estimated by the classifier trained on the training set
after the class label flip. Such measure of difference is
detailed in Section 4.4.

Algorithm 1: Selection of the optimal classifier
status Λ∗ for gj()

Input: gj(), T
Output: Λ∗ = arg minΛ ∆(Λ)

1 for each hyperparameter setting Λ do
2 Train gj(; Λ) on T : status ”before” (b)
3 Extract S(Λ)

4 Replace S(Λ) by Ŝ(Λ) in T
5 Re-train gj(; Λ): status ”after” (a)
6 Measure ∆(Λ): changes on the boundary

measured between (b) and (a)
7 end

4.3 A procedure to extract S(Λ)

The goal in this step is to find in T samples close to
B(Λ), since we only know condition in (5) which holds
for samples that would lie exactly on B∗. By contrast
to existing approaches such as [9], the proposed pro-
cedure uses an analytical expression of the estimated
boundary for a general form of discriminant function.
In this paper, we focus on the case of piecewise linear
boundaries, however extension to the non linear case is
also under consideration.

The proposed extraction method relies on the results
from [11], where the geometric distance from a sample
to the estimated boundary can be derived from the
misclassification measure for piecewise linear models:

Dy(x; Λ) =
dy(x; Λ)

||∇dy(x; Λ)||
, (6)

where dy(x; Λ) is the misclassification measure defined
in Section 3.

In this case, a naive approach to select salient sam-
ples can consist in selecting training samples which are
located within a tolerance region centered on the esti-
mated boundary. However, defining a criterion to set
the width of such region is not straightforward. Any
width would inevitably retain training samples in some
regions that are ”not closest” to the estimated bound-
ary, and in other regions reject training samples that
are actually ”closest” to the estimated boundary. To
circumvent this issue, a more local extraction approach
is required.

Our extraction approach consists of two steps. First,
we project the entire T on the estimated boundary, us-
ing knowledge of the model as well as the geometric
distance (for further details, please see Section 5). Sec-
ond, we use projections as local anchors in the bound-
ary to select surrounding salient samples, for example
by applying the 1-nearest neighbor rule. Not only does
such procedure require no hyperparameter, but it also

provides as many representatives of B(Λ) exactly on
B(Λ), as there are samples in T , which will turn out
useful to measure the amount of change on the esti-
mated boundaries respectively before and after we flip
the class labels of salient samples. Algorithm 2 sum-
marizes the extraction procedure.

Algorithm 2: Extraction of S(Λ)

Input: gj(; Λ), T
Output: S(Λ)

1 for x in T do
2 Project x on B(Λ): p(x; Λ)
3 if NN(p(x; Λ)) /∈ S(Λ) then
4 S(Λ)← S(Λ), NN(p(x; Λ))
5 end

6 end

Figure 2: Projection on an arbitrary decision boundary
using geometric margin definition, and salient sample
selection. After sample x (blue) is projected on the
boundary, we use xproj (white) to select the salient
sample xNNselect (red) from the training samples.

4.4 A measure for the changes on the bound-
ary

The purpose of this section is to quantify the amount
of perturbation on the joint probability distributions
P (x, Cy)(y = 1..J) induced by the class label flip per-
formed around B(Λ). Although estimating probability
distributions can require specification and careful set-
ting of a probabilistic model, we only need to measure
a change in the joint probability distribution of the two
classes. Such change is conveyed by a change of the es-
timated boundary between the two classes, hence we
can focus on measuring a change in B(Λ).

For convenience, we will refer to the state be-
fore (resp. after) the class label flip with index “b”
(resp.“a”). Using the parametric form of B(Λ) ex-
pressed in (4) to define a difference measure is not
straightforward. Instead we can represent the bound-
ary by a set of samples close to the boundary, for ex-
ample the boundary salient samples extracted in Sec-
tion 4.3, or the projections on the boundary themselves.
Several methods such as [12] provide a general measure



between two set of points. However simpler measures
might be more suited to our specific case of a classifi-
cation boundary, for example

∆(Λ) = |
∑

xs∈S(Λ)b

|Dy(xs; Λ)b| −
∑

xs∈S(Λ)b

|Dy(xs; Λ)a||,

(7)

and

∆(Λ) =
∑

xs∈S(Λ)b

|Dy(xs; Λ)b −Dy(xs; Λ)a|, (8)

where xs refers to boundary salient samples before the
class label flip. (7) measures a global amount of geo-
metric distance of the salient samples to B(Λ)b and
B(Λ)a. Indeed, if the classifier model status is not
properly set, then the class label flip is expected to
globally produce a higher geometric distance of S(Λ)b
to the re-estimated boundary B(Λ)a. Although similar
to (7), (8) defines a more sample-based measure, which
might preserve more information about the classifica-
tion process.

5 Experimental Evaluation
5.1 Experimental conditions

To evaluate our model selection procedure, we used
four published two-class datasets presented by the UCI
Machine Learning Repository (*): the Breast Cancer,
the Cardiotocography, the Ionosphere, and the Spam-
base datasets. Because we aim at a hyperparameter se-
lection without any validation data, the data was solely
split into a training set and a testing set.

Obviously, a flat trend on the classification accuracy
curve for the testing set against the classifier model
status would not require selection of a particular clas-
sifier model status, and conversely a clear maximum
on the curve makes considerations and assessment of
our model selection framework easier. Hence for each
dataset, we tried several ratio between training and
testing, and chose the ratio so that a maximum can be
clearly seen on the classification accuracy curve for the
testing set. Preparation of the datasets is summarized
in Table 2.

Because our model selection approach strongly fo-
cuses on the decision boundary, we generated a syn-
thetic two-dimensional dataset to visualize the selec-
tion of boundary salient samples, and have an intu-
itive understanding of the relationship between the es-
timated boundary and the Bayes boundary before and
after the class label flip. The synthetic data was gener-
ated using Gaussian Mixture Models. The difficulty of
the task was controlled through the degree of overlap-
ping between the classes, the complexity of the shape
of the Bayes boundary, and the size of the training sub-
set. For similar reasons underlying our data splitting
scheme, we tried to generate a relatively difficult task

(*)http://archive.ics.uci.edu/ml/index.php

so that the optimal classifier model complexity is nei-
ther too low nor too high, and observe a maximum for
medium model complexity. The resulting data called
GMMu is displayed in Figure 4. The name comes from
the way the data was generated and from its U shape.

Table 2: Benchmark datasets
Dataset Training Testing Dimensions

Breast cancer 341 312 9
Cardiotocography 1000 1126 30
GMMu 250 17500 2
Ionosphere 200 151 34
Spambase 500 4101 57

The current experiments focused on prototypes-
based classifiers trained by the Kmeans clustering pro-
cedure, in which case the geometric margin can be writ-
ten as:

Dy(x; Λ) =
−||py − x||2 + ||pi − x||2

2||py − pi||
, (9)

where for a given sample x, pi and py refer to the
closest prototypes to x both in the wrong class and in
the correct class.

5.2 Evaluation of the projection for prototype-
based classifiers

To ensure exact calculation of the distance to the
boundary, it is necessary to choose those prototypes
carefully. Thus pi and py must also be located directly
beside the boundary and be adjacent one to the other,
defining one segment of the piecewise linear boundary.

A natural idea to obtain projection for each sample
x is to use the knowledge of Dy(x; Λ) to compute the
gradient projection

xproj = x−Dy(x; Λ)
∇Dy(x; Λ)

||∇Dy(x; Λ)||
, (10)

For linear models, this projection procedure gives re-
liable results. The projection however requires more
careful devising for piecewise linear models applied to
datasets with high dimensional features spaces. In-
deed, since the boundary is defined for kmeans as a
selection of bounded hyperplanes among Voronoi-type
cells delimitation, there is a risk that a projection falls
outside the bounds separating prototypes of different
classes. In that case, the sample must be projected
on the corner of two or more hyperplanes, and this
projection depends on more than the two previously-
defined prototypes. Problematic samples can be easily
spotted by calculating misclassification measure after
gradient projection: since defective projections are not
projected on the boundary but land in different cells,
their misclassification measure is not 0 (cf. Figure 3).
This issue can then be corrected by solving of the op-



Figure 3: Projection on a piecewise linear decision
boundary using geometric margin definition for a sam-
ple which projection falls outside the bounded separa-
tion between py and pi.

timization problem:

min
z

||x− z||,

s.t. z ∈ L,
(11)

where L is the intersection of all hyperplanes intersect-
ing on the corner we are projecting onto. The number
of intersecting hyperplanes in L is dominated by the
number nfeatures of features for the chosen dataset and
does not depend on the chosen K-means-clustering-
based model as long as nfeatures < K. For models
where K < nfeatures, space tesselation is less compli-
cated and the number of intersecting hyperplanes in L
can be dominated by K.

In our case, to alleviate computational costs, we
chose only to keep K-means prototypes instead of cal-
culating the cells and hyperplanes delimitations. Thus
the number of intersecting hyperplanes in any location
of the nfeatures-dimensional feature space is unknown.
To solve the projection for a given sample x and a given
set of prototypes PK for the K-means-clustering-based
model, in nfeatures-dimensional feature space, we thus
proceed iteratively by solving the optimization prob-
lem (11) for x with a growing number of constraints
(hyperplanes in L) until the solution z∗ verifies

Dy(z∗; Λ) = 0. (12)

Considering a hyperplane on the boundary is defined
as the bisector between prototypes of both the wrong
class and the correct class, it essentially means selecting
a growing number of prototypes around sample x in
set PK . The first two prototypes are chosen as defined
for the gradient projection; for ensuing iterations, we
select the prototype in PK closest to the projection
that verifies both adjacency to the boundary and to
the previously chosen prototypes.

The method is summarized by Algorithm 3.
Efficiency of the projection is measured by the num-

ber of projected samples obtaining a misclassification

Algorithm 3: Sample projection on B(Λ)

Input: T ,PK
Output: p(x; Λ)

1 foreach x ∈ T do
2 Select pi and py next to the boundary
3 Project x

4 end
5 niter ← 1
6 while ∃x, Dy(p(x; Λ)) 6= 0 or

niter < min(nfeatures,K) do
7 niter ← niter + 1
8 Select samples x that are not accurately

projected
9 foreach x do

10 Select pniter
y closest to p(x; Λ) next to the

boundary
11 Project x using the niter + 1 prototypes

12 end

13 end

measure of 0 (see Figure 5). In that regard, results
presented in Figure 6 justify the use of an iterative al-
gorithm, as the number of correctly projected samples
increases with niter.

Bidimensional datasets can also be visualized to com-
pare the boundary obtained through projection with
the classifier estimated boundary, as presented in Fig-
ure 4. The more correctly projected samples we have,
the better our knowledge of the estimated boundary
becomes.

Figure 4: K−means clustering applied to two-class
bidimensional distribution. Space is fragmented in
Voronoi-type areas around K−means centroids. The
decision boundary, on which training samples are pro-
jected (white circles), is defined as the line separating
centroids of different classes.



Figure 5: Distribution of the misclassification measure
for the samples (blue) and their projections (orange)
on the breast cancer dataset.

Figure 6: Number of projections obtaining a misclas-
sification measure of 0 for niter = 1,2,3 and 7 on the
breast cancer dataset depending on the chosen number
of prototypes for K−means. For example 2D refers to a
projection using niter = 1, which would lead to perfect
projection if the data was two dimensional.

5.3 Evaluation of model selection for
prototype-based classifiers

Figures 7 through 11 show the predictive per-
formance of our model selection procedure on the
K−means clustering, for which the hyperparameter to
set is the number of prototypes per classK. To simplify
the search, we set an equal K for all classes. For each
dataset, the upper graph shows the classification accu-
racy on the testing, while the lower graph measures the
perturbation measured on B(Λ) when applying Algo-
rithm 1 using (7), and the horizontal axis corresponds
to K. Ideally the lower and upper graphs would show
opposite trends. In particular a global minimum on
the lower graph would correspond to a global maxi-
mum on the upper graph which we would select for
optimal generalization performance. Note that at the
time the results below were obtained using the projec-
tion using the gradient only in the boundary salient
sample extraction step. Hence there is still possibility
to improve the accuracy of the results using the im-

proved projection procedure described in the previous
section;

Figure 7: GMMu

Figure 8: Breast cancer; RRop
: recognition rate on testing data

The results on the breast cancer dataset, the spam-
base, and the cardiotocography datasets are partic-
ularly encouraging, as (7) shows an opposite trend
(monotonicity, local peaks) to the recognition rate on
testing data. This points to the potential of the class
label flip to measure the closeness of the estimated
boundary to the ideal Bayes boundary.

The trends on ionosphere are also consistent, how-
ever compared to the recognition accuracy curve, (7)
shows quite mild variations. This can be explained in
part by the small number of testing samples available
on ionosphere compared to the other datasets. As a
result, changes on the estimated boundary affect the
testing performance in a sharper way than can be ob-
served based on the training set. By contrast, the pro-
cedure does not provide any predicting trend on the
synthetic data GMMu. Although the pronounced ”U”
shape and the high overlapping between the two classes



Figure 9: Cardiotography

Figure 10: Ionosphere

Figure 11: Spambase

might account for the difficulty of the task, further in-
vestigation about this case is necessary, for example by
controlling the shape and overlapping of the synthetic
data. Also the symmetric U shape embedding the two
distributions might cause undesired robustness to the
class label flip for low k.

Even though the results above are favorable overall,
they depend on the metric used to quantify the amount
of perturbation. To get further insight on the influence
of the metric, we also reproduced the experiments us-
ing (8). The observed trend was quite disappointing
compared to the results provided by (7). Such differ-
ence might be explained by the nature of our selec-
tion method, which tends to consider the entire distri-
bution (and thus the entire estimated boundary) as a
whole rather than focus individually on training sam-
ples. Hence global measures of perturbation are more
natural in the current procedure.

The current perturbation measure depends on the
number of selected salient samples, which varies from
one candidate boundary to another. Therefore normal-
izing by the number of salient samples might improve
the fairness of the comparison:

∆(Λ) = | 1

Sb

Sb∑
s=1

|Dy(xs; Λb)| −
1

Sb

Sb∑
s=1

|Dy(xs; Λa)||,

(13)

Alternatively, for each classifier status Λ, the set of
projected samples on B(Λb) can be used instead of Sb.
Not only do all sets of projections contain the same
number N of samples, but they also represent B(Λb)
more accurately.

6 Conclusion
In this paper we presented a novel way of choosing

among different sets of trained classifier model param-
eters, the one that achieves higher generalization per-
formance. Although the proposed procedure is appli-
cable to a general form of classifier model, in a first
stage we detailed the case of prototype-based classi-
fiers. Experimental evaluation on real life data shows
the potential for using the concept of class label flip
to select the classifier model. However dependance of
the framework on the perturbation metric, as well as
uneven performance on our synthetic data requires fur-
ther investigation. Hence future work will focus on how
to develop the concept of class label flip, as well as how
to reliably measure its effect on the joint probability
distributions.
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