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Reflectance and Shape Estimation with a Light Field
Camera under Natural Illumination

Thanh Trung Ngo1,a) Hajime Nagahara2 Ko Nishino3 Rin-ichiro Taniguchi4 Yasushi Yagi1

Abstract: Reflectance and shape are two important components in visually perceiving the real world. Inferring the re-
flectance and shape of an object through cameras is a fundamental research topic in the field of computer vision. While
three-dimensional shape recovery is pervasive with varieties of approaches and practical applications, reflectance re-
covery has only emerged recently. Reflectance recovery is a challenging task that is usually conducted in controlled
environments, such as a laboratory environment with a special apparatus. However, it is desirable that the reflectance
be recovered in the field with a handy camera so that reflectance can be jointly recovered with the shape. To that end,
we present a solution that simultaneously recovers the reflectance and shape (i.e., dense depth and normal maps) of
an object under natural illumination with commercially available handy cameras. We employ a light field camera to
capture one light field image of the object, and a 360-degree camera to capture the illumination. The proposed method
provides promising results in real-world experiments.

1. Introduction
In the field of computer vision, we need to understand the ge-

ometry and material of an object to obtain information about the
object. The visual perception of the object depends on the illu-
minating environment, which poses a challenging and interest-
ing task for computer vision to understand three components:
the geometry, material, and illumination. This is in fact an in-
verse rendering problem, the complexity of which is extremely
high [1]. To relax this complexity, computer-vision researchers
usually assume to know one or two components and they then
can recover the remaining one(s). For example, researchers can
assume the reflectance is as simple as Lambertian reflectance, and
the shape can then be recovered knowing the illumination [2], [3]
or even without knowing the illumination [4]. Meanwhile, other
researchers assume to know the shape and the reflectance and can
then recover the illumination [5]. In our research, we found that
the illumination is not a serious problem and can be easily cap-
tured with a handy 360-degree camera [6]. We can thus relax the
illumination and focus on recovering the reflectance and three-
dimensional (3-D) shape of the object.

3-D shape recovery has been well studied in the field of com-
puter vision with varieties of approaches and practical applica-
tions. The approaches can work under both controlled [2], [7]
and uncontrolled [8], [9], [10] environments. A large number
of methods assume Lambertian reflectance so that they can re-
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cover the scene with [3], [11] or without [4], [12] consideration
of the illumination. This also allows the methods to work with
a mobile or handy camera [13]. Other specific reflectance mod-
els, such as those of dielectric reflectance [14], [15], mirrored
reflectance [16], or a combination of Lambertian reflectance and
specular reflectance [17], are also assumed to relax the shape re-
covery.

However, reflectance recovery is challenging because real-
world material reflectance is difficult to represent mathemati-
cally with a model. Researchers therefore try to approximate
real-world material reflectance with varieties of models for spe-
cific types of materials, such as a Lambertian model for dif-
fuse materials, dielectric model [18] for a ceramic or plastic,
Phong reflectance model [19] for specular material, Torrance-
Sparrow reflectance model [20], [21] for a rough surface, data-
driven reflectance model [22], directional statistics bidirectional
reflectance distribution function (DSBRDF) model [5], [23] for
more general reflectance. Measuring material reflectance is also
difficult. The measurement is usually made in a laboratory un-
der well-controlled conditions. The widely used method re-
lies on image-based bidirectional reflectance distribution function
(BRDF) measurement [22], [24], [25], [26] by capturing many
images of the material sample with different known light direc-
tions.

Moreover, joint shape and reflectance recovery using images is
even more challenging, particularly under uncontrolled illumina-
tions. To relax the problem, most methods assume a Lambertian
material and try to recover the spatially varying BRDF and shape
of the object [12]. Other methods use a specific reflectance model
such as a mirror model [16]. A dichromatic model (a combination
of diffuse and specular reflectance models) is also used [27] with
a known point light source and it is thus only used in a laboratory.
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Oxholm and Nishino [9] simultaneously recovered the general re-
flectance and shape of an object under natural illumination. Their
method employs a general reflectance model (DSBRDF [23]) and
thus works with a wide range of real-world materials. However,
it is only used for a well-setup environment of multiple calibrated
cameras or a single camera that moves to several positions about
the object. The method may be hard to employ in practice, which
limits its real-world application. In their work, shape is repre-
sented by the surface normal which is constrained only by photo-
consistency among sparse and wide-baseline stereo correspond-
ing points. Inspired by this pioneering work, we conduct our re-
search with a light field camera to reduce the preparation effort
and encourage practical use. In particular, we further constrain
the shape by introducing depth and reformulate the probabilis-
tic framework to update depth. The depth and normal are sep-
arately updated owing the practical fact that depth and normal
maps may not be equivalent and they are directly updated with
different cues, multi-view stereo correspondence and radiometry,
respectively. However, the depth and normal are strongly cor-
related, and a new constraint is presented to tighten them. The
constraint is referred to as depth-normal consistency constraint,
a geometry constraint, in our paper. As a result, we can estimate
not only reflectance and normal but also depth simultaneously.

The contributions of our paper are summarized as follows. Our
work is the first work that recovers a general isotropic reflectance
and depth map under natural illumination with a light field cam-
era. The production of a dense depth map needs a huge computa-
tion cost. To reduce the computational cost, we present a multi-
stage algorithm, where the earlier stage solves a coarser problem
with a simpler and faster solution.

2. Image Generative Model
Our system includes a light field camera that captures the light

field image of an object and a 360-degree camera that captures
the environmental illumination. The light field and 360-degree
cameras are calibrated and registered so that their geometrical
relationship is known in advance. The world coordinate sys-
tem coincides with the coordinate system of the light field cam-
era, where Oz is the optical axis. We use the plane and tan-
gent direction presentation [28] for the light field image, where a
scene ray is described by a four-dimensional function, I(x, y, s, t).
(x, y) denotes parameter of a sub-aperture that a scene ray passes
through, while (x, y, 0) gives 3-D location of the sub-aperture
on the Oxy plane, and (s, t) represents the tangent direction of
the scene ray. The center sub-aperture location coincides with
the origin O. The environmental illumination L is captured by
the 360-degree camera and is represented by a panorama im-
age, of which each pixel is assumed as a directional light source
from infinite distance. In the world coordinate system, L is pa-
rameterized by the incoming light direction ωi, L(ωi), where
ωi = (sin θ cos ϕ, sin θ sin ϕ, cos θ), and θ and ϕ are respectively
the zenith and azimuth angles of the light direction.

The target object is assumed smooth and the surface geometry
is represented by a surface function F(x, y, z) = 0. The surface
reflectance is assumed homogeneous and isotropic and is repre-
sented by a single model with parameters R. In our algorithm,

Fig. 1 A 2-D illustration of the world coordinate system and light field rep-
resentation.

we only consider a set of object points visible in the center sub-
aperture image, Ω = {P}. The object shape is represented by a
depth mapZ = {ZP|P ∈ Ω} and a normal mapN = {NP|P ∈ Ω}.

The surface normal NP of an object point P = (XP,YP,ZP)
can be derived from the first partial derivative:

NP =
−
(
Fx(XP,YP), Fy(XP,YP), Fz(XP,YP)

)T√
Fx(XP,YP)2 + Fy(XP,YP)2 + Fz(XP,YP)2

. (1)

This object point can be observed on the different sub-aperture
images (x, y) and directions (s, t) depending on its depth such that

(s, t, 1)T =
(
P − (x, y, 0)T

)
/ZP. (2)

We see that s, t depends on the sub-aperture location (x, y, 0)T ;
hence, s = s(x, y) and t = t(x, y). From (2), we obtain a rela-
tionship between image points on the center sub-aperture and on
a surrounding sub-aperture image:

s(x, y) = s(0, 0) − x/ZP, t(x, y) = t(0, 0) − y/ZP. (3)

We define an observing direction ωP(x, y) for P from the sub-
aperture (x, y); hence, ωP(x, y) and (s, t, 1)T are collinear:

ωP(x, y) = −(s(x, y), t(x, y), 1
)T
/

√
s(x, y)2 + t(x, y)2 + 1. (4)

Because the direction (s(0, 0), t(0, 0)) of the point P is constant
from the center sub-aperture, the observing direction from a sur-
rounding sub-aperture depends only on its location (x, y, 0) and
the point depth ZP.

Given the geometry and reflectance function ϱ, the actual re-
flectance I(x, y, s, t) on each sub-aperture image captured by the
camera can be modeled mathematically by integration:
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E(x, y, s, t) =
∫

ϱ(τ(ωi,ωP(x, y), NP);R)L(ωi)max(0, NP.ωi)dωi,

(5)
where τ is a function that transforms ωi and ωP in relation with
the surface normal NP into halfway parameterization variables
θd and θh [29].

3. Probabilistic Estimation Framework
Similar to the work of Oxholm and Nishino [9], we use a simi-

lar probabilistic framework to formulate our estimation problem.
The geometry and reflectance estimation can be formulated as a
maximum a posteriori for the whole light field:

p(N ,Z,R|I) ∝ p(I|N ,Z,R)p(N ,Z)p(R), (6)

where p(I|N ,Z,R) is a likelihood that quantifies how the geom-
etry and reflectance match the light field; it can also be referred
as a measure of photo-consistency among all sub-aperture im-
ages. p(N ,Z) is a geometrical constraint on the shape (normal
and depth), and p(R) is a practical reflectance prior. To cope
with the high dynamic range of the reflectance, we also process
reflectance in the log-intensity domain [5], [9]. We assume the
captured and modeled image intensities differ by some scalar µ
and Gaussian noise with variance σ2:

log(I(x, y, s, t)) = log(µE(x, y, s, t)) + N(0, σ2) (7)

= log(E(x, y, s, t)) + N(µ1, σ2). (8)

3.1 Image likelihood
We first describe the first term of (6), the image likelihood for

the light field of the object. It is a joint likelihood of individual
likelihoods for light rays (u, v, s, t) from an object point X. The
individual likelihood is evaluated by a dissimilarity d(.) between
the captured and modeled intensities for the light ray:

p(I(x, y, s, t)|NX ,ZX ,R) = N
(
d(I(x, y, s, t), E(x, y, s, t); µ, σ2).

The joint likelihood for the whole object is then computed for all
the object points using all the sub-aperture images:

p(I|N ,Z,R) =
∏
X∈Ω

∏
(x,y)

p(I(x, y, s, t)|NX ,ZX ,R). (9)

Although the baselines between camera sub-apertures are nar-
row, there are still mismatches between the sub-aperture images
even when the depth map is perfect. We therefore employ a robust
score function for d(.) to compute the matching score between
images. The Welsh function is a robust function that is suited to
our situation:

d(I(x, y, s, t), E(x, y, s, t);σ, µ) = (10)√
nλσ2

2
[1 − exp

(
− | log I(.) − log E(.) − µ1|2

nλσ2

)]
,

where nλ is the number of color channels, which is three for
R,G, B in our experiment.

3.2 Geometrical constraints
We use the alternating optimization scheme to estimate all un-

knowns. The geometrical constraint is formulated depending on

whether the normal or depth is updated:

p(N ,Z) ∝

p(N |Z) when updating depth,

p(Z|N)p(N) when updating normal.
(11)

The detailed constraints are described below, and include (a)
the depth-normal consistency constraint, (b) the smoothness con-
straint on the surface normal ps, (c) the surface gradient con-
straint pg, and (d) the occluding boundary constraint pb. The
prior on the surface normal is then p(N) = ps pgpb. However, we
do not apply any practical prior to the depth, as described in (11).

(a) Depth-normal consistency constraint: This constraint re-
sults from the object surface being smooth and the surface normal
being perpendicular to the surface gradients. The constraint that
quantifies how much the normal matches the depth is

p(Z|N) ∝
∏
X∈Ω

∏
Y∈ne(X)

exp
(
− βzn

(
NX · (X − Y)

)2)
, (12)

where βzn controls the constraint strength and ne(X) is a set of
neighboring points of X inΩ. Similarly, the constraint that quan-
tifies how much the depth matches the normal is

p(N |Z) ∝
∏
X∈Ω

∏
Y∈ne(X)

exp
(
− βnz

(
NX · (X − Y)

)2)
, (13)

where βnz controls the constraint strength.
(b) Normal smoothness constraint [9]:

ps(N) ∝
∏
X

∏
Y∈ne(X)

exp
{
−βs arccos2(NX · NY )

}
, (14)

where βs controls the strength of the constraint.
(c) Surface gradient constraint [30]: This constraint ensures

the resulting gradient is the same as in the observed image, and it
is built on the center sub-aperture image only:

pg(N) ∝
∏
X

∏
Y∈ne(X)

exp
(
− βg|(log EY (.) − log EX(.)) (15)

−(log IY (.) − log IX(.))|2
)
,

where βg controls the strength of this constraint.
(d) Occluding boundary constraint [9]: At the occluding

boundary, the surface normal should be oriented orthogonally to
the observing direction:

pb(N) ∝
∏
X∈B

exp
(
− βb arccos2

(
NX · ωX(0, 0)

) )
, (16)

where B is the set of boundary pixels in the center sub-aperture
image, and βb controls the strength of this constraint.

3.3 Reflectance constraints
We use the DSBRDF [5] to model an isotropic reflectance of

the target material in our algorithm. This reflectance is modeled
as a sum of lobes for each color channel λ:

ϱλ(θd, θh; κ, γ, cλ) =
∑

r

cr,λ

(
exp
[
κr(θd)cosγr(θd)θh

]
− 1
)
,

(17)
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where κ, γ respectively control the overall brightness and spec-
ularity of the lobes and chromaticity cλ = {cr,λ} modulates the
color channel λ with a constraint that

∑
λ cr,λ = 1. There are three

lobes and three channels in our case. We thus need two chro-
maticity values per lobe per channel, and six values for κ or γ
per lobe. Totally, the DSBRDF is represented by 42 parameters
including six chromaticity parameters. In practice, Lombardi and
Nishino represented a DSBRDF with fewer parameters employ-
ing functional principal component analysis for κ and γ [5]. κ

and γ of each DSBRF can be represented by a point in a high-
dimension subspace Ψ = {ψi}|i ∈ {1, . . . , 36}. The subspace is
constructed with a large number of measured reflectance mate-
rials (e.g., using the MERL BRDF database [22]). The earlier
parameter ψi with smaller i statistically has more power to repre-
sent a practical BRDF. Accuracy and compactness can be traded
off using a subset of the first nΨ parameters. In experiments rep-
resenting the MERL BRDF database with this DSBRDF model,
they showed that with just nΨ=13 parameters, the MERL BRDF
database could be fitted well [5]. In our experiments, we use
nΨ=14. In this compact representation, each reflectance is repre-
sented by R = {c,Ψ}|c = {cλ},Ψ = {ψi}|i ∈ {1, . . . , nΨ}.

Further, we use two constraints on the DSBRDF reflectance,
one for the chromaticities and one for the coefficients so that
p(R) = p(Ψ)βΨ p(c)βc . p(Ψ) = N

(
Ψ,Σ
)

is the same as
in [9], where the covariance matrix Σ is learned from the MERL
database, and p(c) is the same as in [5]. βψ, βc control the priors’
strength.

4. Multi-stage Algorithm
There are many unknowns for the depth Z, normal N , and

reflectance R to be estimated simultaneously. It is usually diffi-
cult for the estimation to converge stably. To efficiently manage
the stability and reduce the computational const, we make the es-
timation in stages. The idea for this algorithm originates from
the generative model of the light field image in (5) with different
simplification levels.

4.1 Stage 1: Depth Estimation from Plane Sweeping
When the shape is not accurate, we assume the reflectance and

light functions are constant for all observing directions, then we
only estimate the depth. The probabilistic framework in (6) is
simplified by relaxing reflectance and light:

p(Z|I) ∝ p(I|Z). (18)

In this case, the object point has similar intensity crossing the
sub-aperture images: I(x, y, s, t) ≈ I(0, 0, s(0, 0), t(0, 0)). We use
plane sweeping to find an optimal depth by matching intensity
between the center and all other sub-aperture images.

A graph cut [31] is employed to obtain a smoother depth map.

4.2 Stage 2: Depth and Normal Estimation with Lamber-
tian

We only assume the reflectance function is constant for all ob-
serving directions, and we then simultaneously update the depth
Z and surface normal N . The probabilistic framework in (6) is
simplified by relaxing the reflectance:

Fig. 2 An illustration of the three stage results with an input light field. In
stage 1, we estimate only depth Z. In stage 2, we estimate the nor-
malN and depthZ. In stage 3, we estimate the normalN , depthZ,
and reflectance R. Rendered images E from (5) using the recovered
shape and reflectance for stages 2 and 3 are also presented.

p(N ,Z|I) ∝ p(I|N ,Z)p(N ,Z). (19)

This can be done by setting a special case of DSBRDF reflectance
in (17) that there is one lobe is 1 and γ and κ are set to 0 and 1,
respectively. The estimation method is similar to that presented
in the next subsection with Lambertian reflectance.

4.3 Stage 3: Depth, Normal, and Reflectance Estimation
In this final stage, we use the DSBRDF to constrain the real-

world isotropic material reflectance. All unknowns, depth, nor-
mal, and reflectance parameters, are updated without approxima-
tion. It is costly to handle, but the computational cost is reduced
appreciably by the first two stages. An iterative optimization
scheme using a probabilistic framework is employed that alter-
nates between (a) updating the Gaussian noise (σ, µ), (b) updating
the reflectance, (c) updating the surface normal, and (d) updating
the depth is employed.

(a) Update Gaussian noise: To update the Gaussian noise de-
fined in (8) for current reflectance and shape, we simply compute
the standard deviation σ and mean µ of all the errors for object
points in the light field.

(b) Update reflectance: To update the reflectance R assuming
that the geometry is constant, the maximum a posteriori estimate
in (6) becomes

p(R|I) ∝ p(I|N ,Z,R)p(Ψ)βΨ p(c)βc . (20)

However, observations between sub-aperture images do not differ
much, and we only use the light field from the center sub-aperture
image to reduce the computational cost.

(c) Update surface normal: In this step, the surface normals
are updated relying on the photo-consistency among sub-aperture
images, normal-depth consistency, and surface normal prior as-
suming that the reflectance and surface depth are known. The
objective function in (6) is formulated as

p(N |I) ∝ p(I|N ,Z,R)p(Z|N)ps(N)pg(N)pb(N). (21)

(d) Update depth:
We continue to update the surface depth relying on the photo-

consistency between sub-aperture images and normal-depth con-
sistency, assuming that the reflectance and surface normal are
known. The objective function in (6) is formulated as

p(Z|I) ∝ p(I|N ,Z,R)p(N |Z). (22)

The three stages are illustrated in Fig. 2.

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-168 No.20
Vol.2017-DCC-17 No.20

Vol.2017-CVIM-209 No.20
2017/11/8



IPSJ SIG Technical Report

Fig. 3 Natural illumination.

5. Experiments
Because there is no related work for the light field camera, we

did not include a comparison in our experiment.
Parameters in our experiments were set as βs = 10, βg = 0.05,

βzn = 10, βzn = 0.01, βb = 5, βΨ = 0.001, and βc = 0.001. The
resolution of natural illumination is 256 × 128.

We quanlitatively evaluated the proposed method in real-world
experiments with different objects. We employed a Lytro ILLUM
camera to capture and make high-dynamic-range images of ob-
jects, and a Theta S camera [6] to capture natural illumination.
The environment of our experiment is shown in Fig. 3. The cam-
era focal length was set at 50 mm. The sub-aperture image size
was 625×434. After calibration of the Lytro camera, the baseline
from a viewpoint to its nearest neighbor was about 0.5 mm. We
used 5×5 sub-aperture images. An example of 3×3 sub-aperture
images is shown at the left of Fig. 2.

We showed real experiments with two objects, a highly specu-
lar plastic bottle and a pottery jar. The results are shown in Fig. 4.
The results reveal that the surface normals and reflectance func-
tions are well recovered so that the rendered object images and
captured images are similar. We also see that the material of the
bottle is much more specular than that of the pottery jar. Over-
all, we find that the proposed method works well with real-world
objects against a narrow baseline of the light field camera.

6. Conclusion and Future Works
We presented the recovery of the shape and reflectance of an

object with a light field camera under natural illumination. The
advantage of the proposed method is that it is practical to deploy
in reality with minimal effort to acquire input images and more
information on the object is recovered. We employ a multi-stage
algorithm to handle the high complexity. In experiments, we cur-
rently get good results with several real-world materials. In future
work, we plan to improve the quality of reconstruction for more
extreme specular materials, such as a mirror and metal to demon-
strate that the proposed method can work well with various types
of material.
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