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Abstract:
The dispersion problem is a variant of the facility location problem. Given a set P of n points and an
integer k, we intend to find a subset S of P with |S| = k such that the cost minx∈S{cost(x)} is maxi-
mized, where cost(x) is the sum of the distances from x to the nearest c points in S. The main focus is
the dispersion problem with partial c sum cost, referred to as the PcS-dispersion problem. In this paper we
present two algorithms to solve the P2S-dispersion problem if all the points of P are on a line. The run time
of the algorithms are O(kn2 logn) and O(n logn), respectively. We also present an algorithm to solve the
PcS-dispersion problem if all points of P are on a line. The run time of the algorithm is O(knc+1).

1. Introduction

The facility location problem and many of its variants

have been studied [6], [7]. A typical problem is to find a set

of locations to place facilities with the designated cost mini-

mized. In this paper we consider the dispersion problem (or

obnoxious facility location problem), which seeks to find a

set of locations with a certain objective function based on

distance maximized.

Given a set P of n possible locations, the distance d for

each pair of locations, and an integer k with k ≤ n, we

wish to find a subset S ⊂ P with |S| = k such that the

designated objective function based on distance is maxi-

mized [1], [3], [4], [5], [9], [10], [11], [12], [13].

The intuition of the problem is as follows. Assume that

we plan to open several chain stores in a city. We wish to

position the stores mutually far away from each other to

avoid self-competition. We wish to find k locations so that

the objective function based on the distance is maximized.

Additional applications, including result diversification, are

outlined in [10], [11], [12].

In one of the basic cases, the objective function to be max-

imized is the minimum distance between two points in S.

Papers [11], [13] show if P is a set of points on the plane then

the problem is NP-hard, and if P is a set of points on the

line then the problem can be solved in O(max{n logn, kn})
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time [11] by the dynamic programming method, and in O(n)

time by the sorted matrix search method [8].

In this paper we consider the following problem [10].

Given a set P of n points, the distance d for each pair of

points, and an integer k, we intend to find a subset S of P

with |S| = k such that the cost(S) = minp∈S{cost(p)} is

maximized, where cost(p) is the sum of the distances from

p to the nearest c points in S. Fig. 1 depicts an example of

S with c = 2 and cost(S) = 4 . We refer to this as the dis-

persion problem with partial c sum cost [10] (PcS-dispersion

problem). Intuitively, this cost models self-competition to

the nearest c stores. A number of experimental results (for

more general problems) are known. See [10]. The basic

dispersion problem is P1S-dispersion problem.

In this paper we designed two algorithms to solve the P2S-

dispersion problem if all the points of P are on a line. The

run time of the algorithms are O(kn2 log n) and O(n logn),

respectively. Similarly, we design an algorithm to solve the

PcS-dispersion problem for any constant c if all points of P

are on a line. The run time of the algorithm is O(knc+1).

　

Fig. 1 An example of S with cost(S) = 4
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2. P2S-dispersion problem on a line

2.1 Dynamic programming method

In this section, we designed an algorithm to solve the P2S-

dispersion problem, which is based on the dynamic program-

ming method, if all points of P are on a horizontal line.

We define the subproblem P2S(h, i; k) for our dynamic pro-

gramming as follows.

Let Pi be the subset of the points in P located on the left

of pi ∈ P including pi, where pi is the i-th point from the left

in P . Given ph ∈ Pi and an integer k ≥ 3, we intend to find

a subset S ⊂ Pi such that |S| = k and the rightmost two

points in S are ph and pi, with h < i. As a result, cost(S) is

maximized. This is the subproblem P2S(h, i; k). We denote

cost(h, i; k) as the cost of a P2S(h, i; k) solution. This is the

P2S-dispersion problem in which the rightmost two points

in S are designated. We can observe that P2S(h, i; k) has a

solution S containing the leftmost and rightmost points in

Pi. Thus we can assume p1, pi ∈ S.

We have the following lemma.

Lemma 1. If k = 3 then cost(h, i; k) = d(p1, pi).

Proof. The solution of P2S(h, i; 3) is {p1, ph, pi}. Then

cost(ph) = d(ph, pi) + d(ph, p1) = d(p1, pi), cost(p1) =

d(p1, ph) + d(p1, pi) > cost(ph), and cost(pi) = d(ph, pi) +

d(p1, pi) > cost(ph) hold. Thus cost(h, i; 3) = d(p1, pi).

Thus when we compute cost(h, i; k) which is the minimum

over cost(p) for p ∈ S, we can ignore cost(pi) since cost(pi)

> cost(ph) always holds.

Lemma 2. If k ≥ 4 then cost(h, i; k) = maxh′=k−2,k−1,

···,h−1 min{cost(h′, h; k − 1), d(ph′ , pi)}
Proof. Assume S be the solution of P2S(h, i; k), and ph′

the third rightmost point in S. Now h′ ≥ k− 2 holds, since

|S| = k. Assume to cost(h, i; k) = cost(px) for a number of

px ∈ S. We have the following three cases.

Case 1: x < h.

cost(px) = cost(h′, h; k − 1), and cost(px) ≤ cost(ph)

≤ d(ph′ , pi). Thus cost(px) = min{cost(h′, h; k − 1),

d(ph′ , pi)} holds.

Case 2: x = h.

We have two subcases.

If cost(px) = d(ph′ , ph) + d(ph′′ , ph), where ph′′ is the

4-th rightmost point in S. Then cost(px) = d(ph′ , ph) +

d(ph′′ , ph) > cost(ph′). This is a contradiction.

If cost(px) = d(ph′ , ph) + d(ph, pi), then cost(px) =

d(ph′ , pi) ≤ cost(h′, h; k − 1). Thus cost(px) = min{
cost(h′, h; k − 1), d(ph′ , pi)} holds.

Case 3: x = i.

Since cost(ph) < cost(pi), this case will never occur.

Since we compute min{ cost(h′, h; k − 1), d(ph′ , pi)} for

every possible h′, and choose the maximum one, so the equa-

tion computes cost(h, i; k) correctly.

The number of the subproblems is at most kn2 and we

can compute a solution of each subproblem in O(n) time by

Lemma 2. The entire algorithm is shown in Algorithm 1.

Algorithm 1 Find-P2S-dispersion(P, n, k)

% Compute P (h, i; 3) (Case k = 3)

for i = 3, 4, · · · , n do

for h = 2, 3, · · · , i− 1 do

cost(h, i; 3) = d(p1, pi)

end for

end for

% Compute P (h, i; k) (Case k > 4)

for k′ = 4, 5, · · · , k do

for i = k′, k′ + 1, · · · , n do

for h = k′ − 1, k′, · · · , i− 1 do

cost(h, i; k′) = 0

% Compute the maximum cost

for h′ = k′ − 2, k′ − 1, · · · , h− 1 do

cost(h, i; k′) = max{cost(h, i; k′),min{cost(h′, h; k′ −
1), d(ph′ , pi)}}

end for

end for

end for

end for

% Compute the optimal cost

cost = 0

for h = k − 1, k, · · · , n− 1 do

if cost(h, n; k) > cost then

cost = cost(h, n; k)

end if

end for

Output cost

We have the following theorem [2].

Theorem 1. One can solve the P2S-dispersion problem

in O(kn3) time.

We have the following lemma.

Lemma 3. cost(h′, h; k − 1) is a non-decreasing function

with respect to h′.

Proof. Assume otherwise. For a number of phL
, phR

in

P with hL < hR, cost(hL, h; k − 1) > cost(hR, h; k − 1)

holds. Note that cost(h′, h; k − 1) is minp∈S{cost(p)}. Let
SL be the solution of P2S(hL, h; k − 1) and S′ be the set

of points derived from SL by removing phL
then appending

phR
. Also let px be the left neighbour of phL

in SL, and

py be the left neighbour of px in SL. cost(px) in SL is

not larger than cost(px) in S′, and cost(py) in SL is not

larger than cost(py) in S′. We can also show cost(phL
)

in SL is not larger than cost(phR
) in S′, since cost(phL

)

in SL is min{d(px, ph), d(py, phL
) + d(px, phL

)} and

cost(phR
) in S′ is min{d(px, ph), d(py, phR

) + d(px, phR
)}

and d(py, phL
) + d(px, phL

) < d(py, phR
) + d(px, phR

).

Thus, cost(hL, h; k − 1) ≤ minp∈SL
{cost(p)} ≤

minp∈S′{cost(p)} ≤ cost(hR, h; k − 1) holds. This is

a contradiction.

Therefore, min{cost(h′, h; k − 1), d(h′, i)} is a non-

decreasing function with respect to h′ up to a number of

points, which is then a decreasing linear function with re-

spect to h′, so we can find the maximum one by binary
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search logn times.

We have the following theorem [2].

Theorem 2. One can solve the P2S-dispersion problem

in O(kn2 logn) time.

2.2 Matrix search method

In this section, we solved the P2S-dispersion problem us-

ing the matrix search method. We first designed an algo-

rithm to solve the decision version of the P2S-dispersion

problem.

Given two numbers k and λ, we intend to decide if there

exists a subset S ⊂ P with |S| = k and cost(S) ≥ λ. We

refer to the decision problem as the (λ, k)-P2S-dispersion

problem.

Lemma 4. If the answer of (λ, k)-P2S-dispersion problem

is YES then one can assume {p1, p2, pn} ⊂ S

Proof. This is similar to the proof of Lemma 1, and has

therefore been omitted.

Algorithm decide-P2S-dispersion shown in Algorithm 2

solves the decision problem.

Algorithm 2 Decide-P2S-dispersion(P, k, λ)
s1 = p1, s2 = p2

c = 3

for i = 3, 4, · · · , n do

if d(sc−2, pi) ≥ λ then

sc = pi

c = c+ 1

end if

end for

if c > k then

return YES

else

return NO

end if

Lemma 5. Algorithm establishes (λ, k)-P2S-dispersion

correctly and determines if there exists a subset S ⊂ P

with |S| = k and cost(S) ≥ λ.

Proof. Assume otherwise. There exists S′ = {s′1, s′2,
· · · , s′k} ⊂ P with |S′| = k and cost(S′) ≥ λ, however,

the algorithm outputs NO. We assume the points in S′ are

sorted from left to right. Let S = {s1, s2, · · ·} be the set

of points selected by the algorithm. Now p1, p2 ∈ S holds.

By Lemma 4, p1 = s′1, p2 = s′2 ∈ S′ holds. Let j be the

minimum j with x(sj) > x(s′j), where x(s) is the coordinate

of S. (If j dose not exist, then the algorithm outputs YES,

which is a contradiction.) Now, x(sj−1) ≤ x(s′j−1) and

x(sj−2) ≤ x(s′j−2) hold. We have two cases. If cost(s′j−1)

in S′ is d(s′j−2, s
′
j) then λ ≤ d(s′j−2, s

′
j) and λ ≤ d(sj−2, sj)

holds. This contradicts the choice of sj in the algorithm,

which is either s′j or specific points left of s′j would be cho-

sen as sj . Otherwise, the nearest two points from s′j−1

in S′ are either s′j−3 and s′j−2 or s′j and s′j+1, respec-

tively, and cost(s′j−1) < d(s′j−2, s
′
j) holds. As a result,

λ ≤ cost(s′j−1) < d(s′j−2, s
′
j) and λ ≤ d(sj−2, sj) holds

again. This contradicts the choice of sj in the algorithm.

Therefore, we have the following theorem.

Theorem 3. One can solve the the (λ, k)-P2S-dispersion

problem in O(n) time.

The following theorem is known.

Theorem 4. (Matrix Search [8])

Let D be a matrix consisting of candidate values for the

optimal parameter for a decision problem and each row

and column of D are sorted. We assume if the decision

problem return YES for parameter λ then for any λ
′
< λ

the decision problem returns YES. We assume we do not

store the entire matrix explicitly, but can access each entry

of D in O(1) time. If there is an O(n) time algorithm for

the decision problem for parameter λ, one can compute the

optimal (maximum) parameter λ in O(n logn) time.

Let D be the distance matrix in which dij = d(pi, pj).

Each row and column of D are sorted and we can compute

dij in O(1) time. With this O(n) time decision algorithm

for the (λ, k)-P2S-dispersion problem, and by using the the-

orem above we can compute the optimal parameter λ for

the P2S-dispersion problem in O(n logn) time.

Theorem 5. One can solve the P2S-dispersion problem

in O(n logn) time.

Even though our second algorithm is theoretically faster

than our first algorithm, it is difficult to implement. On the

other hand our first algorithm is easier to implement.

3. PcS-dispersion problem on a line

In this section we designed an algorithm to solve the PcS-

dispersion problem, based on the dynamic programming

method, if all points of P are on a horizontal line. We

define the subproblem PcS(hc−1, hc−2, · · · , h1, i; k) for dy-

namic programming as follows.

Let Pi be the subset of the points in P located on the

left of pi ∈ P including pi, where pi is the i-th point

from the left in P . Given phc−1
, phc−2

, · · · , ph1
∈ Pi and

an integer k ≥ c + 1, we intend to find a subset S ⊂ Pi

such that |S| = k and the rightmost c points in S are

phc−1
, phc−2

, · · · , ph1
and pi, with hc−1 < hc−2 < · · · <

h1 < i, which as a result, maximize cost(S). This is

the subproblem PcS(hc−1, hc−2, · · · , h1, i; k). We denote

cost(hc−1, hc−2, · · · , h1 , i; k) as the cost of a solution of

PcS(hc−1, hc−2, · · · , h1, i; k). We have the following lemma.

Lemma 6. If k = c + 1 then cost(hc−1, hc−2, · · · , h1

, i; k) = d(p1, pi).

Proof. Then S = {p1, phc−1
, phc−2

, · · · , ph1
, pi}, similar to

Lemma 1.

Assume cost(hc−1, hc−2, · · · , h1 , i; k) = cost(px) for

some px ∈ S. Then we have the following four lemmas.

Lemma 7. cost(px) = c(px), where c(px) is the sum of

the c distances from px to the nearest ⌈c/2⌉ points in S lo-
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cating left of px and the nearest ⌊c/2⌋ points in S locating

right of px.

Proof. Assume otherwise. For an integer g ̸= 0, cost(px)

is the sum of the distances from px to the nearest ⌈c/2⌉+ g

points in S located to the left of px and the nearest ⌊c/2⌋−g

points in S located to the right of px. First, consider the

case in which c is even. If g > 0 then cost(px) > cost(pxL)

holds, where pxL is the left neighbor of px in S. If g < 0 then

cost(px) > cost(pxR) holds, where pxR is the right neighbor

of px in S. This is a contradiction. For the case in which

c is odd, we can prove this in a similar manner, but with

more cases. (Note that if c is odd then c(px) equals the sum

of the distances from py to the nearest ⌊c/2⌋ points in S

located to the left of py and the nearest ⌈c/2⌉ points in S

located to the right of py, where py is the left neighbour of

px in S.)

Lemma 8. Let R be the subset of S consisting of ⌊c/2⌋
rightmost points in S. Then px /∈ R.

Proof. Immediate from Lemma 7.

Using Lemma 8 when we compute cost(hc−1, hc−2, · · · ,
h1, i; k) which is the minimum over cost(p) for p ∈
S, we can ignore the ⌊c/2⌋ costs cost(pi), cost(h1), · · · ,
cost(h⌊c/2⌋−1).

Lemma 9. If c is an even integer then cost(hc−1, hc−2,

· · · , h1, i; k) = maxh′=k−c,k,···,hc−1−1 min{cost(h′, hc−1,

hc−2, · · · , h1; k − 1), c(phc/2
)}.

Proof. Let S be the solution to PcS(hc−1, hc−2, · · · ,
h1, i; k), and ph′ be the (c + 1)-th rightmost point in

S. h′ ≥ k − c holds since |S| = k, and S − {pi} is

a solution of PcS(h′, hc−1, hc−2, · · · , h1; k − 1). Assume

cost(hc−1, hc−2, · · · , h1, i; k) = cost(px) for a number of

px ∈ S. We have the following three cases.

Case 1: x < hc/2.

cost(px) = cost(h′, hc−1, hc−2, · · · , h1; k − 1), and cost(px)

≤ cost(phc/2
) ≤ c(phc/2

). Thus cost(px) = min{cost(
h′, hc−1, hc−2, · · · , h1; k − 1), c(phc/2

)} holds.

Case 2: x = hc/2.

cost(px) = c(phc/2
) ≤ cost(h′, hc−1, hc−2, · · · , h1; k −

1). Thus cost(px) = min{cost(h′, hc−1, hc−2, · · · , h1; k −
1), c(phc/2

)} holds.

Case 3: x > hc/2.

Using Lemma 8, this case never occur.

Lemma 10. If c is an odd integer, then cost(hc−1,

hc−2, · · · , h1, i; k) = maxh′=k−c,k,···,hc−1−1 min{cost(h′,

hc−1, hc−2, · · · , h1; k − 1), c(ph⌊c/2⌋)}.
Proof. This has been omitted as it is similar to Lemma 9.

Note that c(ph⌊c/2⌋) = c′(ph⌈c/2⌉), where c′(ph⌈c/2⌉) is the

distances from ph⌈c/2⌉ to the nearest ⌊c/2⌋ points in S lo-

cated to the left of ph⌈c/2⌉ and the nearest ⌈c/2⌉ points in S

located to the right of ph⌈c/2⌉ .

One can compute c(p) in O(1) time since c is a constant.

The number of subproblems is at most knc and we can solve

each subproblem in O(n) time. Therefore we can solve the

PcS-dispersion problem in O(knc+1) time.

We have the following theorem [2].

Theorem 6. One can solve the PcS-dispersion problem in

O(knc+1) time.

4. Conclusion

In this paper we gave two algorithms for the P2S-

dispersion problem. The running time of them are

O(kn2 log n) and O(n logn). Also we gave an algorithm

to solve the PcS-dispersion problem. The running time of

the algorithm is O(knc+1).

We can observe that PcS-dispersion problem has a solu-

tion S containing the leftmost ⌊c/2⌋ points and rightmost

⌊c/2⌋ points in Pi. Thus we can assume p1, p2, · · · , p⌊c/2⌋ ∈
S and pn−⌊c/2⌋−1, pn−⌊c/2⌋, · · · , pn ∈ S, so we can also

solve the PcS-dispersion problem in O((n− c)k−c) time by

choosing remaining k−2⌊c/2⌋ points form n−2⌊c/2⌋ points
by brute force method for large c.
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