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Data-based 3D shape reconstruction using light field
constructed by multiple projectors

Yuki Shiba1,a) Satoshi Ono1,b) Ryo Furukawa2 Shinsaku Hiura2 Hiroshi Kawasaki†1

Abstract: Combination of a pattern projector and a camera is widely used for 3D measurement. From the pattern
projection, various kinds of depth queues are extracted from the captured image such as disparities for active stereo,
projector defocus for depth from defocus, or intensity variations for photometric stereo. To increase the depth queue
information, while widening the working space and reducing the occlusions, increasing the number of projectors can
be a promising solution. However, multiple projectors form a complicated light field where the captured image is
difficult to process analytically. In this paper, we use the configuration of multiple projectors and a camera. To pro-
cess the complicated light field, matching-based analysis is applied. In the preprocess of the 3D measurement, virtual
sample images of planar board with various depths are generated with CG techniques. Then, their image features of
small patches are extracted with PCA. In the 3D measurement step, the same image features of patches of the captured
image are extracted and compared with the sample images. By utilizing the dimensional reduction of PCA and ANN
search algorithm, the matching is processed effectively. Since our approach is sampling based, the proposed technique
can handle arbitrary patterns for projection.
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1. Introduction
By the recent progress on technology and cost effectiveness

of video projector, they are now wide-spread even in a house-
hold and used not only for a image presentation purpose just on
a white screen, but also for a projection mapping on complicated
shapes and/or textured objects, 3D reconstruction etc. Among
them, 3D scan system using a projector and a camera is one of
important and promising topics. Previously, such system usually
consists of a single projector and a single camera. 3D Shapes
are then reconstructed by either stereo, depth from defocus (DfD)
or photometric stereo techniques. On the other hand, multi-view
stereo system using only cameras becomes popular for the in-
creasing demand on capturing a large scale scene and/or entire
shape of moving objects, typically human activity in the scene.
Recently, several researchers are trying to increase the number of
the projector as well as the camera. However, there is one se-
vere problem on increasing the projector, i.e., multiple patterns
projected onto the same object surface from multiple projectors
interfere each other and it is difficult to analytically handle such
overlapped patterns. A simple solution is to use different colors
for each projector to decompose them to be used as independent
patterns. However, only three colors can be used with commer-
cial products and color cross-talk is also a problem.

The key idea to overcome the problems is that multiple pro-
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jected patterns in the space can be considered as an implicit light
field [5], [22] constructed by the bundle of light rays. Our solu-
tion is to store the light field as a reference and conduct matching
between captured image to reconstruct 3D shapes of the scene.
Note that since the light field includes all the optical effects, such
as defocus of projector, lens distortion, etc, there is a high pos-
sibility that those non-linear phenomena can be solved with our
approach. The method can be divided into two phases: a learning
phase and a shape estimation phase. At the learning phase, since
there is no medium which reflect the light ray in the air and the
patterns are invisible and unobservable, we put a planar board in
the scene and capture the reflected patterns on it. Since data size
of the light field is tremendous, we just store a subset of it, i.e.,
only a single value at each 3D point is stored where originally
there are two rotation angles ϕ and θ. Such reduction is compen-
sated by interpolation in parametric space in our method. Further,
we conduct a principal component analysis (PCA) to eliminate
the redundant dimension to make compact data.

At the shape estimation phase, depth of the object is estimated
by matching the observed pattern and the reference pattern which
is stored at the learning phase. To reduce the calculation time
we use approximated nearest neighbour (ANN) search combined
with a Belief Propagation (BP) to efficiently remove noise in final
output. Such a light field based reconstruction can be understood
as a combination of stereo and DfD simultaneously. A simple
idea using a specially designed projector equipped with coded
aperture is proposed [8]; however, utilization of multiple projec-
tors to construct light field is not mentioned.

The main contribution of the paper can be summarized as fol-
lows.
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( 1 ) Unlike the previous multiple projector system for 3D scan,
our technique has no severe limitation on setup of multiple
projectors in the scene.

( 2 ) Since the technique is based on data centric approach, non-
linear effect such as defocus blur of projector can be natu-
rally handled.

( 3 ) Unlike the common data centric approach which requires
huge data storage and long computational time, our tech-
nique can drastically reduce the computational time by PCA
and ANN.

2. Related works
Active 3D measurement systems utilize various types of keys

of projected patterns that appear in the captured images and show
the depth information of the scenes. Such keys include corre-
spondences between the image and the projected patterns used
for active stereo systems, projector defocus of the patterns [24],
or projector defocus modulated by coded apertures of the projec-
tor [8].

For estimating correspondences between the image and the pat-
tern numerous approaches have been proposed. Typically, they
are categorized into temporal and spatial coding techniques [16].
Temporal coding active stereo methods [17] have a long history of
practical use, since pixel-by-pixel dense capture of the depth im-
ages can be realized with relatively simple algorithms. However,
many of such systems generally assumes static scenes because
multiple images are required for a single measurement. To cope
with this problem, spacial coding systems, which require a single
image for a single measurement have been actively researched
[1], [6], [9], [10], [11], [18], [21], [25].

Spacial coding techniques of active stereo methods use various
types of pattern features, such as color information [1], [9], [18],
[25], or geometrical characteristics [6], [11], [21]. The problem
of color information features is that the results may be affected by
the object colors or textures. The geometrical characteristics also
have problems such as difficulty of matching between the image
and the pattern because of deformation caused by disparities, or
projector defocus.

Projector defocus has been a big problem of 3D scanners that
utilize pattern projection. Since normal projectors are built with
large apertures for brightness, the depth-of-field is much narrower
than that cameras. Some of the previous works deals with the
problem by using the projector defocus as depth cues [8], [24].

In most of the above methods, the projected depth cues
are analyzed by the process that specifically designed for each
patterns. Recently, some researchers use matching based ap-
proaches, where the captured images are directly compared with
the projected patterns [3], [7], or the sampled patterns captured
for each depths [8]. In this paper, we proceed this approach one
step further. In the proposed method, we no longer assume a
specific pattern, and the algorithm is universal and independent
of the projected pattern. Naturally, specialized modeling for the
projected pattern is no longer necessary.

For such a matching-based approach, comparing image
patches allowing the variations caused by depth, texture, and nor-
mal changes is a key technique. One of the commonly-used meth-

(a)

((b)

Fig. 1 (a) System configuration of projector and camera system. (b) Several
patterns for one-shot scan. (i) random grids, (ii) ,wave grids [15], and
(iii) wave grids2[23].

ods for such purpose is matching in eigen-space domain (rep-
resentation by PCA), which has been used for face recognition
[2], [19], or object recognition[13].

About projecting light field using multiple projectors, several
systems have been proposed [4], [5], [14]. Jurik et al. pro-
posed an array of a large number of laser projectors for gener-
ating a light field observed directly by human eyes [5]. Nagano
et al. constructed a similar projector array except that a lentic-
ular screen with anisotropic reflection is placed at the center of
the projector array [14]. Hirsch et al. proposed a method using
lenticular lenses inside the optics of a video projector [4].

3. Overview
3.1 System configuration

We assume the system which consists of multiple pattern pro-
jectors and a camera as shown in Fig. 1(a). The camera and the
projector are assumed to be calibrated (i.e., the intrinsic parame-
ters of the devices and their relative positions and orientations are
known). Since each projector casts a static pattern, no synchro-
nization is required and it is a important feature to realize using
multiple projectors simultaneously. Further, it is suitable to ac-
quire a 3D shape of dynamic scene. In terms of the projecting
pattern, since we do not know what kind of pattern is suitable for
constructing light field to better reconstruct the 3D shape of the
scene, we tested several well known patterns in our experiment,
grid pattern, wave grid pattern, and patterns proposed by previous
works as shown in Fig. 1. Similarly, we assign different colors to
each projector, respectively.

We explain the projected pattern used in our system in Sec. 3.2
and show the overview of our algorithm in Sec. 3.3.
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Fig. 2 Flow chart of our shape reconstruction algorithm.

3.2 Projection pattern
It is important to use suitable patterns to create an efficient light

field in order to realize the best performance on the purpose, i.e.,
accurate and robust 3D reconstruction. Since there is no previ-
ous researches on a light field based 3D reconstruction, we used
several well-known patterns for one-shot scan, i.e., spatial en-
coding patterns, in our experiment. The patterns we used in the
experiment is shown in Fig. 1. Fig. 1(i) is a random grid pattern,
Fig. 1(ii) is a wave grid pattern [15], Fig. 1(iii), is also a well
known pattern for single color one-shot scan [23].

3.3 Algorithm overview
Our method consists of two phases: pattern learning phase and

3D reconstruction phase as shown in Fig 2.
In the pattern learning phase, first, the projector and the cam-

era are calibrated. Then, by using the calibration parameters, vir-
tual images are synthesized by assuming a planer board placed
at a certain depth, pattern projected by a virtual projector and
captured by a virtual camera. The images are synthesized by
changing the depth. Finally, parameters and eigen images are
estimated by PCA in order to map the input image to low dimen-
sional values, typically 30D in our case and the values are stored
in database.

In the 3D reconstruction phase, input image is converted to low
dimensional representation by calculating coefficient for eigen
images. Then, for each position at the captured image, costs for
all the depths are acquired by calculating the inner product of the
coefficient vector of the input image and the reference images at
each depth in the stored data. The created cost volume is then
used to apply BP in the final step. To reduce the cost of calculat-
ing the cost volume, ANN search is used to calculate the cost for
just top n depths in our method. Once the depth values of all the
pixels are estimated, 3D shapes are recovered using the camera
and projector calibration parameters.

4. Active stereo based on synthetic light field
4.1 Light field creation by virtual projector and camera sys-

tem
In the pattern learning phase, we need to store the entire light

field created by multiple projectors. Since the light field created

Fig. 3 Extracting image features of sample images.

by multiple projectors is not static because some patterns are oc-
cluded by objects in the scene, such variations should be captured
and stored. In addition, since the light field itself is not visible,
some objects should be placed in the scene to reflect the light
ray to be observed by the camera and the precise position and
the shape of the object should be also recorded. Conducting such
complicated processes to store the light field is obvionsly imprac-
tical. In this paper, to efficiently store the entire light field, we
create a virtual light field in the computer to synthesize the im-
age where virtual planar board is placed in the virtual space and
captured by the virtual camera.

It is simply achieved by GPU based implementation. We pre-
pare the pattern images for each projectors as well as intrinsic
and extrinsic parameters for each projectors and cameras in ad-
vance. Then, scene images are rendered by using pixel shader
where color values are sampled from each projector calculating
the line of sights from the object surface point to each projector
and blending them. To capture the light field considering the oc-
clusion effect, we turn on and off each projector based on all the
combination of them.

4.2 Low dimensional representation by PCA
In the proposed method, for each pixel of the captured image,

image patch around the pixel is compared to the sample images
generated by virtual projector. This process is time-consuming if
implemented naively, and should be reduced for practical use. To
deal with this problem, we use low dimensional representation by
PCA (i.e., eigenspace representation).

Utilizing PCA for reducing dimension of image data has been
used in computer vision for a long time. For example, PCA-based
representation is used for facial image recognition or analysis
for representing or separating changes of illuminations or facial
expressions [2], [19], for object recognition with various image
changes caused by variations of 3D viewpoints [13], or for fast
image matching realized by reducing the dimension of raw im-
age data vector [20].

Figure 3 shows the flow to extract the feature basis for the pro-
jected pattern. For applying PCA, we must first collect the train-
ing set from the sample images for calculating the eigenspace of
the data set. In the proposed method, the sample images are ob-
tained in the calibration process, where the images of the fronto-
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parallel planes are captured by a real setup of a projector-camera
system or generated by virtual projector simulation. From the
sample images, samples of image patches with the same patch
sizes are extracted.

The image patches are first represented as column vectors of
p1,p2, · · · ,pN by simple rasterization. If the image patches are M
by M pixels, the dimension of the column vectors are M2. Here,
we use L = M2 for simplicity. The average image patch is calcu-
lated by p̄ = 1

N
∑N

k=1 pk, and the deviations from the average data
are qk = pk − p̄. A set of orthonormal basis for representing qk

can be calculated with PCA.
In normal PCA, eigenvectors u1,u2, · · · ,uL of the L×L covari-

ance matrix

C =
1
N

N∑
k=1

qkq⊤k = A A⊤, (1)

where A = [q1 q2 · · · qN], are used for the orthogonal basis set.
However, in computer vision problems, often N < L, then, we
can use eigenvectors v1, v2, · · · , vN of the N×N matrix L = A⊤ A
for forming the basis set to save the computational cost of eigen-
vector calculation[19]. The basis vectors, then, can be calculated
by ui =

∑L
k=1(vi)k (qk) for i = 1, · · · ,N, where (vi)k is the k-th

element of vector vi.
From the obtained basis, the representation of a new image

patch r is (w1 w2 · · · wN)⊤, where wi = u⊤i (r − p̄). Let eigenvec-
tors v1, v2, · · · , vN be sorted by the descending order of the asso-
ciated eigenvalues. Then, u1,u2, · · · ,uL are aligned in the order
of optimally representing the training set {q1, · · · ,qN} for mini-
mizing the sum of errors of l2 norm. Thus, if the image patch r
is similar to the training set, (w1 w2 · · · wL)⊤ where L ≤ N, is a
good L-dimensional representation of r. The process of deciding
the basis set using PCA can be regarded as a process of learning
the image features for representing the training set of the pattern.

Fig. 4 shows the eigenvector basis for different pattern pro-
jections. The top row images are extracted for a grid pattern by
aprojector, and the middle row images are for grid patterns by two
projectors, and the bottom row images are for a grid patterns by
three projectors. It is shown that the basis represents the features
of the training image set for different types of light field.

In the calibration step, we calculate the low-dimensional (L-D)
representations for the sample patch images. In the measurement
step, we calculate the L-D vectors for the image patches around
each pixel. These patches are matched with the images sampled
for each depth in the L-D vector space.

4.3 Efficient depth estimation by ANN and MRF
By using PCA, high dimensional patch information is effi-

ciently reduced to low dimensional vector. Those vectors are
stored at the learning phase. At the depth estimation phase, first,
input images are converted to low dimensional representation by
calculating the coefficient of each eigen image. Then, maximum
similarity between input and reference vector is searched. Al-
though the vector size is just 10 to 40, it still requires heavy com-
putational cost to find the maximum if all the similarity values
for all the depths are calculated. In this paper, to reduce the
calculation cost, we use approximate nearest neighbor (ANN)

Fig. 4 Samples of eigenvectors visualized in image format (eigenimages)
for grid patterns. The top row images are eigenimages for a grid pat-
tern to used one projector, and the middle row images are for grid
patterns by two projectors, and the bottom row images are for grid
patterns by three projectors. From left colums to right, the 2nd, 3rd,
11th and 12th eigenimages in the order of eigenvalues.

Fig. 5 Experimental system with a camera and a video projector.

search [12]. It reduces the processing time with a little sacrifice
in accuracy.

Although initial depth estimation result consists of many noises
with wrong depth, such wrong depths are efficiently removed and
corrected by MRF based approach. For MRF, cost volume is usu-
ally required, however, ANN originally returns just single cost for
maximum similarity. Since top 10% of high similalrity includes
the correct depth with 90% possibility based on our survey, we
modified ANN to output top 10% depth values with cost (inverse
similarity). We use BP to solve MRF.

5. Experiments
Experiments were conducted to examine the effectiveness of

the proposed 3D measurement system. First, the comparison of
the reconstruction accuracy between the systems where the num-
ber of the projectors varies from one up to three was made (Sec.
5.2). Next, dimension reduction of feature values using PCA was
evaluated (Sec. 5.3). Finally, the experiments using various pro-
jected patterns were performed (Sec. 5.4).

5.1 Experimental setup
Fig. 5 shows our actual experimental setup. The number of

projectors were varied depending on the experiment’s purposes.
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(a) boot (b) buffalo

(c)hand (d)monke

Fig. 6 Measurement object

Reference images were synthesized and stored by the virtual pro-
jector and camera system using the pattern information and the
calibration parameters. For synthesis, the virtual planar object
was placed in the scene and its position is moved along z direc-
tion with 1mm interval, and a virtual camera captured reference
images at each depth.

Because of the experimental environment condition, we put
a close-up lens to change the scale as to be 1/3 of real length.
With this scale, the motion range of the screen is 150mm-625mm
from the projector and the camera, in-focus distance is 250mm
±100mm for the projector, the reference plane capturing interval
is 0.5mm.

Four arbitrary shape objects shown in Figure 6 were used in
this experiment: mannequin hand, buffalo head with complicated
shape, boots with glossy surface and monkey with glossy, painted
surface. Ground truth of these object shape were defined by mea-
suring them with gray-code scan.

5.2 Evaluation of multiple projectors
The first experiment was performed in order to evaluate the ef-

fectiveness by increasing the number of applied projectors from
one, two and three. The wave pattern which has relatively high
reconstruction accuracy with unicolor was used. The unicolor
wave pattern was projected by each projector. Monochrome pat-
tern was projected when one projector was used. Red and green
patterns were projected for two projectors. In the case of three
projectors, Blue was added to the two-projector setup. The win-
dow size was 32*32 for the coarse process of NCC and 24*24
for fine process, respectively, to match captured images with the
referenced image.

Figure 7 shows the results. As the number of projectors in-
creases, the accuracy improved in all four objects. This is because
more projectors could make more complicated patterns that pro-
duces better depth queue information.

5.3 Evaluation of PCA representation
Next, to evaluate the dimension reduction of feature values us-

ing PCA, the following two methods were compared: 1) verify
the data directly with the referenced image using NCC, 2) verify
the data after dimension reduction by PCA.

In this experiment, three projectors were used. Four projec-

Fig. 7 Comparison on RMSE with varying the number of projectors.

Fig. 8 Comparison on RMSE with varying reconstruction method (NCC
and PCA), and projection pattern.

tion patterns were used: Vuylsteke’s pattern [23], random grid,
and wave [15]. The window size was 32*32 for coarse level and
24*24 for fine level for NCC, as the same condition with the ex-
periment of previous section and 24*24 for PCA. In case of PCA,
principal components up to the 30th level was applied. To evalu-
ate the results, the comparison of RSME and that of reconstruc-
tion time were made, respectively.

Fig. 8 shows the comparison result for RMSE, and figure 9
shows the comparison results of reconstruction time, respectively.
The result shows that there is no significant difference for RSME
between NCC- and PCA-based methods, which means that the
dimension reduction by PCA did not sacrifice the reconstruc-
tion accuracy. On the other hand, the result of reconstruction
time clearly shows PCA reduced the reconstruction time drasti-
cally. PCA requires just 30 dimensional features, whereas NCC
requires 24 × 24 = 512 dimensions. In addition, the computa-
tional complexity of the reconstruction time of NCC and PCA is
O(n) and O(log n) against the number of reference images n, re-
spectively. Therefore, the difference of the reconstruction time
becomes larger in the case that higher depth resolution with more
reference images.

5.4 Reconstruction of textured and curved surface object
with various patterns

In the final experiment, the dependency on the projected pat-
terns were dissected with the results obtained in the experiments
in Sec. 5.3. Figures 10 through 12 show depth maps of the re-
construction results with tested four projection patterns. We can
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Fig. 9 The reconstruction time by PCA and NCC.

(a) (b) (c)

Fig. 10 Reconstruction results of textured and curved surface object with
wave pattern. (a) input, (b) PCA, (c) NCC

(a) (b) (c)

Fig. 11 Reconstruction results of textured and curved surface object with
grid pattern. (a) input, (b) PCA, (c) NCC

confirm that the proposed method could reconstruct the object
shapes with curved surfaces and non-uniform texture using any
tested projection pattern.

On the other hand, some projection pattern-specific tendencies
were observed. In the case using random grids, PCA-based re-
construction was affected by the complicated curve and texture,
as shown in Figure 11.

(a) (b) (c)

Fig. 12 Reconstruction results of textured and curved surface object with
pattern proposed by [23]. (a) input, (b) PCA, (c) NCC

6. Conclusion
In this paper, we propose an active stereo technique based on

light field approach. With our technique, light field is formed by
multiple projectors that project arbitrary patterns and are located
in arbitrary poses. The resulting light field forms patterns on 3D
surfaces with rich depth queues of depth information. Since these
queues are not easy to extract analytically, we use matching-based
approach, which can be universally applied for arbitrary types of
image queues. The set of the sample images for varying depths
are generated by CG simulation. To realize efficient matching
process for the 3D measurement, the dimensionality of the raw
data of the image patches in the sample image set is reduced by
PCA. Then, the comparison of the patches in the captured im-
age with the sample image set is done in the low dimensional
space. Experimental results are shown to prove that our tech-
nique is stable irrespective to material of target objects, lighting
condition, noise of the sensor and projection patterns. In the fu-
ture, real-time implementation using SIMD will be considered as
an important task for us.
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