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Abstract: The dependence graph model of out-of-order (OoO) instruction execution is a powerful representation used
for the critical path analysis. However, most, if not all, of the previous models are out-of-date and lack enough detail
to model modern OoO processors, or are too specific and complicated which limit their generality and applicability.
In this paper, we propose an enhanced dependence graph model which remains simple but greatly improves the accu-
racy over prior models. The evaluation results using the gem5 simulator with configurations similar to Intel’s Haswell
and Silvermont architecture show that the proposed enhanced model achieves CPI errors of 2.1% and 4.4% which are
90.3% and 77.1% improvements from the state-of-the-art model.
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1. Introduction

Out-of-order (OoO) instruction execution is one of the key
paradigms that has improved processor performance over the past
decades. To improve the performance or energy efficiency, it is
important to understand dominant instructions that determine the
execution time of the program, which are called critical instruc-

tions. Generally, identifying critical instructions and their criti-
cality accurately is difficult because multiple operations are re-
ordered and executed in parallel on OoO processors.

Critical path analysis of OoO processors is a useful tool to
solve the problem and enable a number of performance and en-
ergy optimizations. For example, critical path analysis can be
used to turn on/off costly speculative executions [10], adaptively
schedule non-critical instructions [23], establish metrics such as
slack [9] or interaction cost [11] for deep understanding of mi-
croarchitectural bottlenecks, or for processor design space ex-
plorations [17]. These applications are all based on dependence
graph representations of OoO instruction execution which model
the dependencies between specific events of each dynamic in-
struction.

Although existing dependence graph models are shown to
work well on relatively simple OoO processors (e.g., the sim-

outorder model of the SimpleScalar simulator [5]), they are too
simple and lack the details which are critical to performance for
modern OoO processors. An attempt to heavily customize the
model for specific microarchitectures has been made, but it lacks
generality and cannot be widely applied to other microarchitec-
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tures [17]. In this paper, we propose an enhanced dependence
graph model which achieves the higher accuracy than existing
models and also maintains its generality at the same time. To
be specific, we implement and perform accuracy comparisons
against existing models using the O3CPU model of the gem5 sim-
ulator [4].

Our study makes the following contributions *1:
• Enhanced dependence graph model for modern OoO

processors. We improve the dependence graph model based
on two key microarchitectural details that have not been
taken into account in previous models: dynamic variation
of branch misprediction penalty and a modern SQ (store
queue) design which combines the SQ and the writeback
buffer (WBB).

• A gem5-specific modification to the enhanced depen-
dence graph model. We further modify the dependence
graph model to incorporate gem5’s implementation-specific
frontend delays which occur when the frontend stages are
(blocked and then) unblocked.

• Accuracy evaluations. We evaluated the CPI (cycles per
instruction) error of the enhanced dependence graph model
with two processor configurations. With configurations sim-
ilar to Intel’s Haswell and Silvermont processor, the CPI (cy-
cles per instruction) errors are 5.3% and 12.2% without the
gem5-specific modification, which are 76.0% and 49.1% im-
provements over the existing model, respectively; CPI er-
rors further reduce to 2.1% and 4.4% with the gem5-specific
modification, respectively.

In Section 2, we discuss the reason why the dependency graph

*1 This paper is an extended version of the paper [25]. In this paper, the
modifications of the dependence model are described in more detail, and
accuracy evaluations with multiple configurations are conducted. It is
important to show that the proposed model can apply to not only the
specific configuration but also others.
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model needs to be enhanced. In Section 3, we describe our pro-
posal, the enhanced dependency graph model, and in Section 4
gem5-specific modification to the model is explained. Section 5
evaluates the accuracy of our models. Section 6 summarizes re-
lated work. Section 7 draws conclusions.

2. Background and Motivation

The dependence graph model of OoO instruction execution is
a well-known representation for enabling critical path analysis.
The graph is a weighted directed acyclic graph where each node
represents an event (e.g., dispatch) of each dynamic instruction,
and each edge which is weighted by the latency in terms of clock
cycles models various data and resource dependencies between
these events during the actual execution. The weight of each edge
is the number of cycles to resolve the constraint that the edge rep-
resents.

We choose the dependence graph model proposed in the liter-
ature [11], [12] as the baseline model, which we call the Fields’s
model, since it is simple (five node types and 12 edge types) yet
powerful enough to capture the critical microarchitectural bot-
tlenecks of OoO processors. Table 1 shows the definition of
the Fields’s model, which represents each dynamic instruction
with five nodes of (D)ispatch, (R)eady, (E)xecute, com(P)lete

Table 1 The definition of Fields’s model [11], [12].

Name Constraint Edge Definition Latency

DD In-order dispatch Di−1 → Di icache misses, itlb misses

FBW Finite fetch bandwidth Di− f bw → Di where f bw is the maximum no. of instructions fetched in a
cycle

constant latency (1 cycle)

CD Finite re-order buffer Ci−w → Di w = size of the re-order buffer constant latency (0 cycle)

PD Control dependence Pi−1 → Di inserted if i − 1 is a mispredicted branch constant branch recovery latency

DR Execution follows dispatch Di → Ri constant pipeline latency

PR Data dependences Pj → Ri inserted if instruction j produces an operand of i constant latency (0 cycle)

RE Execute after ready Ri → Ei functional unit contention

EP Complete after execute Ei → Pi execution latency

PP Cache-line sharing Pj → Pi inserted if instruction j produces cache miss to block loaded
by i

constant latency (0 cycle)

PC Commit follows completion Pi → Ci constant pipeline latency

CC In-order commit Ci−1 → Ci store BW contention

CBW Finite commit bandwidth Ci−cbw → Ci where cbw is the maximum no. of instructions committed in
a cycle

constant latency (1 cycle)

Fig. 1 An example of the dependence graph generated from Fields’s model – Ten instructions on the left
side are executed on the processor whose pipline width is two.

and (C)ommit. The execution trace is necessary to construct the
dependence graph because whether PD, PR and PP edges con-
nect nodes or not is conditional on the dynamic events (such as
branch misprediction and data dependency) on the processor and
the weights of DD, RE, EP and CC edges are determined accord-
ing to the trace.

Figure 1 shows an example of the dependence graph that is
generated from Fields’s model. It assumes a processor, whose
pipeline width is two and the number of ROB (reorder buffer) en-
tries is four, executes ten instructions on the left. Solid edges are
lastly arriving edges to a node, which are candidates of the criti-
cal path; thick edges consist of the critical path; dashed edges are
non-critical edges. i0 conducts a division whose execution takes
a long latency of five cycles, which is expressed by the edge from
E0 to P0. i2, i6 and i9 are load instructions, whose EP edges’
weights include the cycles calculating load addresses and access-
ing caches and main memory. i4 and i8 are branch instructions.
i8 is a mispredicted branch and has a PD edge, which correctly
predicted i4 doesn’t have. The thick edge from C3 to D7 is CD

edge.
Each node has at least one last arriving edge which determines

the node’s time from the start node. The critical path is defined as
the longest path from the start node to the end node and is iden-
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Fig. 2 CPI error of the estimated critical path cycles using the Fields’s dependence graph model.

Table 2 Modifications applied to the Fields’s model. The newly added constraints are denoted with + with their names.

Name Constraint Edge Definition Latency

Dynamic variation of branch misprediction penalty (described in §3.2)

PD Control flow Pi−1 → Di i-1 is a mispredicted branch branch misprediction penalty (dynamically de-
cided by Equation (4) for gem5)

SQ conditions (described in §3.3, the latencies for the processors with SSQ such as O3CPU of gem5)

CS+ Writeback after commit Ci → S i writeback latency

SS+ In-order writeback S j → S i j and i are consecutive stores constant latency (0 cycle)

SD+ Finite SQ entries S j → Di j and i are stores; i is the Nth store after j where N
is number of SQ entries

constant latency (0 cycle)

CC In-order commit Ci−1 → Ci constant latency (0 cycle)

gem5 specific modification (described in §4)

DD In-order dispatch Di−1 → Di dynamically decided by Equation (5)

tified by backtracking last arriving edges from the end node to
the start node. The sum of the weights of the critical path is the
estimated execution time calculated from the dependence graph
model.

Here, we evaluate the accuracy of the Fields’s model against
the O3CPU model of the gem5 simulator with the SPEC
CPU2006 benchmark suite [14]. The simulator is modified to
generate the dynamic instruction trace required to build the de-
pendence graph model. The configuration of the simulator is
Config-A described in Section 5.1. Figure 2 shows the CPI errors
of the Fields’s model. CPI error is the percent error of the esti-
mated CPI using the model, which is based on the longest path
(i.e., critical path) of the dependence graph, against the actual
CPI obtained from cycle-accurate event-driven simulations. It is
calculated by Eq. (1).

CPI error [%]=
|Simulated CPI−Estimated CPI|

Simulated CPI
×100 (1)

The CPI errors are greater than 20% in 29 out of 48 benchmarks
and greater than 60% in six benchmarks. This clearly suggests
that the Fields’s model lacks some critical dependencies which
happen to be the microarchitectural bottleneck of the execution.
Our goal is to close this gap between the simulator and the depen-
dence graph model, while at the same time without losing gener-
ality of the original Fields’s model so that it can apply to a large
set of OoO processors.

3. Enhanced Dependence Graph Model

3.1 Overview
We performed a detailed analysis of the results shown in Fig. 2.

The analysis required comparing the actual cycle of the simula-
tor against the estimated cycle from the model for each stage of

each dynamic instruction to identify in what circumstance the two
diverge, like debugging using single-stepping in GDB. We iden-
tified two major events which are sources of CPI errors that are
common to the majority of the programs: branch misprediction
and SQ (store queue) full. We discuss how to incorporate the two
events into the model in detail in the following subsections.

The gap between the processor and the dependence graph
model in relation to these events comes from microarchitectural
design choices. The aim of enhancements in this section is not
just to adjust the dependence graph model to a specific proces-
sor model but to enlarge processor designs which the dependence
model matches accurately. Therefore, the enhancements are ap-
plicable to processor models that adapt the same/similar design
choices.

The original Fields’s model defines five nodes per dynamic in-
struction and 12 edges between the nodes. The proposed model
adds only one node, S , and three new edges, CS , S S and S D,
(and modifies the weights of three edges) to the Fields’s model
whose simplicity we believe is still maintained. Table 2 summa-
rizes the differences between the proposed model and the Fields’s
model. Figure 3 shows an example of the dependence graph gen-
erated by the proposed model. i3 and i7 are store instructions and
have S node. Compared with Fig. 1, Fig. 3 has a different critical
path.

3.2 Dynamic Variation of Branch Misprediction Penalty
In the Fields’s model, the weight of the PD edge is supposed

to be the branch misprediction penalty which is defined as the
frontend latency (the frontend pipeline stage length including the
fetch, decode and rename) [11]. This definition matches de-
signs where mispredictions cause the fixed pipeline stall latency
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Fig. 3 An example of the dependence graph generated from the proposed model.

such as checkpointing, which is adopted in simulators such as
Multi2Sim [26], Sniper [7] and ZSim [22].

The problem with this approach is that the branch mispredic-
tion penalty can be substantially larger than the frontend pipeline
length [8]. Upon a branch misprediction, there are several opera-
tions that happen in parallel: (a) fetch the correct path instructions
and re-fill the pipeline and (b) recover the rename map table state
(e.g., some recovery mechanisms require that all the instructions
prior to the mispredicted branch have to be retired before ranam-
ing the next instruction in the correct path). There are two reasons
why the penalty can vary. First, until operation (b) completes and
the rename map table is recovered, the correct path instructions
cannot be renamed. Therefore, when the operation (b) does not
finish by the time when the instructions fetched by the opera-
tion (a) reaches the rename stage, the branch misprediction la-
tency becomes longer than the frontend pipeline length. Second,
in the first case we assume that the instructions on the correct
path can be fetched without additional delays, but in reality, an
instruction cache/TLB miss can occur.

Since the Fields’s model considers the branch misprediction
latency to be always the frontend pipeline length, it assumes that
the instruction cache/TLB miss never occurs, and the rename map
recovery always finishes on time. We modify the weight of the
PD edge to be determined dynamically to account for the vari-
ation of the actual penalty. We believe the rename map recov-
ery mechanism used in gem5 is explained as “using the frontend
map table and a history buffer (HBMAP+WALK)” elsewhere [2].
This scheme incrementally restores the rename map table by us-
ing a history buffer that keeps the speculative table updates. It
starts with the current rename map table and walks from the tail
of the ROB towards the mispredicted branch, recovering the re-
name map table state of each instruction. Therefore, the enhanced
weight definition Weight of PD edge is as follows (additional
terms in bold).

Weight1 = ICache and/or ITLB miss latency
+ Fetch latency + Decode latency

(2)

Weight2 = ROB walk latency (3)

Weight = max(Weight1,Weight2) + Rename latency (4)

There are other recovery designs proposed in Ref. [2] where
the weight of the PD edge can be defined in a similar manner. For
example, the detailed processor model of PTLsim [28], which is
derived to MARSSx86 [19], also implements ROB walk to recon-
struct the speculative rename map table.

3.3 Modern Store Queue Design
Another disparity we found between the Fields’s model and

the simulator is the lack of the modeling of stalls due to the SQ
full event. This originates from the inability of the Fields’s model
to express the modern SQ design. An advanced implementation
employs a combined SQ and a WBB (writeback buffer), which
is sometimes called the senior store queue (SSQ) organization,
and has been implemented in not only cycle-accurate processor
simulators like Zesto [18] and gem5 but also in commercial pro-
cessors such as the Alpha 21264 [16] and Intel’s P6 microarchi-
tecture [24].

The problem of applying the Fields’s model to the SSQ de-
sign boils down to the fact that it cannot express the important
behavior of store instructions. In an SSQ design, when a store
“commits” it leaves the ROB but still stays in the physical SQ,
and when it “retires” it gets written back to the cache and leaves
the SQ. If the C node models “commit,” the graph will miss all
the cycles spent in the memory system which are actual bottle-
necks of the execution when the processor stalls due to SQ full.
On the other hand, if the C node expresses “retire,” the effective
ROB size in the graph will be smaller than the actual size since
the instructions that have already left the ROB are not properly
modeled. We chose the former for the evaluation in Fig. 2 where
the high CPI error benchmarks suffer from stalls due to SQ full.

In order to handle this problem, we introduce a new node only
for store instructions, (S)tore-retirement, to represent the retire
event of store instructions. Also, we add three new edges CS, SS

and SD that connect with this node. CS is an intra instruction
edge which ensures the store retirement happens at the same time
or after the commit. SS is an edge from the S node of a store

instruction to the S node of its next store instruction, which mod-
els the in-order writeback to the cache. SD models the finite SQ
size. It is an edge from the S node of a store instruction s to the
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D node of the Nth store instruction from s, where N is the num-
ber of SQ entries. In addition, the weights of all the CC edges are
changed to zero since SS edges represent the additional latency of
the writeback. This extended model is not only capable of repre-
senting the SSQ organization but it can also express an SQ with a
separate WBB by changing the weights of CS, SS and SD to zero.

4. Gem5-Specific Modification

We believe that the main causes of the inaccuracies of the
Fields’s model have been ruled out by the enhancements proposed
in the previous section, however, we have found that there still re-
mains behavioral mismatch between the enhanced model and the
cycle-accurate event-driven simulation. Unlike the enhancements
in the previous section this disparity is specifically due to gem5’s
implementation where we describe the details below.

The frontend stages of the gem5 consist of fetch, decode and
rename, where each stage is pipelined and its stage length can be
given as a parameter. Ideally one might expect to have queues in
between stages to absorb instructions inflight in case of a block-
ing event, where the implementation of gem5 is conservative in
terms of performance [20].

For example, when the rename stage (blocks and
then) unblocks, there will be pipeline bubbles equal to
decodeToRenameDelay + fetchToDecodeDelay in total
in the worst case. These are parameters in gem5 where the
former defines cycles between when rename stage asks the
decode stage to begin sending instructions again and when the
first instruction arrives the rename stage, and the latter defines
the equivalent for decode and fetch stages. Figure 4 shows an
example of how additional bubbles are inserted where the laten-
cies of the fetch stage and decode stage are 3 and 2, respectively.
The enhanced dependence graph model assumes perfect queuing
where these bubbles do not exist, whereas 5 (3+2) cycles *2 of
bubbles are inserted in Fig. 4. The fundamental reason of the
additional bubbles is that each frontend stage is implemented to
be blocked until all the inflight instructions reach the latter stage
once it is blocked.

In order to account for this implementation detail, we mod-
ify the weight of the DD edge which models the delay of fron-
tend stages. Although modeling of frontend stages explicitly is
one possible approach, we avoid it to keep our model simple.
The DD edge originally models the frontend delays including
instruction cache and/or TLB misses, where we add the addi-
tional bubbles (which can be either decodeToRenameDelay or
fetchToDecodeDelay, depending on the instruction and which
stage was blocked) inserted to its weight. This modification is ef-
fective only for modeling of instruction execution on gem5. Our
new definition is as follows (the additional term in bold).

Weight = ICache or ITLB miss latency

+ Number of additional bubbles
(5)

In the case of the example of Fig. 4, the weight of D1D2 edge
(the edge from Dispatch node of i1 to that of i2) is 2 and that of
D4D5 edge (the edge from Dispatch of i4 to that of i5) is 3.

*2 Our gem5 simulation adds 14 (7+7) cycles of bubbles.

Fig. 4 An example of the additional bubble in frontend of gem5.

Table 3 Details of the target microarchitecture models.

Parameters Config-A Config-B
CPU model O3CPU O3CPU
Frequency 2 GHz 2 GHz

ROB/Issue queue 192/60 32/32
LQ/SQ entries 72/48 22/16
Pipeline width 8 (issue width: 6) 2

Branch predictor Tournament predictor
Choice/global/local predictor size 8 K/8 K/2 K entries

Local history table size 2 K entries
L1 ICache/Dcache size 32 KB/32 KB

L1 Dcache access latency 4 cycles
L2 cache size 256 KB

L2 cache access latency 12 cycles
DRAM DDR3-1600 11-11-11

5. Evaluation

5.1 Experimental Setup
We use the gem5 cycle-accurate simulator with x86 ISA and

SE (syscall emulation) mode for our evaluations. We evaluated
dependence models with two processor models with different pa-
rameters to confirm that the proposed model works with multi-
ple configurations. Validation efforts have been conducted for
gem5. A. Butko et al. [6] and A. Gutierrez et al. [13] proved
the simulator matched real processors for ARM ISA. A. Akram
and L. Sawalha [3] examined x86 simulators including gem5,
Multi2sim, PTLsim and Sniper. They conclude gem5 is relatively
accurate among the simulators that have the flexible design and
implementation of microarchitecture.

The detailed microarchitectural parameters of the processors
we modeled in our study are on par with Intel’s microprocessor.
Table 3 summarizes the detailed parameters. Config-A and B
model processors similar to Haswell and Silvermont micropro-
cessor, respectively. Haswell, which is used for desktop comput-
ers and servers, is a relatively rich OoO processor. On the other
hand, Silvermont, which is used for embedded systems is leaner
than Haswell.

We use 25 applications from the SPEC CPU2006 benchmark
suite with ref inputs to evaluate the dependence graph models.
Benchmarks are fast-forwarded 1 billion instructions, another 100
million instructions were used to warmup the processor state, and
the next 1 million instructions were simulated in detail.

5.2 Accuracy Evaluation Results with Config-A
Figure 5 shows the results of the accuracy evaluation of the

proposed enhanced dependence graph model (without gem5-
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Fig. 5 CPI estimation error of the enhanced dependence graph model with Config-A (rich processor).

Fig. 6 Correlation between the branch misprediction rate and the CPI error
reduction of Baseline+PD with Config-A.

specific modifications). The baseline is the Fields’s model, whose
results (Fig. 2) are shown in the chart for reference. Baseline+PD

is the model that takes the dynamic variation of branch mispredic-
tion penalties described in Section 3.2 into account. Baseline+S is
the model with the S node and edges CS, SS and SD which models
the modern SQ organization described in Section 3.3. ALL is the
model with both enhancements. On average, the CPI errors of the
Baseline, Baseline+PD, Baseline+S and ALL are 22.0%, 14.9%,
8.9% and 5.3%, respectively. The Baseline+PD, Baseline+S and
ALL reduce the CPI errors by 32.4%, 59.6% and 76.0%, respec-
tively, compared to the Baseline.

It is interesting to see that some programs such as gcc and
bzip2 with different inputs result in different amounts of CPI
estimation accuracy. This is not surprising since different in-
puts sometimes exercise different control/data paths and end up
in totally different behaviors. For example, gcc(expr) executes
1.5 times more store instructions compared to gcc(g23), causing
more SQ full events which directly affects the CPI error. The ef-
fect of each modification is discussed in the following paragraphs.

PD: The error reduction of Baseline+PD comes from accu-
rately modeling the branch mispredictions. To examine whether
our enhancements correctly capture microarchitectural events, we
calculate the correlations between CPI reductions by our models
and the numbers of events corresponding to the extensions. Fig-
ure 6 shows the correlations between the branch mispredictions
per kilo instructions and the CPI errors, where we can see a high
correlation coefficient of 0.87. As expected, it is important to
consider the dynamic variation of branch misprediction penalties
especially for the benchmarks with higher misprediction ratio.

Figure 7 shows the CPI estimation error of Baseline+PD with
different frontend widths. Baseline+PD reduces more CPI esti-
mation error with the wider frontend. It is because the number of

Fig. 7 Sensitivity analysis with different frontend pipline widths.

Fig. 8 Correlation between the fraction of cycles that the frontend is
blocked due to SQ full and the CPI error reduction of Baseline+S
with Config-A.

Fig. 9 Sensitivity analysis with different numbers of SQ entries.

instructions to be squashed increase with the broader frontend. In
the branch misprediction recovery mechanism adopted in gem5,
the misprediction penalty gets longer with more instructions on
the incorrect path.

S: The Baseline+S model reduces the CPI errors significantly
for about half of the benchmarks. For example, it reduces the er-
rors by 99.7% for gcc(expr) and lbm. Figure 8 shows the rela-
tionship between the fraction of cycles the frontend was blocked
due to SQ full and the CPI errors. The correlation coefficient is
0.97. Our model properly models the SQ full event and its asso-
ciated stalls and improves upon the Fields’s model.

Figure 9 shows the CPI estimation error of Baseline+S with
different numbers of SQ entries. Since SSQ combines SQ and
WBB, it tends to be composed of a large number of entries. We
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Fig. 11 CPI estimation error of the enhanced dependence graph model with Config-B (lean processor).

Fig. 10 CPI estimation error with the gem5-specific enhancement with
Config-A.

see less correlation between the CPI errors and the number of SQ
entries. Although the SQ capacity affects how long it takes to fill
the SQ, the size of 72 entries is not enough to satisfy the required
store instruction rate, resulting in pipeline stalls regardless of the
SQ size.

ALL: With both enhancements considered, ALL almost re-
moves the CPI errors in most of the applications. How-
ever, there are still some applications that exhibit CPI errors
higher than 20%: gcc(cp decl), gcc(s04), gcc(166), namd,
h264ref(frem), and libquantum.

DD: Figure 10 shows the CPI errors when gem5-specific mod-
ification is applied (only the applications with greater than 20%
error with ALL are shown). Baseline+DD and ALL+ add the
gem5-specific modification to the Baseline and ALL, respectively.
The gap between Baseline and Baseline+DD comes from the con-
servative implementation of the frontend of gem5, which implies
that gem5 reports larger CPI when the frontend is blocked fre-
quently.

On average across all the benchmarks, the average of CPI er-
rors of ALL+ is reduced to 2.1%, which is a 90.3% reduction from
the Baseline. We believe that our enhanced dependence graph
model is a useful tool which enables detailed microarchitectural
bottleneck identification for modern OoO processors. There are
still some benchmarks whose CPI error exceeds 10%, where fur-
ther investigation and model enhancements are required, which
are left for future work.

5.3 Accuracy Evaluation Results with Config-B
Figure 11 shows the results of the accuracy evaluation with-

out gem5-specific modifications. On average, the CPI errors of
Baseline, Baseline+PD, Baseline+S and ALL are 19.1%, 16.0%,
12.2% and 9.7%, respectively. Baseline+PD, Baseline+S and

Fig. 12 Correlation between the branch misprediction rate and the CPI error
reduction of Baseline+PD with Config-B.

Fig. 13 Correlation between the fraction of cycles that the frontend is
blocked due to SQ full and the CPI error reduction of Baseline+S
with Config-B.

ALL reduce the CPI errors by 16.4%, 36.3% and 49.1%, respec-
tively, compared to the Baseline. We discuss the effect of each
modification in the following paragraphs.

PD: The error reduction on average is smaller than Config-A.
One of the possible reasons is branch misprediction penalties vary
less than Config-A because of a small number of ROB entries of
Config-B. Figure 12 shows the correlations between the branch
mispredictions per kilo instructions and the CPI errors. The cor-
relation coefficient is 0.95, which is higher than 0.87 in the case
with Config-A.

S: Baseline+S model reduces the CPI errors significantly
in gcc(expr), gcc(expr2), bzip2(liberty), lbm and
bzip2(text) as well as Config-A. However, the error reduc-
tion on average is much smaller than Config-A. It is because ap-
plications on Config-B are less store-bandwidth centric than on
Config-A. Figure 13 shows the relationship between the fraction
of cycles the frontend was blocked due to SQ full and the CPI
errors. The correlation coefficient is higher than 0.99.

ALL: Compared to Config-A, the CPI errors of Config-B are
higher. One of the reasons for the high errors is that the error
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Fig. 14 CPI estimation error with the gem5-specific enhancement with
Config-B.

reduction of Baseline+S is smaller than Config-A. The appli-
cations with CPI errors higher than 20% are: hmmer(retro),
hmmer(nph3), gamess(h2ocu2), gamess(triazolium),
gamess(cytosine), astar(BigLakes2048), libquantum,
h264ref(freb), calculix, milc, leslie3d.

DD: Figure 14 shows the CPI errors when gem5-specific
modification is applied (only the applications with greater than
20% error with ALL are shown). The number of applications
where Baseline+DD reduces CPI errors significantly is larger
than Config-A. This means some applications experience more
frontend blocks on Config-B because of its restricted parameters.

On average across all the benchmarks, the CPI errors of ALL+

is reduced to 4.4%, which is a 77.1% reduction from the Base-

line. These evaluations show that the proposed model can apply
to both rich and lean OoO processors.

6. Related Work

6.1 Execution Time Formulation
Formulating the execution time [1] or the CPI [15] with archi-

tectural events’ counts as variables is also a well-known method
to understand program’s performance bottleneck. This approach
naively represents the execution time as the sum of the product
of the number of occurrences of the architectural events (such as
cache misses and branch mispredictions) and the penalty per one
event. However, to break down the execution time into architec-
tural events accurately, overlapping of multiple instructions and
the dynamic variation of the penalty have to be taken into ac-
count [8]. It is because multiple instructions are reordered and
executed in parallel.

One of the strong points of this approach is that it is easy to
count the number of events with small overheads. The perfor-
mance monitoring unit, which most of the general purpose pro-
cessors possess, can be used for this purpose. Though it is useful
for the analysis coarser than 1,000 cycles [27], it is not applicable
for per instruction analysis which is the major target of the critical
path analysis method.

6.2 Dependence Graph Models for OoO Processors
The dependence graph models (3 node types and 7 edge

types [10], and 5 node types and 12 edge types [9], [11]) were
proposed by Fields et al. The latter (5 node types and 12 edge
types) is our baseline model in this work. As we point out in Sec-
tion 2, these models are shown to work well on relatively simple
OoO processors but are not applicable to modern OoO processor

architectures such as gem5 simulator.
RpStacks [17] enhanced the dependence graph model by a fair

amount (13 node types and 30 edge types) in order to realize the
accurate processor design space exploration for their specific mi-
croarchitectural design. The main objective of our study is to
keep the model simple and general which we believe is not ac-
complished by theirs.

One limitation of the dependency graph representation is that it
is impractical to model queues that are not FIFOs. Therefore, the
dependencies of the issue width and the number of IQ (Instruc-
tion Queue) entries are not modeled explicitly in the dependence
graph models [9], [10], [11] and our model, which are consid-
ered by RE edge whose weight is determined from the execution
trace. To take account of changes in issue timing due to various
parameters, RpStacks attempts to model the dynamism of IQ by
ED edge. We do not adopt this edge because it may be a false
dependence when the IQ is large.

6.3 Dependence Graph Construction
Critical path analysis is a powerful tool to understand the pro-

gram’s behaviors and detect critical instructions. However, to
construct the dependence graph, the large amount of the execu-
tion trace of the program on the target architecture is necessary.
Criticality predictor [10] can detect critical instructions during
the execution. The random sampling method using hardware sup-
port [21] enables to construct dependence graphs with small over-
heads. Our dependence graph model can be utilized with these
techniques.

7. Conclusion

The dependence graph model of the OoO instruction execution
is a useful representation for the critical path analysis. Although
there are several existing models proposed in prior studies, most,
if not all, of them lack enough detail for modern OoO processors
or are too specific/complicated and limit generality and applica-
bility. We propose an enhanced dependence graph model which
remains simple but greatly improves the accuracy over prior mod-
els. The evaluations using the gem5 simulator with configurations
similar to Intel’s Haswell and Silvermont processor show that the
enhanced model achieves CPI errors of 2.1% and 4.4% which are
90.3% and 77.1% improvements over the state-of-the-art Fields’s
model, respectively.
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