
IPSJ SIG Technical Report

The Coloring Reconfiguration Problem
on Specific Graph Classes

Tatsuhiko Hatanaka1,a) Takehiro Ito1,b) Xiao Zhou1,c)

Abstract: We study the problem of transforming one (vertex) k-coloring of a graph into another one by changing
only one vertex color assignment at a time, while at all times maintaining a k-coloring, where k denotes the number
of colors. This decision problem is known to be PSPACE-complete even for bipartite graphs and any fixed constant
k ≥ 4. In this paper, we study the problem from the viewpoint of graph classes. We first show that the problem remains
PSPACE-complete for chordal graphs even if the number of colors is a fixed constant. We then demonstrate that, even
when the number of colors is a part of input, the problem is solvable in polynomial time for several graph classes, such
as split graphs and trivially perfect graphs.

Keywords: Combinatorial reconfiguration, graph algorithm, vertex coloring

1. Introduction
Recently, reconfiguration problems [13] have been intensively

studied in the field of theoretical computer science. These prob-
lems model several “dynamic” situations where we wish to find
a step-by-step transformation between two feasible solutions of a
combinatorial (search) problem such that all intermediate results
are also feasible and each step conforms to a fixed reconfiguration
rule, that is, an adjacency relation defined on feasible solutions of
the original search problem. This framework has been applied to
several well-studied combinatorial problems, including satisfia-
bility, independent set, vertex cover, dominating set, and so on.
(See, e.g., a survey [12] and references in [9].)

1.1 Our problem
In this paper, we study the reconfiguration problem for (vertex)

colorings in a graph, called the coloring reconfiguration prob-
lem, which was introduced by Bonsma and Cereceda [3].

Let C = {c1, c2, . . . , ck} be the set of k colors. Throughout
the paper, k denotes the number of colors in C. A (proper) k-
coloring of a graph G = (V, E) is a mapping f : V → C such that
f (v) , f (w) for every edge vw ∈ E. Figure 1 illustrates four 4-
colorings of the same graph G; the color assigned to each vertex
is attached to the vertex.

Suppose that we are given two k-colorings f0 and fr of a graph
G (e.g., the leftmost and rightmost ones in Fig. 1), and we are
asked whether we can transform one into the other via k-colorings
of G such that each differs from the previous one in only one ver-
tex color assignment. This decision problem is called the col-

1 Graduate School of Information Sciences, Tohoku University, Aoba-
yama 6-6-05, Sendai 980-8579, Japan.

a) hatanaka@ecei.tohoku.ac.jp
b) takehiro@ecei.tohoku.ac.jp
c) zhou@ecei.tohoku.ac.jp

c
1

c
3

c
2

c
4

c
3

c
3

c
2

c
4

c
3

c
3

c
2

c
1

c
3

c
4

c
2

c
1

f
0

fr

Fig. 1 A reconfiguration sequence between two 4-colorings f0 and fr of G.

oring reconfiguration problem. For the particular instance of
Fig. 1, the answer is “yes” as illustrated in the figure, where
the vertex whose color assignment was changed from the pre-
vious one is depicted by a black circle. We emphatically write
k-coloring reconfiguration when the number k of colors is fixed,
that is, k is not a part of input.

1.2 Known and related results
Coloring reconfiguration is one of the most well-studied re-

configuration problems from various viewpoints [1], [2], [3], [4],
[5], [6], [7], [8], [11], [14], [16], [17], including the parameter-
ized complexity [4], [14], (in)tractability with respect to graph
classes [3], [5], [16], generalized variants such as the list coloring
variant [3], [11], [16], the H-coloring variant [17] and the circular
coloring variant [6].

Bonsma and Cereceda [3] proved that k-coloring reconfigu-
ration is PSPACE-complete even for (i) bipartite graphs and any
fixed k ≥ 4, (ii) planar graphs and any k, 4 ≤ k ≤ 6, and (iii) bi-
partite planar graphs and k = 4. On the other hand, Cereceda et
al. [8] gave a polynomial-time algorithm to solve coloring recon-
figuration for any graph and k ≤ 3. Thus, the complexity status
of coloring reconfiguration is analyzed sharply with respect to
k.

Because the problem remains PSPACE-complete even for very
restricted instances, some sufficient conditions have been pro-
posed so that any pair of k-colorings of a graph has a desired
transformation [1], [3], [7]; in other words, if a given instance

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-165 No.7
2017/11/16

IPSJ SIG Technical Report

satisfies one of sufficient conditions, then it is a yes-instance (but,
the opposite direction does not necessarily hold.) Bonsma and
Cereceda [3] proved that if k is at least the degeneracy of a graph
G plus two, then there is a desired transformation between any
pair of k-colorings of G. Bonamy et al. [1] gave some sufficient
condition with respect to graph structures: for example, chordal
graphs and chordal bipartite graphs satisfy their sufficient condi-
tion.

Recently, Bonsma and Paulusma [5] gave a polynomial-time
algorithm to solve coloring reconfiguration for (k−2)-connected
chordal graphs; note that k is not necessarily a constant in their
algorithm. They posed an open question which asks whether the
problem is solvable in polynomial time for all chordal graphs.

1.3 Our contribution
In this paper, we study coloring reconfiguration from the

viewpoint of graph classes. More specifically, we first show
that k-coloring reconfiguration remains PSPACE-complete for
chordal graphs; note that k is some fixed constant. Therefore, we
answer the open question posed by Bonsma and Paulusma [5].
We then demonstrate that coloring reconfiguration is solvable
in polynomial time for several graph classes, even when k is a
part of input; such graph classes include split graphs and trivially
perfect graphs.

2. Preliminaries
In this section, we define some basic terms and notation.
Let G = (V, E) be a graph with vertex set V and edge set E; we

sometimes denote by V(G) and E(G) the vertex set and the edge
set of G, respectively. For a vertex v in G, we denote by N(G, v)
and deg(G, v) the neighborhood {w ∈ V | vw ∈ E} and the degree
|N(G, v)| of v in G, respectively. We denote by ω(G) the size of a
maximum clique in G.

2.1 List coloring reconfiguration
In this subsection, we formally define coloring reconfigura-

tion. Because we sometimes use the notion of list colorings, we
define it as a special case of list coloring reconfiguration as fol-
lows.

In list coloring, each vertex v ∈ V(G) of a graph G has a set
L(v) ⊆ C = {c1, c2, . . . , ck} of colors, called the list of v; we some-
times call the list assignment L : V → 2C itself a list. Then,
a k-coloring f of G is called an L-coloring of G if f (v) ∈ L(v)
holds for every vertex v ∈ V(G). Thus, a k-coloring of G is an
L-coloring of G when L(v) = C holds for every vertex v in G, and
hence L-coloring is a generalization of k-coloring.

For two L-colorings f and f ′ of a graph G, a reconfiguration
sequence between f and f ′ is a sequence ⟨ fp, fp+1, . . . , fq⟩ of L-
colorings of G such that fp = f , fq = f ′, and |{v ∈ V(G): fi−1(v) ,
fi(v)}| = 1 holds for each i ∈ {p + 1, p + 2, . . . , q}. Note that any
reconfiguration sequence is reversible, that is, ⟨ fq, fq−1, . . . , fp⟩ is
a reconfiguration sequence between f ′ and f . We say that two L-
colorings f and f ′ are reconfigurable if there is a reconfiguration
sequence between them. Then, the list coloring reconfiguration
problem is defined as follows:

f0 fr

{c1 , c2 , c3}

{c1 , c3 , c4} {c1 , c2 , c4}

{c2 , c3}

{c1 , c2}

c2 c3

c1

c4c3

c2 c3

c1

c2c4

G , L

Fig. 2 Example for frozen vertices: The upper three vertices are frozen on
f0 and fr because they form a clique of size three, and their lists
contain only three colors in total.

Input: A graph G, a list L, two L-colorings f0 and fr
of G

Question: Determine whether f0 and fr are reconfig-
urable or not.

Note that list coloring reconfiguration is a decision problem,
and hence does not require the specification of an actual recon-
figuration sequence.

We denote by a 4-tuple (G, L, f0, fr) an instance of list col-
oring reconfiguration. Coloring reconfiguration is indeed
list coloring reconfiguration when restricted to the case where
L(v) = C holds for every vertex v in an input graph G. We thus
simply denote by a 4-tuple (G, k, f0, fr) an instance of color-
ing reconfiguration, and by a triple (G, f0, fr) an instance of k-
coloring reconfiguration; recall that k is fixed in the latter case.

2.2 Frozen vertices
In this subsection, we introduce the notion of “frozen vertices.”
Let f be an L-coloring of a graph G with a list L. Then, a ver-

tex v ∈ V(G) is said to be frozen on f if f ′(v) = f (v) holds for
every L-coloring f ′ of G which is reconfigurable from f . There-
fore, v cannot be recolored in any reconfiguration sequence. Thus,
(G, L, f0, fr) is a no-instance if f0(v) , fr(v) holds for at least one
frozen vertex v on f0 or fr. By the definition, a frozen vertex v on
an L-coloring f stays frozen on any L-coloring which is reconfig-
urable from f .

Generally speaking, it is not easy to characterize such frozen
vertices for a given L-coloring. However, there is a simple suf-
ficient condition for which a vertex is frozen, as follows. (See
Fig. 2 as an example of Observation 1.)

Observation 1. Let G be a graph with a list L, and assume that
G contains a clique VQ of size q. If |∪v∈VQ

L(v)| = q, then all
vertices v ∈ VQ are frozen on any L-coloring of G.

3. PSPACE-completeness
A graph is chordal if it contains no induced cycle of length at

least four. In this section, we prove the following theorem.

Theorem 1. There exists a fixed constant k′ such that k-coloring
reconfiguration is PSPACE-complete for chordal graphs and ev-
ery k ≥ k′.

It is known that k-coloring reconfiguration belongs to
PSPACE [3]. Therefore, as a proof of Theorem 1, we show that
there exists a fixed constant k′ such that k-coloring reconfigu-
ration is PSPACE-hard for chordal graphs and any k ≥ k′, by
giving a polynomial-time reduction from list coloring reconfig-
uration [16].

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-165 No.7
2017/11/16

IPSJ SIG Technical Report

x
1

y
1

1

y
1

2

y
1

b

x
2

y
2

1

y
2

2

y
2

b

x
3

xn

Fig. 3 Graph H.

(a) H , L, g0 (b) G, f0’

{c1 , c2 , c3}

{c3 , c4}

{c2 , c3}{c1 , c4}

c1
c1

c2

c4 c3

c1 c2

c4c4 c3

c3

c1 c2

c4 c3

c1 c2

c4 c3

c2

Fig. 4 (a) A graph H′, a list L and an L-coloring g0, and (b) a constructed
graph G and k-coloring f0.

3.1 List coloring reconfiguration
Wrochna [16] proved that there exist two constants b and

m such that list coloring reconfiguration remains PSPACE-
complete even when an input instance (H, L, g0, gr) satisfies the
following conditions (see also Fig. 3):

(a) H = (X∪Y, E) is a bipartite graph with bipartition X and Y
such that X = {x1, x2, . . . , xn}, Y = {y j

i | 1 ≤ i ≤ n − 1, 1 ≤
j ≤ b}, and E = {xiy

j
i , y

j
i xi+1 | 1 ≤ i ≤ n − 1, 1 ≤ j ≤ b};

(b) the list L(v) of each vertex v ∈ V(H) is a subset of the color
set C1 ∪C2 such that C1 ∩C2 = ∅ and |C1| = |C2| = m;

(c) L(xi) = C1 if i is odd, L(xi) = C2 otherwise; and

(d) L(y) ⊆ C1 ∪C2 for all y ∈ Y .

The graph H above can be modified to an interval graph (and
hence a chordal graph) H′ by adding an edge xixi+1 for each
i ∈ {1, 2, . . . , n−1}. This modification does not affect the existence
and the reconfigurability of L-colorings, because any two vertices
xi and xi+1 joined by the new edge have distinct lists C1 and C2.
We note in passing that this modification gives the following the-
orem. For an integer d ≥ 0, a graph G is d-degenerate if every
subgraph H of G has at least one vertex v such that deg(H, v) ≤ d.

Theorem 2. List coloring reconfiguration is PSPACE-complete
for 2-degenerate interval graphs.

3.2 Reduction
We then construct an instance (G, f0, fr) of k-coloring recon-

figuration from the instance (H′, L, g0, gr) above of list coloring
reconfiguration, as follows.

Let k ≥ k′ = |C1 ∪ C2| = |
∪

u∈V(H′) L(u)| = 2m. For each
vertex u ∈ V(H′), we introduce a complete graph Wu with k
vertices, which is called a frozen clique gadget. (See Fig. 4 as
an example, where k = 4.) The vertices in Wu are labeled as
wu

1, w
u
2, . . . , w

u
k , and each vertex wu

i corresponds to the color ci for

each i ∈ {1, 2, . . . , k}. We denote by W the set of all vertices in
frozen clique gadgets, that is, W =

∪
u∈V(H′) V(Wu).

We next add an edge between u ∈ V(H′) and wu
i ∈ V(Wu) if

and only if L(u) does not contain color ci. The constructed graph
G is chordal, because the addition of frozen clique gadgets does
not produce any induced cycle with length at least four.

Finally, we define f0 and fr, as follows:

f0(v) =

 ci if v = wu
i ∈ V(Wu) for some u ∈ V(H′);

g0(v) otherwise,

and

fr(v) =

 ci if v = wu
i ∈ V(Wu) for some u ∈ V(H′);

gr(v) otherwise.

Therefore, we have f0(v) = fr(v) for all vertices v ∈ W. From the
construction, we note that both f0 and fr are proper k-colorings
of G.

This completes our construction of the corresponding instance
(G, f0, fr) of k-coloring reconfiguration. This construction can
be done in polynomial time.

We omit the correctness proof of our reduction from this ex-
tended abstract.

4. Polynomial-Time Solvable Cases
In this section, we demonstrate that coloring reconfiguration

can be solved in polynomial time for some graph classes, even
when the number k of colors is a part of input.

We indeed consider split graphs and trivially perfect graphs,
both of which are subclasses of chordal graphs. The following
sufficient condition for yes-instances on chordal graphs will play
an important role.

Lemma 1 ([1]). Let (G, k, f0, fr) be an instance of coloring re-
configuration such that G is a chordal graph. If ω(G) ≤ k − 1,
then it is a yes-instance.

4.1 Split graphs
In this subsection, we consider split graphs. A graph is split if

its vertex set can be partitioned into a clique and an independent
set.

Theorem 3. Coloring reconfiguration can be solved in linear
time for split graphs.

Proof. We give such a linear-time algorithm for split graphs.
Let I = (G, k, f0, fr) be a given instance of coloring reconfig-
uration such that G is split. We first obtain a partition of V(G)
into a clique VQ and an independent set VI such that VQ has the
maximum size ω(G). Such a partition can be obtained in linear
time [10]. Because f0 and fr are proper k-colorings of G, we have
|VQ| = ω(G) ≤ k. Therefore, there are two cases to consider.

Case 1: |VQ| < k.
In this case, |VQ| = ω(G) ≤ k − 1 holds. Since G is split

and hence is a chordal graph, Lemma 1 implies that I is a yes-
instance.

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-165 No.7
2017/11/16

IPSJ SIG Technical Report

Case 2: |VQ| = k.
In this case, every vertex in VQ is frozen on f0 and fr. Thus,

I is a no-instance if there exists a vertex u ∈ VQ such that
f0(u) , fr(u). Otherwise, because VI is an independent set and
both f0 and fr are proper k-colorings of G, we can directly recolor
each vertex w ∈ VI from f0(w) to fr(w); I is a yes-instance.

We finally estimate the running time of our algorithm. We can
obtain desired subsets VQ and VI in linear time [10]. Then, the
algorithm simply checks if |VQ| < k, and if f0(u) = fr(u) holds
for every vertex u ∈ VQ. Therefore, our algorithm runs in linear
time. □

4.2 Trivially perfect graphs
In this subsection, we consider trivially perfect graphs. The

class of trivially perfect graphs has many characterizations. We
here give its recursive definition. For two graphs G1 = (V1, E1)
and G2 = (V2, E2), their union G1 ∪ G2 is the graph such that
V(G1 ∪ G2) = V1 ∪ V2 and E(G1 ∪ G2) = E1 ∪ E2, while their
join G1 ∨ G2 is the graph such that V(G1 ∨ G2) = V1 ∪ V2 and
E(G1 ∨G2) = E1 ∪ E2 ∪ {vw : v ∈ V1, w ∈ V2}. Then, a trivially
perfect graph can be recursively defined, as follows:

(1) a graph consisting of a single vertex is a trivially perfect
graph;

(2) if G1 and G2 are trivially perfect graphs, then their union
G1 ∪G2 is a trivially perfect graph; and

(3) if G1 and G2 are trivially perfect graphs such that G2 con-
sists of a single vertex u, then their join G1∨G2 is a trivially
perfect graph.

Notice that, by the join operation (3) above, the single vertex u in
G2 becomes a universal vertex in G1 ∨G2.

Theorem 4. Coloring reconfiguration can be solved in linear
time for trivially perfect graphs.

Proof. We give such a linear-time algorithm for trivially perfect
graphs. Since any trivially perfect graph G is a cograph, we can
represent G by a binary tree, called a cotree, which can be nat-
urally obtained from the recursive definition of trivially perfect
graphs: a cotree T = (VT , ET) of a trivially perfect graph G is a
binary tree such that each leaf of T corresponds to a single vertex
in G, and each internal node of T has exactly two children and is
labeled with either union ∪ or join ∨; notice that, for each join
node in T , one of the two children must be a leaf of T . Such
a cotree of G can be constructed in linear time [15]. Each node
i ∈ VT corresponds to a subgraph Gi of G which is induced by all
vertices corresponding to the leaves of T that are the descendants
of i in T . Clearly, G = G0 for the root 0 of T .

We note that the maximum clique sizes ω(Gi) for all i ∈ VT can
be computed in linear time, by a bottom-up computation accord-
ing to the cotree T , as follows:

ω(Gi) =



1 if i is a leaf of T ;
max{ω(Gx), ω(Gy)} if i is a union node

with children x and y;
ω(Gx) + 1 if i is a join node

with children x and y
such that y is a leaf of T .

Therefore, we assume without loss of generality that we are given
a trivially perfect graph G together with its cotree T = (VT , ET)
such that the maximum clique size ω(Gi) is associated to each
node i ∈ VT .

Let I = (G, k, f0, fr) be a given instance of coloring recon-
figuration such that G is a trivially perfect graph. For each node
i ∈ VT and a k-coloring f of G, we denote by f i the k-coloring of
the subgraph Gi such that f i(v) = f (v) holds for every v ∈ V(Gi).
We propose the following algorithm to solve the problem, and
will prove its correctness.

Input: An instance I = (G, k, f0, fr) of coloring reconfigu-
ration such that G is a trivially perfect graph

Output: yes/no as the answer to I
Step 1. If |V(G)| = 1 or ω(G) < k, then return yes.
Step 2. In this step, G has more than one vertex, and hence

the root of the cotree T is either a union node or a
join node. Let x and y be two children of the root of
T . Then, we execute either (a) or (b):
Case (a): The root is a union node.

Return yes if both (Gx, k, f x
0 , f x

r) and
(Gy, k, f y0 , f yr) are yes-instances; other-
wise return no.

Case (b): The root is a join node.
Assume that Gy consists of a single ver-
tex u. Return no if f0(u) , fr(u);
otherwise return the answer to (Gx, k −
1, f x

0 , f x
r).

We first verify the correctness of Step 1. If |V(G)| = 1, then we
can directly recolor the vertex w in G from f0(w) to fr(w); thus, I
is a yes-instance. If ω(G) < k, then Lemma 1 yields that I is a
yes-instance because G is a trivially perfect graph and hence is a
chordal graph. Thus, Step 1 correctly returns yes.

We then verify the correctness of Step 2(a). This step is ex-
ecuted when the root of T is a union node. Then, there is no
edge between Gx and Gy. Therefore, it suffices to solve each
of (Gx, k, f x

0 , f x
r) and (Gy, k, f y0 , f yr), and combine their answers.

Thus, Step 2(a) works correctly.
We finally verify the correctness of Step 2(b). This step is ex-

ecuted when the root of T is a join node. In addition, ω(G) = k
holds because it is executed after Step 1. Since u ∈ V(Gy) be-
comes a universal vertex in G = Gx ∨ Gy, it is contained in any
maximum clique in G. Since ω(G) = k holds, u is frozen on f0
and fr. Thus, if f0(u) , fr(u), then I is a no-instance. Otherwise
no vertex in V(G) \ {u} can use the color f0(u) = fr(u) in any re-
configuration sequence, because u is a universal vertex in G and
is frozen on f0 and fr. Therefore, (G, k, f0, fr) is a yes-instance if
and only if (Gx, k − 1, f x

0 , f x
r) is a yes-instance. Thus, Step 2(b)

works correctly.
Although the algorithm above is written as a recursive func-

tion, it can be implemented so as to run in linear time, as follows:
we first traverse the cotree T of a given (whole) trivially per-
fect graph G from the root to leaves, and assign the sub-instance
(Gi, k, f i

0, f i
r) to each node i ∈ VT ; we then solve the sub-instances

from leaves to the root of T by combining their children’s an-
swers.

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-165 No.7
2017/11/16

IPSJ SIG Technical Report

This completes our proof of Theorem 4. □

5. Conclusions
In this paper, we have studied coloring reconfiguration from

the viewpoint of graph classes. We first proved that k-coloring
reconfiguration is PSPACE-complete for chordal graphs; this an-
swers the open question posed by Bonsma and Paulusma [5]. We
then demonstrated that coloring reconfiguration is solvable in
polynomial time for several graph classes, even when k is a part
of input; such graph classes include split graphs and trivially per-
fect graphs.

Acknowledgments This work is partially supported by JST
CREST Grant Number JPMJCR1402, and by JSPS KAKENHI
Grant Numbers JP16J02175, JP16K00003, and JP16K00004,
Japan.

References
[1] Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Recon-

figuration graphs for vertex colourings of chordal and chordal bipartite
graphs. J. Combinatorial Optimization, Vol. 27, pp. 132–143 (2014).

[2] Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs.
Electronic Notes in Discrete Mathematics, Vol. 44, pp. 257–262
(2013).

[3] Bonsma, P., Cereceda, L.: Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theoretical
Computer Science, Vol. 410, pp. 5215–5226 (2009).

[4] Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The com-
plexity of bounded length graph recoloring and CSP reconfiguration.
Proc. of IPEC 2014, LNCS 8894, pp. 110–121 (2014).

[5] Bonsma, P., Paulusma, D.: Using contracted solution graphs for solv-
ing reconfiguration problems. Proc. of MFCS 2016, LIPIcs 58, pp.
20:1–20:15 (2016).

[6] Brewster, R.C., McGuinness, S., Moore, B., Noel, J.A.: A dichotomy
theorem for circular colouring reconfiguration. Theoretical Computer
Science, Vol. 639, pp. 1–13 (2016).

[7] Cereceda, L.: Mixing Graph Colourings. Ph.D. Thesis, London
School of Economics and Political Science (2007).

[8] Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between
3-colorings. J. Graph Theory, Vol. 67, pp. 69–82 (2011).

[9] Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T.,
Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm
for sliding tokens on trees. Theoretical Computer Science, Vol. 600,
pp. 132–142 (2015).

[10] Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica,
Vol. 1, pp. 275–284 (1981).

[11] Hatanaka, T., Ito, T., Zhou, X.: The list coloring reconfiguration
problem for bounded pathwidth graphs, IEICE Trans. on Fundamen-
tals of Electronics, Communications and Computer Sciences E98-A,
pp. 1168–1178 (2015).

[12] van den Heuvel, J.: The complexity of change. Surveys in Combina-
torics 2013, London Mathematical Society Lecture Notes Series 409
(2013).

[13] Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri,
M., Uehara, R., Uno, Y.: On the complexity of reconfiguration prob-
lems. Theoretical Computer Science, Vol. 412, pp. 1054–1065 (2011).

[14] Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Find-
ing shortest paths between graph colourings. Algorithmica, Vol. 75,
pp. 295–321 (2016).

[15] McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition
of directed graphs. Discrete Applied Mathematics, Vol. 145, pp. 198–
209 (2005).

[16] Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014).

[17] Wrochna, M.: Homomorphism reconfiguration via homotopy. Proc. of
STACS 2015, LIPIcs 30, pp. 730–742 (2015).

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-AL-165 No.7
2017/11/16

