
Vol. 45 No. SIG 11(ACS 7) IPSJ Transactions on Advanced Computing Systems Oct. 2004

Regular Paper

Cache Coherence Strategies for Speculative Multithreading CMPs:

Characterization and Performance Study

Niko Demus Barli,
†,☆

Luong Dinh Hung,
†
Hideyuki Miura,

†,☆☆

Chitaka Iwama,
†
Daisuke Tashiro,

†
Shuichi Sakai

†

and Hidehiko Tanaka
†,☆☆☆

Thread-level memory speculation is one of speculation techniques usually employed in spec-
ulative multithreading architectures. On shared-bus chip multiprocessors (CMPs), the tech-
nique can be implemented by extending their cache coherence mechanisms. Several imple-
mentations have been proposed and evaluated. However, there is no study that compares
the impact of the taken strategies and identifies which of the strategies are important. In
this paper, we first characterize the effect of speculative multithreading executions to cache
misses. We find that sharing misses occupy the largest portion of misses, and spreading ac-
cesses in speculative multithreading executions cause a significant increase in the miss rate.
Then, we perform a performance study of several cache coherence strategies. Our study shows
that update-based protocols, which do not suffer from sharing misses, achieve significantly
higher performance than invalidation-based protocols. The study also reveals that applying a
modified read-broadcast (snarfing) approach is effective for suppressing the effect of spreading
cache accesses. Finally, the study shows that managing the exclusivity of data in caches offers
little performance improvement.

1. Introduction

Speculative multithreading has been pro-
posed to accelerate the execution of sequen-
tial programs by dividing a sequential execu-
tion stream into threads and executing the
threads speculatively1),4),8),14)～16),19),21),23). In
contrast to conventional parallelization ap-
proaches, control and data dependencies may
exist among the threads. To guarantee the cor-
rectness of the execution, a number of hardware
and software supports are typically integrated
to the underlying architectures.

Thread-level memory speculation is one of
speculation techniques usually employed in
speculative multithreading architectures. A
speculative thread may issue memory opera-
tions without waiting for memory operations of
its predecessor threads to complete. This im-
plies that we need to buffer values stored by the
speculative threads, perform version manage-
ment of memory values, and detect dependency
violations. These functions can be implemented
on shared-bus chip multiprocessors (CMPs) by
extending their cache coherence mechanisms.

† Graduate School of Information Science and Tech-
nology, The University of Tokyo

☆ Presently with Texas Instruments Japan
☆☆ Presently with East Japan Railway Company
☆☆☆ Presently with Institute of Information Security

Several implementations have been proposed
and evaluated12)～14),20). However, to our ex-
tent of knowledge, there is no study that com-
pares the impact of the taken strategies and
identifies which of the strategies are important.

In this paper, we first characterize the ef-
fect of speculative multithreading executions to
cache misses. We find that sharing misses oc-
cupy the largest portion of misses, and spread-
ing cache accesses in speculative multithread-
ing executions causes a significant increase in
the miss rate. These results suggest that elim-
inating the sharing misses and suppressing the
effect of spreading accesses are important fac-
tors for achieving good performance.

We then perform a performance study of
several cache coherence strategies. Our study
shows that update-based protocols, which do
not suffer from sharing misses, achieve signif-
icantly higher performance than invalidation-
based protocols. Update-based protocols also
have lower bus utilization. These results are in-
teresting since they contradict previous results
in the context of conventional multithreading
executions on multiprocessors. In this context,
update-based protocols often suffer from a large
increase in bus utilization, outweighing the ben-
efit of lower cache miss rate7),9),10).

The study also reveals that applying a modi-
fied read-broadcast (snarfing) approach is effec-

119

120 IPSJ Transactions on Advanced Computing Systems Oct. 2004

tive for reducing the effect of spreading cache
accesses. Originally, read-broadcast approach
is intended to reduce sharing misses in mul-
tiprocessor caches11),17). The bus is snooped
for read-miss transactions, and whenever a re-
sponse appears on the bus and there is a match-
ing tag of an invalid line, the line is inserted in
the cache. The original approach is however
not sufficient since the spreading cache accesses
also cause a significant increase in non-sharing
misses. The modified read-broadcast approach
extends the original approach by inserting the
snooped line not only when an invalid copy of
the line found, but also when there is no match-
ing copy of the line in the cache.

Finally, our study also shows that manag-
ing the exclusivity of data in caches offers little
performance improvement. This suggests that
exclusivity management can be traded off if a
simpler design in the cache coherence protocol
is preferred.

The rest of this paper is organized as follows.
Section 2 presents the related work of cache co-
herence protocols that support speculative mul-
tithreading executions. Section 3 describes the
methodology of this study. The results of the
study are presented and discussed in Section 4.
Finally Section 5 concludes the paper.

2. Related Work

Several cache coherence protocols for spec-
ulative multithreading CMPs have been pro-
posed12)～14),20) and an analysis of the complex-
ity involved has been reported24). Speculative
versioning cache (SVC)12) proposed for Multi-
scalar architecture, uses an invalidation-based
protocol. The state of data is managed on
a per-word basis and a linked-list structure is
used for version management. SVC employs a
slightly modified read-broadcasted approach in
which the line is snarfed if there is a free line
available.

Hydra13) also uses an invalidation-based pro-
tocol. The state of data is managed on a
per-line basis. Write-through policy is em-
ployed: non-speculative writes are written di-
rectly through to the L2 cache, while specu-
lative writes are temporarily stored into dedi-
cated speculative buffers attached to the bus.

STAMPede20) extends the MESI invalidation-
based protocol to support memory speculation.
Similar to Hydra, the state of data is managed
on a per-line basis. However, it retains specu-
lative values in the cache.

In IACOMA14), memory speculation is sup-
ported using a centralized table called Memory
Disambiguation Table (MDT). MDT is located
between the private L1 caches and the shared
L2 cache. It records loads and stores executed
on L1 caches. The state of data is managed on
a per-word basis. Similar to STAMPede, spec-
ulative values are retained in the L1 caches.

SVC, Hydra, STAMPede, and IACOMA, all
use invalidation-based protocols. Our study
however reveals that update-based protocols
considerably reduce the number of cache misses
and offer a significant performance improve-
ment over invalidation-based protocols. The
study also shows that, applying the modi-
fied read-broadcast approach to the update-
based protocols further improves the perfor-
mance achieved.

3. Methodology

3.1 Execution Model
In this paper, we define thread as a connected

subgraph of the control flow graph with a single
entry node. This definition is similar to the
one used in Multiscalar19). It differs in that we
allow overlap among the tail regions of different
threads2).

A program is partitioned into threads by a
compiler. We incorporated a partitioning algo-
rithm into an improved version of newcc opti-
mizing compiler3) originally developed by Fu-
jitsu Laboratories. The compiler first finds
thread candidates by analyzing the program’s
control flow graph using structural analysis18).
In our algorithm, structural analysis is con-
figured to identify structures that meet the
requirements of our thread model described
above. These structures include if-then blocks,
if-then-else blocks, and loop structures.

After finding the thread candidates, the com-
piler applies a heuristic approach for selecting a
combination of threads that is most likely give
optimal performance. Here, we use a simple
heuristic that mainly considers loop structures
and thread size characteristic. We first iden-
tify innermost loop structures from the candi-
dates. Then, we select a combination that in-
cludes the loop structures and minimizes the
total number of threads. Furthermore, only
for candidates whose estimated size exceed a
preset threshold value, we then insert a thread
header into each control flow edge that enters
the candidates. Note that this thread header
indicates the start of a thread and by inserting

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 121

Table 1 Average dynamic size of threads and the
coverage of parallel execution.

Application thread size [insts] coverage [%]
099.go 25.98 99.69
124.m88ksim 24.30 89.99
126.gcc 26.92 90.12
129.compress 20.66 99.89
130.li 22.18 99.82
132.ijpeg 51.61 94.71
134.perl 29.05 66.23
147.vortex 31.09 80.68
harmonic mean 27.99 88.57

the headers into the edges rather than to the en-
try blocks of the thread candidates allows us to
overlap the tail regions of two or more threads.
Overlapping tail regions is useful to avoid the
creation of tiny threads that was a problem for
sustaining a large execution window2). Table 1
shows the average dynamic size of threads and
the coverage of parallel execution in our evalu-
ation environment.

During execution, a thread predictor5) dy-
namically predicts the sequence of threads that
follow the program order. The threads are then
assigned to the processing units of the CMP in a
round-robin fashion. If a misprediction occurs,
the mispredicted thread and all its successors
are flushed and the execution is restarted.

Inter-thread register dependencies are han-
dled using a synchronization mechanism6). The
compiler helps the hardware to identify which
registers to synchronize and the timing to safely
send the values. In contrast, inter-thread mem-
ory dependencies are handled in a specula-
tive way. A thread may issue memory oper-
ations without waiting until its predecessors
complete all memory operations. If a predeces-
sor thread afterwards stores to a location previ-
ously loaded by the thread, a dependency vio-
lation is detected, and the violating thread and
all its successors are flushed and restarted.

3.2 Simulation Setup
Eight applications from SPEC95INT bench-

mark are used for the simulations. The param-
eters, shown in Table 2, are set so that one
execution will finish in 100 to 300 million in-
structions.

We use two types of simulator in this pa-
per. The first simulator is a trace-based cache
simulator used for characterizing the impact of
partitioning a sequential program into threads
to cache miss rate. We first generate traces
that record memory accesses performed by the
threads. The threads are assumed to be per-

Table 2 SPEC95INT benchmark parameters.

Application Parameter
099.go 9 9
124.m88ksim train/ctl.in
126.gcc -quiet -funroll-loops -fforce-mem

-fcse-follow-jumps -fcse-skip-blocks
-fexpensive-optimizations
-fstrength-reduce -fpeephole
-fschedule-insns -finline-functions
-fschedule-insns2 -O
genrecog.i genrecog.s

129.compress 30000 1 2131
130.li train.lsp
132.ijpeg -image file specmun.ppm

-compression.quality 50
-compression.optimize coding 0
-compression.smoothing factor 50
-difference.image 1
-difference.x stride 10
-difference.y stride 10
-verbose 1 -GO.findoptcomp

134.perl scrabble.pl scrabble.in
147.vortex train/vortex.in

fectly predicted and scheduled to the processing
unit in a round-robin fashion. The sequence of
the threads follows the program order as de-
fined in our execution model. The memory
trace in each thread also follows the program
order. Given these traces, the simulator then
simulates the behavior of the caches and clas-
sifies the occurring cache misses. The timing
of cache update is ideal. When a miss occurs,
the corresponding line is assumed to be brought
to the cache immediately before another access
may occur.

In this simulator, since our purpose is to
characterize the sharing misses and the effect
of spreading accesses introduced by speculative
multithreading executions, we simulate neither
the parallel execution of the threads nor the
superscalar execution. All memory accesses by
predecessor threads must have been issued be-
fore a new thread is scheduled to a processing
unit. It is because at this evaluation stage,
we want to isolate the inherent characteristics
from the side effects of the speculative execu-
tions (i.e., memory accesses by misspeculated
threads or by instructions that follow a mispre-
dicted branch).

For example, assume that a thread stores to
a location whose copy also exists in the cache
of a processing unit running one of its succes-
sors. Also assume that the successor thread
loads the value from the location. This example
illustrates a producer-consumer sharing pattern
that inherently causes a sharing miss in the con-

122 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Fig. 1 CMP organization used in this study.

sumer’s cache in invalidation-based protocols.
However, in real speculative multithreading ex-
ecution, the consumer may speculatively load
the value resulting in a cache hit. It is then
followed by a store by the producer, causing a
memory dependency violation and invalidation
of the line. The consumer thread is restarted
and eventually loads from the location, now re-
sulting in a cache miss. In this case, the first
cache hit is irrelevant and better not to be in-
cluded in the statistics taken.

The second simulator is an execution-driven
cycle-accurate simulator used for the perfor-
mance study in this paper. It simulates
the aspects of out-of-order superscalar and
speculative multithreading executions, includ-
ing branch prediction, speculative spawning of
threads, and speculative accesses to the mem-
ory system. The simulator simulates a CMP
consisting of four processing units. Each pro-
cessing unit is an out-of-order superscalar core
with a 7-stage pipeline. The processing unit
can fetch, issue, and retire four instructions per
cycle. Each processing unit has private L1 in-
struction and data caches, and shares a unified
L2 cache. The hardware organization of the
CMP is shown in Fig. 1. The parameters of
the processing units and their caches are sum-
marized in Table 3.

The simulator incorporates a dual-length
path-based predictor5) with lazy update policy
as the dynamic thread predictor. We combine
two path-based predictors with path length of
one and four respectively. Each predictor uses a
2048-entry prediction table. The selection table
has 4096 entries of 3-bit counter. The predic-
tor is able to predict one thread in each cycle.
For the SPEC95INT benchmark we use in this
paper, the prediction accuracy achieved ranges
from 62% (099.go) to 95% (124.m88ksim), with
an average of 82%.

For register communication, we assume a reg-

Table 3 Processing unit and cache parameters.

Parameter Value

Pipeline stages 7 stages
Fetch/Issue/Retire width 4 instructions/cycle
No. of physical registers 128 registers

Functional units 2 ALUs + 2 Addr. Units
Reorder buffer 64 entries
Issue queue 20 entries

Load/store queue 20 entries
BTB 1,024 entries

Bimodal predictor 4,096 entries

L1 instruction cache 16-kB 64-B line
2-way set associative
1-cycle hit latency

L1 data cache 16-kB 64-B line
2-way set associative
2-cycle hit latency

L2 unified cache ideal (always hit)
16-cycle latency

ister communication mechanism previously pro-
posed in6). The update and propagate latency
to an adjacent processing unit is set to one cy-
cle, while the update and propagate bandwidth
is set to one register/cycle.

For cache coherence protocol of the data
caches, the simulator incorporates five types of
protocols to be described in the next section.
Memory dependency violations are detected on
a per-word basis. A memory violation flushes
the execution of the current thread and the ex-
ecution is restarted after one cycle penalty.

Finally, the simulator simulates a shared-
bus that connects the data caches. The bus
model and its parameters are described in sec-
tion 3.4. For instruction caches, we do not
model bus contention. However, we apply the
read-broadcast approach to avoid misses caused
by the spreading accesses to the instruction
cache.

3.3 Coherence Protocols
In this study, we assume a non-blocking

write-back write-allocate cache as the base de-
sign. Speculatively stored data is retained in
the cache. Cache fill and eviction are performed
on a per-line basis while the state of data is
managed on a per-word basis.

We consider five types of protocols as shown
in Table 4. For each protocol, we define two
variants: one that manage and one that does
not manage the exclusivity of data in the cache.
The set of processor and bus events assumed
in the protocols are summarized in Table 5.
Note that bus upgrade transaction (BusUpg)
is specific to invalidation-based protocols while
bus update transaction (BusUpd) is specific to

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 123

Table 4 Types of protocols used in this study.

Name Description
inv invalidation-based protocol

no read-broadcast
inv-robr invalidation-based protocol

read-broadcast in read misses
upd update-based protocol

no read-broadcast
upd-robr update-based protocol

read-broadcast in read misses
upd-rwbr update-based protocol

read-broadcast in both read/write misses

Table 5 Processor and bus events.

Name Description
PrRd Processor read (load)
PrWr Processor write (store)
PrNonSpec The thread becomes non-speculative
PrFlush The thread is flushed
PrCommit The thread is committed
PrEvict The data is evicted from the cache
PrInv Invalidate the data
PrUpd Update the data
BusWb Bus write-back transaction
BusRd Bus read transaction
BusRdX Bus read-with-intent-to-modify
BusUpd Bus update transaction (upd-based)
BusUpg Bus upgrade transaction (inv-based)
BusFwd Bus forward (part of BusRd/BusRdX)

Table 6 The basic states of cache data.

State Valid Excl. Owned
Invalid I - - -
Clean Shared S

√
- -

Clean Exclusive E
√ √

-
Modified Shared O

√
-

√
Modified Exclusive M

√ √ √

update-based protocols.
In conventional cache coherence protocols,

there are basically three properties used for
defining the state of data in the cache: Va-
lidity, Exclusivity, and Ownership 22). Using
these properties, we can define five basic states
as shown in Table 6. These states are suffi-
cient for describing cache coherence protocols
when there is only one version of valid data in
the cache. Unfortunately, in speculative multi-
threading executions, it is possible to have mul-
tiple versions of valid data at the same time.

To correctly describe the states of data in
speculative multithreading executions, we need
to define four additional properties described as
follows:
• Speculativeness : Data is speculative if it

is stored or forwarded by a speculative
thread. When a thread is flushed due
to misspeculation, all speculative data in

the corresponding cache must be inval-
idated. Speculativeness of data is re-
set when the thread is promoted to non-
speculative thread.

• Violation possibility : Data is possible to
cause memory dependency violation when
the first speculative access to the data is
a load. Violation is detected when a less
speculative thread later stores to the cor-
responding location of the data. Violation
possibility is reset when the thread is pro-
moted to non-speculative thread.

• Committed data: A modification to data
is said to be committed when the thread
that made the modification retired. The
cache may retain the data after the thread
retired. However, it is responsible to write
the data back before invalidating or replac-
ing the data. For each data, there may
be only one cache that has the committed
property set. This property has no mean-
ing for non-modified data.

• Delayed invalidation: Data is delayed-
invalidated if a later (more speculative)
thread stored the the same location. A
delayed-invalidated data must be invali-
dated before a new thread is assigned to
the corresponding processing unit. If the
data is committed, it must be written back
before being invalidated.

These new properties increase the number
of possible states in speculative multithread-
ing caches. Showing all possible state transi-
tions consumes a lot of space and is difficult
to comprehend. We simplify the description
as follows. Each property described above can
be seen as a dimension in a multi-dimension
state space. Thus, we have a seven-dimension
state space. The state space can be separated
into several sets of independent domains. We
can then equivalently describe the protocol by
defining the transition rules among the domains
in each set. Note that an event may initiate do-
main transition in more than one sets at a time.

We define five sets of domains as follows:
(1) speculativeness cleared (u) or set (U)
(2) violation possibility cleared (v) or set (V)
(3) committed data cleared (c) or set (C)
(4) delayed invalidation cleared (d) or set (D)
(5) M, O, E, S, or I
The first four sets each have two domains, char-
acterized by whether one of the four proper-
ties specific to speculative multithreading exe-
cutions is cleared or set. The fifth set has five

124 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Table 7 Rules for transition in domains specific to speculative multithreading executions.

curr event condition action next
u PrWr thread is speculative - U
u BusRd forwarded by speculative thread and version matched - U
u BusRdX forwarded by speculative thread and version matched - U
u BusUpd updated by speculative thread and version matched - U
U PrNonSpec - - u
U PrFlush - PrInv u
v PrRd first speculative access - V
V PrNonSpec - - v
V BusRdX version matched PrFlush v
V BusUpd version matched PrFlush v
V BusUpg version matched PrFlush v
c PrCommit the data is modified - C
C PrEvict - BusWb c
C BusRdX version matched BusWb c
C BusUpd version matched BusWb c
C BusUpg version matched BusWb c
d BusRdX by more speculative thread - D
d BusUpd by more speculative thread - D
d BusUpg by more speculative thread - D
D PrCommit - PrInv d

Table 8 Rules for transition in MOESI domains.

Exclusivity managed Exclusivity not managed
update invalidation update invalidation

curr event condition action next action next action next action next
I PrRd shared data BusRd S BusRd S BusRd S BusRd S
I PrRd unshared data BusRd E BusRd E BusRd S BusRd S
I PrWr shared data BusRdX O BusRdX M BusRdX O BusRdX O
I PrWr unshared data BusRdX M BusRdX M BusRdX O BusRdX O

{I} BusRd - - S - S - S - S
{I} BusRdX - - S - I - S - I
S PrInv - - I - I - I - I
S PrWr - BusUpd O BusUpg M BusUpd O BusUpg O
S BusRdX - PrUpd S PrInv I PrUpd S PrInv I
S BusUpd - PrUpd S PrInv I PrUpd S PrInv I
E PrInv - - I - I - - - -
E PrWr - - M - M - - - -
E BusRdX - PrUpd S PrInv I - - - -
E BusUpd - PrUpd S PrInv I - - - -
O PrInv - BusWb I BusWb I BusWb I BusWb I
O PrWr - BusUpd O BusUpg M BusUpd O BusUpg O
O BusRd - BusFwd O BusFwd O BusFwd O BusFwd O
M PrInv - BusWb I BusWb I - - - -
M BusRd - BusFwd O BusFwd O - - - -

common condition : the version of the data involved matched

domains characterized by the three properties
common to conventional multiprocessor caches.

Table 7 shows the transitions among the do-
mains in the first four sets. The fields in the
table are: the current domain, the event that
initiates the transition, conditions necessary for
the transition, the action taken by the cache
controller when the condition is satisfied, and
the next domain after the transition. The rules
in this table are common to all types of proto-
cols we consider in this paper.

The condition “version matched” indicates
whether the version of data involved is rele-

vant to the current thread running on the corre-
sponding processing unit. In other words, when
the version is matched, if the thread performs a
load from the location, the same version of data
as the one under consideration will be provided.

Table 8 shows the transitions among the
MOESI domains in the fifth set. The condi-
tion “version matched” is applied to all the
transitions in this table. We show the rules
for update-based and invalidation-based proto-
cols. The fifth and sixth rows in the table show
the rules that are relevant only if the read-
broadcast capability is enabled (the fifth row

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 125

is for read-broadcast on read misses while the
sixth row is for read-broadcast on write misses).

For each class of protocols, we show the two
variants that manage and does not manage the
exclusivity of data. Note that in the variants
that do not manage the exclusivity of data,
transitions to E or M domain are not possible.
Also note that update-based protocols broad-
cast cache updates using BusUpd or BusRdX
transactions, while invalidation-based protocols
broadcast invalidation messages using BusUpg
or BusRdX transactions. Finally, also note that
no update or invalidation is broadcast if the
data is exclusive (in E or M domain).

3.4 Bus Model
The execution-driven cycle-accurate simula-

tor models a split transaction bus with out-
of-order completion. A transaction consists of
an address tenure and a data tenure. Address
tenure is pipelined into three stages: Arbitra-
tion (Arb), Address (Addr), and Final (Fin).
The type and memory address of the transac-
tion are broadcast at Addr stage. The corre-
sponding data tenure can be started the next
cycle after the Arb stage of the address tenure.

Data tenure is pipelined into five stages:
Overhead (Ovh), Arbitration (Arb), Control
(Ctrl), Data (Data), and Final (Fin). Ovh
stage is used to simulate latency necessary for
accessing lower level (L2) cache array and is
fully pipelined. Ctrl stage is used to simulate la-
tency necessary for version identification. Data
stage is where the corresponding data is broad-
cast on the bus.

For address bus arbitration, we applied an
arbitration algorithm that prioritizes requests
by a less speculative thread over requests by
a more speculative thread. A transaction that
wins the arbitration is inserted into a waiting
queue. Some transactions require several cycles
of overhead before becoming ready for data bus
arbitration. Transactions are issued for data
bus arbitration from the queue in an out-of-
order fashion. When there are more than one
ready transactions, the oldest one wins the ar-
bitration.

The length of Ovh, Ctrl, and Data stages
depends on the type of the transaction. Ta-
ble 9 summarizes the latency setting we use in
the simulations. Note that BusUpg transaction
does not have data tenure, and BusUpd transac-
tion occupies fewer cycles of the data bus since
it only needs to transfer one word rather than
the whole cache line. We assume a data bus

Table 9 Latency settings for each stage in address
and data tenure.

Address tenure Data tenure
Trans. Arb-Addr-Fin Ovh-Arb-Ctrl-Data-Fin
BusWb 1 - 1 - 1 0 - 1 - 4 - 4 - 1
BusRd 1 - 1 - 1 6 - 1 - 4 - 4 - 1
BusRdX 1 - 1 - 1 6 - 1 - 4 - 4 - 1
BusUpd 1 - 1 - 1 0 - 1 - 1 - 1 - 1
BusUpg 1 - 1 - 1 0 - 0 - 0 - 0 - 0

Fig. 2 Example of address and data tenure of the
split transaction bus.

Fig. 3 Data cache miss classification in inv protocol.

width of 16 bytes, so that it takes four cycles
to transfer a 64-byte cache line. Also note that
BusRd and BusRdX have a six cycle overhead
before the data arbitration can be started.

Figure 2 illustrates an example of the opera-
tion of the split transaction bus. It shows three
bus transactions, BusRd, BusWb, and BusUpd
scheduled to the bus. After competing for the
address bus, they are scheduled to the pipeline
for data tenure. Since BusRd involves addi-
tional overhead before being able to arbitrate
for data bus, the later two transactions are com-
pleted first.

4. Results

4.1 Classification of Misses
Figure 3 shows the classification of data

cache misses in inv protocol. We assume ex-
ecutions on a CMP with four processing units,
each with a private 16-kB 64B-line 2-way set-
associative data cache. We classify the cache
misses into three classes as follows:
• Capacity/conflict misses : occur when the

cache cannot contain all the lines, or when

126 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Fig. 4 Varying the line size and its impact to cache
miss rate.

too many lines map to the same cache set.
We also include cold misses in this category.
However, in most cases, the portion of cold
misses is small and negligible.

• True sharing misses: occur when the cor-
responding cache line was invalidated by a
write to the same word being accessed.

• False sharing misses: occur when the cor-
responding cache line was invalidated by a
write to a different word in the same line.

We prioritize true sharing misses to false
sharing misses. Even if the first invalidation
was to a different word in the line, but if a later
invalidation to the line was to the same word
that causes the miss, we classify the miss as a
true sharing miss. This is because inherently,
the miss still occurs even if we manage the valid-
ity of data on a per-word basis in which no false
sharing miss may occur. The figure shows that
sharing misses occupy more than 75% of the
total misses. These results imply that a large
part of the cache accesses are in the form of
producer-consumer sharing. This fact is natu-
ral, considering that, the threads in speculative
multithreading are the results of partitioning a
sequential program.

Figure 4 shows the average miss rate when
we vary the line size from 8 bytes to 256 bytes.
As we increase the line size, true sharing misses
decrease while false sharing misses increase.
False sharing misses can be avoided by man-
aging the states on a per-word basis rather
than on a per-line basis. This way, if a pre-
decessor thread write to a word in the cache,
we only need to invalidate the word written
rather than the whole cache line. For a 64-
byte line shown in Fig. 4, we can expect that
the average miss rate can be reduced to ap-
proximately 17%. However, the remaining true
sharing misses still occupy more than half of
the total misses. These results hint that, us-

Fig. 5 Varying the number of processing units and its
impact to cache miss rate.

ing update-based protocols which do not suffer
from sharing misses may be a better choice if
they do not generate excessive bus traffic.

4.2 Effect of Spreading Accesses
Another possible problem in implement-

ing coherence protocols for speculative multi-
threading CMPs is the spreading of the cache
accesses over the multiple data caches. The
spreading accesses decrease both the spatial
locality and temporal locality of memory ac-
cesses. To quantify this effect, we vary the
number of processing units and measure how
the cache miss rate varies. The results, shown
in Fig. 5, indicate that the miss rate increase
significantly confirming the large impact of the
spreading accesses.

Looking into each miss category individu-
ally, the impact of spreading accesses to capac-
ity/conflict miss rate is larger than to sharing
miss rate. Even if the sharing misses can be
completely eliminated in update-based proto-
cols, the increase in capacity/conflict miss rate
remains as a problem.

A possible approach to improve the situa-
tion is by using a modified read-broadcast ap-
proach. Originally, read-broadcast approach
is intended to reduce sharing misses in mul-
tiprocessor caches11),17). The bus is snooped
for read-miss transactions, and whenever a re-
sponse appears on the bus and there is a match-
ing tag of an invalid line, the line is inserted in
the cache. The original approach is however not
sufficient since the spreading accesses also cause
a significant increase in non-sharing misses, as
shown in Fig. 5. The modified read-broadcast
approach extends the original approach by in-
serting the snooped line not only when an in-
valid copy of the line found in the case, but also
when there is no matching copy of the line in
the cache. Note that the approach we consider
here is more aggressive than the approach taken

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 127

Fig. 6 Estimated read-broadcast effect in
invalidation-based protocols.

Fig. 7 Estimated read-broadcast effect in update-
based protocols.

in Multiscalar’s SVC. SVC only inserts the line
if there is a free line available.

The logic of the approach is as follows. We
expect that there is spatial and temporal lo-
cality of memory accesses between a thread
and its nearby successors. Thus, when the
thread misses a cache line, there is large pos-
sibility that the successors may also need the
data from the same line. By using the read-
broadcast approach to prefetch the line, we can
avoid the corresponding misses in the succes-
sors. Note that for invalidation-based proto-
cols, the prefetching can be performed only on
read miss transactions. On write miss transac-
tions, there is no advantage of prefetching the
line since it will be invalidated immediately.

We estimate how much we can suppress
the increase in cache miss rate by using the
technique. Figure 6 shows the results for
invalidation-based protocols. Comparing the
miss rate of inv-robr (read-broadcast enabled)
to the miss rate of inv confirm that we can sup-
press the increase in cache miss rate using the
technique. However, the miss rate in multiple-

Fig. 8 Speedup achieved using the different types of
protocols.

PU configurations remains significantly higher
than the miss rate in single-PU configuration.
This is mostly because there are still a lot of
sharing misses remaining.

Figure 7 shows the improvement in the case
of update-based protocols. From the figure, it
can be seen that applying read-broadcast on
read misses alone (upd-robr) significantly sup-
presses the increase in cache miss rate. Apply-
ing read-broadcast also on write misses (upd-
rwbr) further reduces the miss rate, helping to
maintain the cache miss rate almost constant
even when the number of processing units is in-
creased.

4.3 Performance Comparisons
Figure 8 shows the speedup over con-

ventional execution on one processing unit
achieved for the five protocols shown in Table 4.
Here, we used protocol variants that manage
the exclusivity of data. The figure shows that
on average the three update-based protocols
outperform the other two invalidation-based
protocols. The figure also shows that apply-
ing read-broadcast approach significantly im-
proves the performance for both invalidation-
based and update-based protocols. The impact
is however larger for invalidation-based proto-
cols since the cache hit rate in the baseline con-
figuration (read-broadcast disabled) is lower.

We can also observe that applying read-
broadcast on both read and write misses as
in upd-rwbr only slightly improves the perfor-
mance over upd-robr. However, we expect that
the impact becomes larger for larger number of
processing units as we previously indicated in
Fig. 7.

Figure 9 shows the data cache hit rate for
each type of protocols. Note that the hit rate
is lower than the predicted miss rate shown in
Figs. 6 and 7 since we treat a partial hit (a hit
to a cache line being brought to the cache) as a

128 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Fig. 9 Data cache hit rate for each type of protocols.

Fig. 10 Address bus utilization.

Fig. 11 Data bus utilization.

miss. For reference, we also shows the hit rate
for conventional execution on a single process-
ing unit. Overall, the results confirm that using
update-based protocols instead of invalidation-
based protocols, and applying read-broadcast
approach significantly reduce the cache miss
rate.

4.4 Bus Utilization
Figures 10 and 11 show the bus utilization

of address bus and data bus respectively. We
measure the utilization by counting the bus cy-
cles consumed in Addr stage for address bus,
and in Data stage for data bus. The figures
show that using update-based protocols and
applying read-broadcast approach decrease the
bus utilization. The results for update-based

protocols are quite surprising since the use of
update-based approach works in favor of lower
bus utilization.

Figures 12 and 13 show the breakdown of
the address and data bus cycles consumed in
each protocol. They show that, using update-
based protocols and applying read-broadcast
approach significantly reduce BusRd and Bus-
RdX transactions caused by cache misses.

Since we set the latency of Addr stage to
one cycle for all types of transactions, the data
shown in Fig. 12 can also be interpreted as the
breakdown of the number of transactions that
occupied the address bus. The figure shows
that the number of BusUpd transactions in up-
date protocols is at most 80% larger compared
to the number of BusUpg (invalidation) trans-
actions in invalidation-based protocols. This
indicates that there is only a small number of
useless update transactions. Furthermore, al-
though the BusUpd transactions require addi-
tional data bus traffic in update-based proto-
cols, the increase in traffic is offset by the sig-
nificant decrease in BusRd and BusRdX traffic.

Finally, we can also observe that applying the
modified read-broadcast approach slightly in-
creases the number of bus write-back (BusWb)
transactions. This is because the prefetching
effect of the approach initiates more cache re-
placements. For most cases, however, the in-
crease is smaller than the reduction in the num-
ber of miss transactions (BusRd and BusRdX),
resulting in saved bus cycles.

The reasons why speculative multithreading
favors update-based protocols in terms of bus
utilization, contradicting previous results in the
context of conventional multiprocessors, are as
follows:
(1) Update-based protocols reduce sharing

misses more significantly in speculative
multithreading context than in conven-
tional multiprocessor context.

(2) The length of write-runs in speculative
multithreading is shorter than in typi-
cal workloads of conventional multipro-
cessors.

Write-run is defined by Eggers et.al. as a
sequence of write references to a shared cache
data by a single processor uninterrupted by
any memory access to the same block by an-
other processor9). It is useful as an indica-
tor of whether an application is suitable for
invalidation-based protocols or update-based
protocols. Application with long write-runs

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 129

Fig. 12 Address bus cycle breakdown.

Fig. 13 Data bus cycle breakdown.

benefits from invalidation-based protocols since
it avoids unnecessary updates, while the reverse
is true for update-based protocols.

In speculative multithreading, we divide the
program into small chunks (threads), thus,
there are only a few stores inside a thread.
These threads are then assigned to multiple
processing units, forming sharing patterns with
short write-runs. Invalidation-based protocols
perform better if write-run length is consider-
ably large. For example Dahlgren reported that
Cholesky has more than 50% of the write-runs
with length of eight7). In our case, however,
more than 80% of the write-runs have length
less than or equal to four as shown in Fig. 14.
This, combined with the significant reduction in
miss rate, explain why update-based protocols
perform better.

Fig. 14 Write-run length distribution.

4.5 Impact of Managing Exclusivity
Table 10 presents the impact of managing

exclusivity in the five protocols we used in this
study. The table shows the reduction in the
number of BusUpd and BusUpg transactions,
consumed bus cycles, bus utilization, and the

130 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Table 10 Impact of managing exclusivity.

Reduction rate [%]
Reduction in inv inv-robr upd upd-robr upd-rwbr

No. BusUpd - - 20.8 26.6 28.7
No. BusUpg 7.9 33.3 - - -
Addr. bus cycle 1.9 14.1 12.3 15.5 17.5
Data. bus cycle −0.2 1.4 7.5 8.0 8.8
Addr. bus utilization 0.3 2.1 1.9 2.2 2.6
Data. bus utilization −0.1 0.4 1.9 1.8 2.1
Execution cycles 0.2 −0.3 1.1 0.5 0.4

execution cycles. It can be seen that man-
aging exclusivity helps to reduce the number
of BusUpd and BusUpg transactions between
7.9% to 33.3%. These reductions in turn reduce
the total number of bus cycles consumed. The
reductions in update-based protocols are larger
than in invalidation-based protocols, ranging
from 12.3% to 17.5% for address bus, and from
7.5% to 8.8% for data bus. These reductions,
however, only contribute to a few percents of
decrease in bus utilization of the address bus
and the data bus. As the result, managing ex-
clusivity only provides a slight performance im-
provement over the protocols that do not man-
age the exclusivity. These results suggest that
if a simpler design is preferred, it is better to
choose protocols that do not manage exclusiv-
ity of data.

5. Conclusion

This paper studied the impact of several
cache coherence strategies for speculative mul-
tithreading chip multiprocessors. We first char-
acterized the effect of speculative multithread-
ing executions to cache misses. We found that
sharing misses occupy the largest portion of
misses, and spreading accesses in speculative
multithreading executions cause a significant
increase in the miss rate. These two factors,
if not handled properly, limit the speedup that
can be achieved using the speculative multi-
threading executions.

Performance study further showed that
update-based protocols, which do not suffer
from sharing misses, achieve significantly higher
performance than invalidation-based protocols.
Interestingly, the update-based protocols also
have lower bus utilization. The study also re-
vealed that applying a modified read-broadcast
(snarfing) approach is effective for suppressing
the effect of spreading cache accesses. Finally,
the study showed that managing the exclusiv-
ity of data in caches offer little performance im-
provement, suggesting that it can be traded off

if a simpler design is preferred.
Acknowledgments This research is par-

tially supported by Grant-in-Aid for Funda-
mental Scientific Research B(2) #13480077
from Ministry of Education, Culture, Sports,
Science and Technology Japan, Semiconduc-
tor Technology Academic Research Center
(STARC) Japan, CREST project of Japan Sci-
ence and Technology Corporation, and by 21st
century COE project of Japan Society for the
Promotion of Science. We are also thankful for
anonymous reviewers for their constructive crit-
ics and suggestions.

References

1) 小林良太郎，岩田充晃，安藤秀樹，島田俊夫：非
数値計算プログラムのスレッド間命令レベル並列
を利用するプロセッサアーキテクチャSKY，Proc.
JSPP 1998, pp.87–94 (1998).

2) 田代大輔，バルリ ニコ デムス，坂井修一，田中
英彦：スレッド投機実行におけるエッジに着目し
たスレッド分割手法，ARC-2003-153, Vol.2003,
No.40, pp.67–72 (2003).

3) 飯塚大介，小沢年弘，坂井修一，田中英彦，Cコ
ンパイラによるループ最適化の検討，HPC-99-77,
Vol.99, No.66, pp.65–70 (1999).

4) Akkary, H. and Driscoll, M.A.: A Dynamic
Multithreading Processor, Proc. 31st MICRO,
pp.226–236 (1998).

5) Barli, N.D., Hung, L.D., Miura, H., Sakai, S.
and Tanaka, H.: A Dual-Length Path-Based
Predictor for Thread Prediction, International
Workshop on Innovative Architectures 2003
(2003).

6) Barli, N.D., Tashiro, D., Iwama, C., Sakai,
S. and Tanaka, H.: A Register Communica-
tion Mechanism for Speculative Multithread-
ing Chip Multiprocessors, Proc. SACSIS 2003,
pp.275–282 (2003).

7) Dahlgren, F.: Boosting the Performance of
Hybrid Snooping Cache Protocols, Proc. 22th
ISCA, pp.60–69 (1995).

8) Edahiro, M., Matsushita, S., Yamashina, M.
and Nishi, N.: A Single-Chip Multiprocessor for
Smart Terminals, IEEE Micro, Vol.20, No.4,

Vol. 45 No. SIG 11(ACS 7) Cache Coherence Strategies for Speculative Multithreading CMPs 131

pp.12–20 (2000).
9) Eggers, S.J. and Katz, R.H.: A Characteriza-

tion of Sharing in Parallel Programs, Proc.15th
ISCA, pp.373–382 (1988).

10) Eggers, S.J. and Katz, R.H.: Evaluating The
Performance of Four Snooping Cache Co-
herency Protocols, Proc. 16th ISCA, pp.2–15
(1989).

11) Goodman, J.R. and Woest, P.J.: The Wis-
consin Multicube: A New Large-Scale Cache-
Coherent Multiprocessor, Proc. 15th ISCA,
pp.422–431 (1988).

12) Gopal, S., Vijaykumar, T.N., Smith, J.E. and
Sohi, G.S.: Speculative Versioning Cache, Proc.
4th HPCA, pp.195–205 (1998).

13) Hammond, L., Willey, M. and Olukotun, K.:
Data Speculation Support for a Chip Multipro-
cessor, Proc. 8th ASPLOS, pp.58–69 (1998).

14) Krishnan, V. and Torrellas, J.: A Chip-
Multiprocessor Architecture with Speculative
Multithreading, IEEE Trans. Comput., Vol.48,
No.9, pp.866–880 (1999).

15) Marcuello, P., Gonzalez, A. and Tubella, J.:
Speculative Multithreaded Processors, Proc.
12th ICS, pp.77–84 (1998).

16) Olukotun, K., Hammond, L. and Willey, M.:
Improving The Performance of Speculatively
Parallel Applications on the Hydra CMP, Proc.
13th ICS, pp.21–30 (1999).

17) Segall, Z. and Rudolph, L.: Dynamic Decen-
tralized Cache Schemes for MIMD Parallel Pro-
cessors, Proc. 11th ISCA, pp.340–347 (1984).

18) Sharir, M.: Structural Analaysis: A New Ap-
proach to Flow Analysis in Optimizing Com-
pilers, Computer Languages, Vol.5, No.3/4,
pp.141–153 (1980).

19) Sohi, G.S., Breach, S.E. and Vijaykumar,
T.N.: Multiscalar Processors, Proc.22nd ISCA,
pp.414–425 (1995).

20) Steffan, J.G., Colohan, C.B., Zhai, A. and
Mowry, T.C.: A Scalable Approach to Thread-
Level Speculation, Proc. 27th ISCA, pp.1–12
(2000).

21) Steffan, J.G., Colohan, C.B., Zhai, A. and
Mowry, T.C.: Improving Value Communication
for Thread-Level Speculation, Proc.8th HPCA,
pp.65–75 (2002).

22) Sweazey, P. and Smith, A.J.: A Class of Com-
patible Cache Consistency Protocols and their
Support by the IEEE Futurebus, Proc. 13th
ISCA, pp.414–423 (1986).

23) Tsai, J.-Y., Huang, J., Amlo, C., Lilja, D.J.
and Yew, P.-C.: A Chip-Multiprocessor Ar-
chitecture with Speculative Multithreading,
IEEE Trans. Comput., Vol.48, No.9, pp.881–
902 (1999).

24) Yanagawa, Y., Hung, L.D., Iwama, C., Barli,

N.D., Sakai, S. and Tanaka, H.: Complex-
ity Analysis of A Cache Controller for Spec-
ulative Multithreading Chip Multiprocessors,
Proc. 10th HiPC (LNCS 2913), pp.393–404
(2003).

(Received January 30, 2004)
(Accepted May 9, 2004)

Niko Demus Barli received
the M.E. degree in Information
Engineering from The Univer-
sity of Tokyo in 2001. He gradu-
ated with the Ph.D. degree in In-
formation and Communication
Engineering from The Univer-

sity of Tokyo in 2004. His graduate research
mainly focused on speculative multithreading
techniques on Chip Multiprocessors. He cur-
rently works for Texas Instruments Japan.

Luong Dinh Hung is cur-
rently a Ph.D. student in Infor-
mation and Communication En-
gineering in The University of
Tokyo. He received the M.E.
degree in Information and Com-
munication Engineering from

The University of Tokyo in 2004. He actively
pursues new ideas in the field of architecture
and circuit techniques for VLSI power reduc-
tion.

Hideyuki Miura received
the M.E. degree in Informa-
tion and Communication Engi-
neering from The University of
Tokyo in 2004. He currently
works for East Japan Railway
Company. He investigated and

evaluated control speculation techniques and
instruction fetch mechanisms for speculative
multithreading architectures in his graduate re-
search.

132 IPSJ Transactions on Advanced Computing Systems Oct. 2004

Chitaka Iwama received
the M.E. degree in Informa-
tion and Communication Engi-
neering from The University of
Tokyo in 2003. She is currently
a Ph.D. student in Information
and Communication Engineer-

ing in The University of Tokyo. Her research
interests are in architecture level power model-
ing framework and power reduction techniques.

Daisuke Tashiro is currently
a Ph.D. candidate in Informa-
tion and Communication En-
gineering in The University of
Tokyo. He received the M.E. de-
gree in Information Engineering
from The University of Tokyo in

2002. His research interests are in speculation
and compiler techniques for speculative multi-
threading architectures.

Shuichi Sakai received the
M.E. degree and Ph.D. de-
gree in Information Engineering
from The University of Tokyo
in 1983 and 1986 respectively.
He worked in Electrotechnical
Laboratory Japan from 1986 to

1990. From 1991 to 1992, he became a visit-
ing scientist in Computation Structures Group,
Massachusetts Institute of Technology. From
1993 to 1996, he was a chief at Massively Par-
allel Architecture Laboratory in Real World
Computing Partnership. He became an Asso-
ciate Professor in University of Tsukuba in 1996
and came to The University of Tokyo in 1998
as an Associate Professor. From 2001, he has
been a Professor in Graduate School of Infor-
mation Science and Technology of The Univer-
sity of Tokyo. His research interests include
dependable computer systems, microprocessor
architecture, compiler, parallel computing, and
multimedia processing. He wrote several books
on logic circuits and computer architecture, in-
cluding “Introduction to Logic Circuits” and
“Computer Architecture with Illustrated Ex-
planation”. He is a member of IPSJ, IEEE,
ACM, IEICE, and JSAI.

Hidehiko Tanaka received
the M.E. degree and Ph.D. de-
gree in Electronics Engineering
from The University of Tokyo in
1967 and 1970 respectively. He
became an Associate Professor
in Graduate School of Engineer-

ing of The University of Tokyo in 1971. From
1978 to 1979, he was a visiting professor in The
City University of New York. He became a
Professor in Graduate School of Engineering of
The University of Tokyo in 1987. From 2001 to
2004, he served as the Dean of Graduate School
of Information Science and Technology of The
University of Tokyo. Currently, he is the Dean
of Graduate School of Information Security of
Institute of Information Security Japan. His
research interests include computer architec-
ture, parallel and distributed processing, nat-
ural language processing, multimedia process-
ing, and computer aided design. He wrote
many books on computer systems, including
“Non Von Neumann Computers”, “Informa-
tion and Communication Systems”, “Parallel
Inference Engine — PIE”, “Computer Architec-
ture”, “VLSI Computer I, II”, and “Software-
oriented Architectures”. He is a member of
IPSJ, IEEE, ACM, IEICE, JSAI, and JSSST.

