
Vol. 46 No. SIG 12(ACS 11) IPSJ Transactions on Advanced Computing Systems Aug. 2005

Regular Paper

Arbre: A File System for Untrusted Remote Block-level Storage

Tomonori Fujita† and Masanori Ogawara†

Arbre is a file system that guarantees the integrity of the entire file system on an untrusted
remote block-level storage system with a small amount of trusted storage. Arbre does not
require changes to the remote block-level storage systems commercially available today. Even
if an unauthorized person manages to get complete access to the storage system, they cannot
modify or replay any data without being detected. This is achieved by organizing all file
system blocks as a single tree and storing their hashes as a part of metadata to later verify
the correctness of their contents.

1. Introduction

To cope with the rapidly growing volume of
data, many companies have started to consider
the iSCSI protocol 1) used to build inexpen-
sive Storage Area Network (SAN) environments
by using Ethernet networks. The iSCSI pro-
tocol encapsulates the SCSI protocol into the
TCP/IP protocol, and carries packets over IP
networks. SAN environments over IP networks
are called IP-SAN.

IP-SAN started a new trend, called storage
outsourcing. Storage service providers (SSPs)
offer computer storage space and related man-
agement to their customer companies. The
customers access storage via high-speed, low-
latency networks (e.g., Gigabit Ethernet net-
works in metropolitan area).

While IP-SAN and storage outsourcing may
bring about advantages, they also increase con-
cern about data security: a malicious intruder
may get more opportunities to access data in
storage because a host computer and the stor-
age can be connected over IP networks; a ma-
licious person may work for your SSP and ad-
minister your storage.

Nowadays, computerized data is vital for all
companies, so malicious data modifications may
cause a substantial loss. For example, trade
based on bogus information may directly result
in huge losses. Or maliciously modifying meta-
data, which is information about directories or
some file system structures such as free inodes
and blocks, may cause an operating system to
crash. Consequent downtime might lead to the
loss of business opportunities.

With IP-SAN, data modifications are more
possible compared with traditional storage ar-

† NTT Cyber Solutions Laboratories

chitectures. Therefore, file systems that can de-
tect data modifications are desirable. Unfortu-
nately, traditional file systems do not provide
such protections. To address this problem, we
have developed Arbre 2), a file system designed
for untrusted block-level storage systems.

Arbre is not a file system for Network At-
tached Storage (NAS), because NAS commonly
refers to a storage architecture that uses file-
oriented delivery protocols such as NFS. Ar-
bre assumes block-level storage systems that
use block-oriented delivery protocols such as
iSCSI ☆. Arbre works with commercial block-
level storage systems without modifying them.

A host computer views the iSCSI driver as a
general SCSI host bus adapter driver that man-
ages the disk drives directly connected by sys-
tem buses. No differences can be found between
the remote iSCSI storage system and the local
hard disk. Thus, Arbre does not have any func-
tionality for accessing storage over IP networks
unlike traditional remote file systems such as
NFS.

Arbre protects the integrity of the entire
file system, rather than the integrity of each
block or each file individually. It uses a
tree-structured collection of collision-resistant
hashes for file system blocks. The synergy be-
tween the tree structure and the control of the
write order always guarantees the integrity of
an entire file system and the consistent state
of the file system data, including metadata and
file data, in the event of a system crash.

The outline of the rest of this paper is as fol-
lows. Section 2 describes our security assump-
tions. Section 3 covers the issues related to pro-

☆ For this work, we used the iSCSI protocol even
though Arbre works with other block-level proto-
cols.

266

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 267

Fig. 1 Arbre architecture (using the iSCSI protocol).

tecting data integrity. Section 4 provides an
overview of the Arbre architecture. Section 5
discusses some of the detailed implementations.
Section 6 presents our performance results. Sec-
tion 7 summarizes related work, and Section 8
summarizes the points.

2. Security Model

As shown in Fig. 1, we assume the following
conditions.
• The host computer is physically protected

from unauthorized people. Thus, all pro-
grams including the operating system run-
ning on it and their volatile state are pro-
tected from being read or modified by any-
one who is unauthorized.

• The networks between the host computer
and remote block-level storage are not
trusted, thus a packet may be modified or
replayed.

• Remote storage is untrusted. That is, an
unauthorized person may gain complete ac-
cess to it. An administrator, who is ex-
pected to manage it properly, may also be
corrupt. Thus, data stored in it may be
modified or replayed ☆.

3. Data Integrity Issues

Under our assumptions, we present a taxon-
omy of the ways that one can protect data in-
tegrity in a file system, and the vulnerabilities
of each approach.

3.1 Granularity in Integrity
All prior file systems that address data in-

tegrity use a collision-resistant hash function,
such as SHA-1 3), which produces a short-length
output from an arbitrary-length input. It is
computationally intractable for finding any two
inputs that produce the same output. There-
fore, the output can be used to verify the in-
tegrity of the input.

The same technology is used to protect data
integrity. However, there are several ways to
protect the integrity in a file system. From the

☆ It means that a malicious administrator may rolls
back stored data.

perspective of granularity in the integrity, we
categorize them into three levels: the block, the
file, and the file system.

3.1.1 The Block Level
The integrity of individual blocks is pro-

tected. A potential implementation would be
to store the hash of each block, index them by
file system block number, and verify each block
individually.

This approach is vulnerable to replay at-
tacks. Suppose that a file system stores all file
system blocks and their keyed hashes in un-
trusted remote storage. Keyed hash schemes
such as Keyed-Hashing for Message Authenti-
cation (HMAC) 4) are based on a cryptographic
hash and a secret key, therefore an person who
does not know the secret key cannot modify
data without being detected. However a ma-
licious person who has complete access to the
storage can save the set of a block and its keyed
hash, and then later replace it with this old set.
Consequently, the file system consists of new
blocks and an old block. This inconsistency
leads to a system crash or a bogus file. Unfortu-
nately, the file system cannot detect the replay,
because the maliciously-written old block has
its valid hash.

3.1.2 The File Level
The integrity of individual files is protected.

A potential implementation would be to store
the hash of blocks that constitute a file in the
inode structure of the file, and verify each file
individually.

This approach is also vulnerable to replay at-
tacks. Suppose that a file system stores all file
system blocks and the keyed hash of each file in
untrusted remote storage. A malicious person
can save blocks constituting a file and the file’s
keyed hash, and then replace the newer version
of the file and its keyed hash with them later
without being detected.

3.1.3 The File System Level
The integrity of the entire file system is pro-

tected. A potential implementation would be
to store a single hash of all file system blocks at
some point.

This approach is also vulnerable to replay at-
tacks. Suppose that a file system stores all file
system blocks and one keyed hash of them on
untrusted remote storage. A malicious person
can save all file system blocks and the keyed
hash of them, and then replace all newer blocks
and its keyed hash with them later without be-
ing detected.

268 IPSJ Transactions on Advanced Computing Systems Aug. 2005

3.2 Consistency
File systems protecting data integrity have to

address three kinds of consistency: hash con-
sistency ☆, metadata consistency, and file-data
consistency.

Hash consistency means consistency between
a block and its hash. Take for example the im-
plementation of a file system protecting data in-
tegrity at the block level in Section 3.1.1. When
the file system modifies a block, it has to com-
pute its hash and write the block and the hash
to storage in an atomic way. That is, the file
system must guarantee that either both modifi-
cations would be committed, or neither would.
Without this guarantee, inconsistency between
a block and its hash would arise after a system
crash. Unfortunately, the file system has no
way of knowing what caused the inconsistency,
i.e., a system crash or malicious modifications.

File systems protecting data integrity must
address both metata and file-data consistency,
although only file-data consistency has also
been addressed by general-purpose file systems.
Take for example the implementation in Sec-
tion 3.1.1 again. Suppose a single system call
modifies two file-data blocks — A and B. The
file system computes the hash of each block,
and then commits the block A and its hash.
However, the system crashes before the block B
and its hash reach storage. After the system re-
boots, the file system sees the file that consists
of the new contents of the block A and the old
contents of the block B. This is the identical
situation caused by the replay attacks explained
in Section 3.1.1.

4. Architecture

4.1 Design Goals
Under our assumptions described in Sec-

tion 2, the Arbre file system guarantees the fol-
lowing two things.
• An unauthorized person cannot modify or

replay a block without being detected.
• The user never sees any kind of inconsis-

tency because of a system crash.
The second guarantee means that hash,

metadata, or file-data inconsistency always
means malicious modification or replays.

Note that authentication between the host
computer and remote storage is still necessary,

☆ In the case that a file system stores a hash as a part
of metadata, metadata consistency includes hash
consistency.

Fig. 2 Arbre disk layout.

although Arbre is designed for untrusted re-
mote storage. This is because Arbre does not
guarantee that data stored in remote storage
are maliciously modified or replayed. It only
guarantees detecting modification and replay
attacks and helping recovery process after de-
tecting them. The iSCSI protocol supports sev-
eral authentication schemes.

4.2 On-disk Data Structures
The Arbre disk layout, shown in Fig. 2, is

comparable to that of a Write Anywhere File
System (WAFL) 5). Arbre structures all blocks
as a tree and stores metadata, the inode ta-
ble file, the block bitmap file, and the inode
bitmap file in files. The root inode, the root of a
tree, represents the inode table file, which con-
tains inodes for the rest of the files. The block
bitmap file and inode bitmap file keep track of
free blocks and inodes, respectively. Unlike a
WAFL, Arbre uses a bitmap structure for them.

The file system block size is 4 KB.
Like the Fast File System (FFS), the Arbre

inode structure contains the attributes of a file
and pointers, i.e., disk block number, to indi-
cate which blocks belong to the file. Unlike an
FFS, the pointers in an Arbre inode point to
blocks at the same level.

Arbre stores a pointer that points to a block
and its hash together. To compute a hash,
Arbre uses the SHA-1 collision-resistant hash
function, which produces a 160-bit hash value.
The Arbre inode structure contains eight sets
of a pointer and a hash. The size of an inode is
256 bytes.

4.3 Reading a Block
If a file system block is not found in mem-

ory, Arbre issues a read request to the block
I/O subsystem. On receiving the block, Ar-
bre computes its hash and compares it with the
hash stored alongside a pointer that points to

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 269

the block to verify its integrity. Arbre struc-
tures all blocks as a single tree. Therefore, the
root of a tree, i.e., the root inode, can be used
to verify the integrity of the entire file system
recursively.

The hash of the root inode, called the root
hash, encapsulates the hashes of all blocks con-
stituting the file system at some point. By us-
ing a combination of the root hash and a small
number of other hashes, Arbre can verify the in-
tegrity of any part of the entire file system in a
recursive fashion without reading all the blocks.
This scheme uses the technique of maintaining
the tree-structured collection of hashes, called
a hash tree 6).

The hash tree is not sufficient for protecting
data integrity in untrusted storage, because a
person getting complete access to the storage
can compute and write the hash of a block. Ar-
bre makes use of HMAC to protect the root
hash, so that a person who does not know the
secret key cannot forge the root hash. There-
fore, Arbre can detect the modification of the
root hash in untrusted storage unless the secret
key stored in the host computer is revealed.

Though HMAC can prevent an unauthorized
person from modifying the root hash without
being detected, it cannot prevent replays of
an old root hash. In order to prevent replay
attacks, upon updating the root hash on un-
trusted storage, Arbre also stores it in the host
computer. When the file system is mounted,
Arbre uses the root hash stored in the host com-
puter to ensure that the root inode stored in
untrusted storage is not replaced with an old
root inode. This scheme enables Arbre to de-
tect any kinds of replay attacks. We describe
the detailed procedure later.

The current implementation handles incon-
sistency between a block and its hash like an
I/O error (e.g., disk drive failure). A system
call that read a maliciously-modified block re-
ceives an EIO error and the system prints an
alert message on the console and produces a
beep. Thus, the user can prevent further dam-
age.

After Arbre finds a maliciously-modified
block, there is no way to recover the original
data of the block unless the user saved backup
copies. The amount of doubtful data depends
on the place of the maliciously-modified block.
That is, blocks that descend from the modified
block become doubtful. Reading regular files
need to access metadata files, thus if the block

of the metadata files is maliciously modified,
multiple files can be doubtful.

4.4 Writing a Block: Phase Tree Algo-
rithm

Certain system calls modify several blocks.
Arbre performs such modifications in an atomic
way. That is, Arbre guarantees that after a
system crash, either all modifications will reach
storage, or none will. We refer to a set of modi-
fications due to a single system call as an atomic
operation.

We adopted the proposed phase tree algo-
rithm of the TUX2 file system 7) to ensure that
each system call is performed in an atomic way.
Arbre can guarantee hash, metadata, and file-
data consistency by using this algorithm.

The phase tree algorithm is similar to no-
overwrite techniques used by a WAFL or
Venti 8). It exploits a tree-structured file sys-
tem and uses two techniques: the controlling of
the order of writes and the writing of a modified
block in a new location.

The phase tree algorithm writes the root
block after all modified blocks due to an atomic
operation are written in a new location. Fig-
ure 3 shows how it works.

Figure 3 (a) represents a file system that has
no modified blocks. The file system has only
one tree, called the recorded tree, representing
a persistent version of the file system stored in
storage. This is a simplified version of Fig. 2.

Figure 3 (b) represents the state of the file
system after an atomic operation modifies the
block D3. Before modifying the block D3,
the phase tree algorithm makes a copy of the
recorded root inode, i.e., the root inode of the
recorded tree. Then, the duplicate root in-
ode becomes the new root of a tree, called the
branching tree, and it represents the latest ver-
sion of the file system. The phase tree algo-
rithm never overwrites a block belonging to the
recorded tree. A modified block is always writ-
ten in a newly allocated location.

The contents of the modified block D3 are
written in a newly allocated location, the
block D4. Then the block P1, which origi-
nally has a pointer to the block D3, is modi-
fied and written in a newly allocated block P2.
Now the block P2 has pointers to the allocated
block D4 and the block D2, and the modified
root inode points to the block P2. After the
blocks P2 and D4 reach storage, the modified
root inode, which has pointers to the block P0
and P2, is written. It becomes the new version

270 IPSJ Transactions on Advanced Computing Systems Aug. 2005

Fig. 3 Tree transition.

of the recorded root inode. In the phase tree
algorithm, the file system always has to make
changes all the way up the root inode upon ev-
ery atomic operation.

If an unexpected event happens before the
root inode reaches storage, the phase tree al-
gorithm goes back to the recorded root inode
stored in storage.

4.4.1 Performance Optimization
Intuitively, the phase tree algorithm has two

clear performance bottlenecks. First, each
atomic operation results in modifications all the
way up the root of the tree. This means that the
file system has to write more data than update-
in-place file systems like FFS. Secondly, while
a modified block is being written to storage, it
cannot be modified. That is, if a system call is
trying to modify the block, it has to wait for the
block to reach storage. This is problematic par-
ticularly for a frequently modified block, e.g., a
block of the inode table file.

For performance improvement, the phase tree
algorithm enables a separate solution for each
of these two bottlenecks.

4.4.1.1 Clustering
To decrease the number of writes, the phase

tree algorithm can push several atomic oper-
ations into a single branching tree. This en-
ables the file system to avoid creating a new
branching tree for every atomic operation. This
amortize the cost of the operations to create a
new branching and commit a recording tree to
disk. Moreover, this enables Arbre to commit
multiple pending I/O operations within a sin-
gle block by writing a single block to disk. We
refer to this optimization as clustering.

A similar technique is used in the ext3 jour-
naling file system, which is a journaling file sys-

tem widely used in Linux. The ext3 file system
merges metadata changes due to several sys-
tem calls within a certain period of time into
a single transaction. When several system calls
change the same metadata block, the ext3 file
system overwrites them. When the transaction
finishes, the ext3 records the last state of the
metadata block in the log.

4.4.1.2 Copy Out
As described, if an atomic operation tries to

modify a block that is being written to storage,
it must wait for the I/O completion of the block.
Instead of suspending a system call, the phase
tree algorithm copies the contents of the block
into a newly allocated buffer and permits the
system call to modify the buffer.

Figure 3 (c) shows how this optimization
works. It represents the state of the file sys-
tem receiving a new atomic operation during
writing modifications due to a finished atomic
operation. Suppose that the file system is writ-
ing modifications (the block D4, P2, and the
root inode) due to a finished atomic operation
and a new atomic operation is about to modify
the block D4. We call the tree having blocks
that are being written the recording tree.

The file system creates a new branching tree
by duplicating the recording root inode, and
then copies the contents of the block D4 into
a newly allocated block D5. The system call
can modify the block D5 immediately without
waiting for the I/O completion of the block D4.

With this optimization, the phase tree algo-
rithm usually has three trees at the same time:
the recorded tree, the recording tree, and the
branching tree.

We call this optimization copy out, which is
one of the biggest differences between the phase

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 271

tree algorithm and the WAFL algorithm. In the
same situation, a WAFL suspends the system
call until the I/O completion.

4.4.2 Updating the Root Inode and Its
Hash

Arbre stores the set of the root inode and its
hash in a fixed location on remote storage to
find it when mounting the file system. In ad-
dition, Arbre requires 256-byte space of trusted
storage (typically a disk directly attached to the
host computer) for the copy of the root inode
to prevent replay attacks.

We assume that the hard disk drive guar-
antees the writing of a single 512-byte sec-
tor atomically with respect to crashes. Arbre
writes a set of the root inode and its hash to a
single 512-byte sector; thus the root inode and
its hash are updated atomically.

Arbre performs the following two operations
upon updating the root inode and its hash.
First, Arbre writes the root inode of the record-
ing tree and its hash in the location of the re-
mote root inode in remote storage. Secondly,
the root inode stored in the location of the lo-
cal root inode in trusted storage is updated af-
ter the recording root inode and its hash reach
remote storage.

In Section 4.7, we describe the recovery pro-
cedure upon system restart.

Atomic operations are not blocked during up-
dating the remote root inode or the local root
inode. That is, atomic operations can safely
modify the branching tree while the recording
tree is committed. The details of schemes to
modify blocks that are being committed are ex-
plained in Section 5.

4.5 Block Allocation and Reclamation
With the clustering optimization, Arbre

asynchronously performs an atomic operation.
That is, not all modifications due to a sys-
tem call reach storage when the system call
returns. This enables Arbre to not allocate a
new location to a block belonging to a branch-
ing tree. Thus, Arbre avoids needless alloca-
tions of disk space for a short-lived file to im-
prove performance. After the branching tree
becomes a recording tree, new locations are al-
located. Similar techniques to delay the alloca-
tion of disk space are used in the log-structured
file system (LFS) 9).

In the current Arbre implementation, block-
allocation policy is simple. It allocates physi-
cally sequential blocks to dirty buffers in turn
without having concepts about high-level infor-

mation such as files and directories. This policy
may result in good performance in writing but
may also result in poor performance in reading.
We examine the effect in Section 6.

Unlike no-overwrite file systems such as a
WAFL or Venti, Arbre soon reclaims a block
that becomes useless. In Fig. 3 (c), the blocks
written with dotted lines are reclaimed when
the root inode of the recording tree reaches
storage and becomes the root inode of the new
recorded tree. The branching tree keeps track
of blocks that are made unnecessary by replace-
ment with a newly allocated block or by the
deletion of files. Then, when the branching tree
becomes the recording tree, the block bitmap
file of the new recording tree is modified appro-
priately.

4.6 Computing Hashes
Performing an atomic operation asynchro-

nously also enables Arbre to perform hash com-
putation efficiently.

Arbre asynchronously computes hashes to
avoid needless hash re-computations. That is,
Arbre does not compute hashes of blocks be-
longing to a branching tree. Like the approach
to allocating a block, when a branching tree be-
comes a recording tree, Arbre computes hashes
of modified blocks all the way to the root inode.

4.7 Recovery
4.7.1 The Root Inode
The Arbre recovery procedure consists of two

phases. First, Arbre restores the root inode.
Arbre verifies the set of the remote root in-

ode and its hash. Then, Arbre computes the
hash of the root inode, and compares it to the
hash stored alongside the remote root inode.
The verification failure means malicious modi-
fication.

If the hash verification is successful, Arbre
compares the set with the local root inode,
which is stored in the host computer, to ensure
that the remote root inode represents the latest
file system. If they are identical, Arbre mounts
the file system by using the remote root inode.
When they are different, there are two possible
cases. If the timestamp in the remote root in-
ode is newer than that in the local root inode,
it means that Arbre committed the remote root
inode, but a system crash before committed the
local root inode. In this case, Arbre can safely
mount the file system by using the remote root
inode because with HMAC it is impossible for
a person who does not know the secret key to
forge the set of a root inode containing future

272 IPSJ Transactions on Advanced Computing Systems Aug. 2005

timestamp and its valid hash.
When timestamp in the remote root inode

is older than that in the local root inode, the
past root inode and its hash were maliciously
replayed.

4.7.2 Freeing Unused Inodes
After mounting the file system, Arbre per-

forms the second phase to reclaim unused in-
odes and blocks.

Due to last close semantics in UNIX operat-
ing systems, Arbre may mark free blocks and
inodes as “in use” even when they are actually
unused. This happens when an inode is deleted
from the directory, but held open at the time
of a crash. Arbre adopts the scheme that the
ext3 file system uses to guarantee recovery to a
consistent state after a system crash.

When a branching tree becomes a recording
tree, the inode number of a file that is deleted
but held open is recorded in the root inode. If
there is another file deleted but held open, its
inode number is saved in the inode structure
whose inode number is stored in the root inode.
Therefore, Arbre can trace these inodes in turn
from the root inode to correct the inode bitmap
file and the block bitmap file after a system
crash.

5. Detailed Implementation

5.1 Tree Transition
A kernel thread, called phase thread, deals

with all of Arbre’s operations: tree state tran-
sitions, asynchronous hash computations, and
the write of cached file system data. Arbre
does not use the Linux standard pdflush service,
which writes dirty cached data periodically ☆.

To simplify the implementation, we changed
the phase tree algorithm slightly. The original
phase tree algorithm does not limit the number
of recording trees. Thus, the file system usually
has one recorded tree, several recording trees,
and one branching tree. However, Arbre has
one recording tree at most.

We explain how the phase thread works in
subsequent paragraphs.

5.1.1 Creating a Branching Tree
When Arbre starts an atomic operation, it

first allocates a data structure representing a
tree, and sets its state to BRANCHING. Pos-
sibly, Arbre already has a branching tree since

☆ Though the traditional block buffer cache does not
exist in the Linux kernel version 2.5 series, we use
the word buffer to represent a cached disk block.

Arbre pushes several atomic operations into a
single branching tree. In such a case, Arbre
does not create a new tree and uses the current
branching tree.

Second, Arbre increases the counter called
operation counter in the data structure of
the branching tree. This counter prevents a
branching tree from becoming a recording tree
while the branching tree manages an unfinished
atomic operation.

5.1.2 Modifying Data
Before the atomic operation modifies a buffer,

Arbre checks the state of the buffer. There are
three possible cases.
(1) The buffer is clean.
(2) The buffer is dirty and linked to the

branching tree.
(3) The buffer is dirty and linked to a record-

ing tree.
In the first case, Arbre links the buffer with

the branching tree. In addition, Arbre links
an inode object to which the buffer belongs
with the dirty inode list in the data structure of
the branching tree. Then, Arbre modifies the
buffer.

The second case means that the buffer is al-
ready modified and managed by the branching
tree. In this case, Arbre can modify the buffer
immediately.

In the third case, the buffer is also dirty like
the second case; however, the buffer is linked
not with the branching tree, but a recording
tree. This means the buffer might be being
written to storage. If the buffer has not yet
been handed over to the block I/O subsystem,
Arbre allocates memory, and then copies the
contents of the buffer into it. The newly allo-
cated memory called frozen data is linked with
the buffer. Frozen data is used later when the
buffer is actually handed over to the block I/O
subsystem. Arbre can safely modifies the buffer
because its contents is saved. If the buffer has
been handed over to the block I/O subsystem
already, Arbre waits for the operation to com-
plete.

When the atomic operation finishes, Arbre
decreases the operation counter.

5.1.3 Transition from Branching to
Recording State

The phase thread changes the state of a tree
from BRANCHING to RECORDING in three

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 273

cases: when sync or fsync system call is issued ☆,
when too much time has elapsed since a branch-
ing tree was created, or when the number of
dirty buffers exceeds a threshold. In such a
case, the phase thread performs the following
operations to guarantee that a recording tree
does not include the results of unfinished atomic
operations.
(1) The phase thread sets the state of the

branching tree to LOCKED. This pro-
hibits the branching tree from receiving
a new atomic operation.

(2) If the branching tree manages atomic op-
erations that are already in progress, the
phase thread waits for these atomic op-
erations to finish.

(3) The phase thread modifies the block
bitmap file to free unused blocks, and
then links deleted but open inodes to-
gether from the branching inode.

(4) The phase thread allocates new locations
for dirty buffers linked with the locked
tree.

(5) The phase thread modifies the inode ta-
ble file by using inode objects linked with
the dirty inode list in the locked tree and
then unlinks the inode objects from the
dirty inode list.

After finishing these operations, the phase
thread changes the state from LOCKED to
RECORDING. This means that the phase
thread resumes accepting a new atomic oper-
ation.

These operations take a short time because
they require few disk I/O. Thus there are few
atomic operations blocked due to a locked tree.

5.1.4 Computing Hashes
The phase thread computes the hashes of the

dirty buffers and then modifies dirty buffers by
using these hashes. It starts from the leaf to
the root inode because the contents of a block
except file-data blocks contain a hash of a block
at the lower level.

If a dirty buffer has frozen data, the phase
thread computes the hash of the frozen data
instead of the buffer. This is because a new
branching tree modifies the buffer before the
phase thread starts computing its hash.

5.1.5 Committing
The phase thread starts writing the buffers

☆ Effectively, a fsync system call is identical to a sync
system call with Arbre, because there is now way of
committing only a particular file.

to storage. If a buffer has its frozen data,
the frozen data is written to storage instead
of the buffer. After all modified buffers linked
with the recording tree reach storage, the phase
thread writes the recording root inode in the
way described in Section 4.4.2.

6. Performance

6.1 System Comparison
We compared Arbre’s performance to that of

ext3. We configured ext3 as “writeback” mode.
Arbre guarantees metadata and file-data con-
sistency, although ext3 in this mode guarantees
only metadata consistency. Both update their
data asynchronously. A kernel thread called
kjournald logs metadata every five seconds by
default for ext3. Like kjournald, we configured
the phase daemon to write modified blocks ev-
ery five seconds.

6.2 Experimental Infrastructure
We present the performance of Arbre running

on Linux kernel version 2.5.63. We report the
averages of three runs for all experiments.

The host computer is the Dell Precision
Workstation 530, which uses a 2 GHz Xeon pro-
cessor with 1 GB of PC800 RDRAM main mem-
ory, an Intel 860 chipset and an Intel Pro/1000
MT Server Adapter connected to a 66-MHz 64-
bit PCI slot. It runs our iSCSI initiator imple-
mentation based on the source code of the IBM
iSCSI initiator. Fujitsu-MAM3184MP 18 GB
15000 RPM SCSI disks are directly connected
to the host via an Adaptec 7892 Ultra 160 SCSI
chip.

The Remote storage is the IBM TotalStorage
IP Storage 200i, which is an iSCSI appliance
on two 1.13 GHz Pentium III processors with
1 GB of PC133 SDRAM main memory and an
Intel Pro/1000 F network adapter connected to
a 66-MHz 64-bit PCI slot.

The file systems examined have a 18 GB par-
tition on the remote disk.

To evaluate the network delay effects in a
WAN environment on the performance, we used
the National Institute of Standards and Tech-
nology Net (NIST Net) 10), software package
that emulates performance dynamics in IP net-
works. We set up another server as a router,
on which NIST Net runs, between the server
and the remote disk. It had the same specifica-
tion as the host computer. We set the one-way
network delay to 0, 2, and 4 ms ☆☆.

☆☆ We had measured network delays for one week using

274 IPSJ Transactions on Advanced Computing Systems Aug. 2005

Fig. 4 Response time.

Fig. 5 Throughput (MB/s) creates.

6.3 Microbenchmark Results
To get the basic performance characteristics

of Arbre, we (1) measured the response time of
reading and writing a single block, and (2) used
microbenchmarks similar to those used in the
recent file system papers 11),12) on the remote
disk. We started each test with a cold cache.

Figure 4 shows the results of the response
time. As expected, the read performance is
severely impacted by network delay (the re-
sponse time has increased linearly), although
the write peformance is not due to page cache.
Arbre performs worse mainly because it, which
stores metadata in files, takes a longer time to
modify an inode than ext3, which stores meta-
data at fixed places in disk.

The microbenchmarks create (including
write), read, and delete files with the sizes rang-
ing from 16KB to 512 KB. The total amount
of data is 256 MB. To avoid the big overheads
of pathname lookup, the files were distributed
over directories, and there were fewer than 50
files in each directory.

Figure 5 shows the results of the create
microbenchmark. Arbre is slower than ext3
with file sizes up to 64KB, for the same rea-

our mass-market fiber network services in a metro
area. The average one-way delay was 3.71ms.

Fig. 6 Throughput (MB/s) reads.

son as before. With 64 KB, Arbre is faster
than ext3, because it allocates physically se-
quential blocks to dirty buffers and writes them
at a time without distinction of metadata and
file-data blocks. Therefore it can use most of
the disk’s bandwidth. On the other hand, over
48 KB, ext3 has to log the modifications of in-
direct blocks ☆. Ext3 tries to allocate physi-
cally continuous blocks to indirect and file-data
blocks. However file-data blocks, which ext3
does not log, are passed to the I/O subsystem
soon, though ext3 waits to write indirect blocks
until they are committed in the log. This causes
more disk seeks, which lower the performance.

For large file sizes, Arbre was expected to
achieve high performance by allocating physi-
cally continuous blocks, however, it did not (es-
pecially with large delays). This is mainly be-
cause Arbre must serialize most updates.

Figure 6 shows the results of the read mi-
crobenchmark. As expected, ext3 greatly out-
performs Arbre. Though Arbre suffers the over-
head for computing hashes, the main problem is
Arbre’s simple block-allocation policy, i.e., se-
quential allocation without high-level notion of
a file and a directory. As a result, on Arbre,
this benchmark works like random read. On the
other hand, ext3 divides the partition into sev-
eral groups, tries to distribute directories uni-
formly to the groups, and attempts to allocate
all files of a directory to the same group. This
policy is favorable to this benchmark, which
reads files in each directory recursively. One
possible solution would be for Arbre to use a
similar block-allocation policy though it might
slightly decrease the write performance.

Figure 7 shows the results of the delete mi-
crobenchmark. With file sizes up to 64KB, we
see that ext3 performs better than Arbre, be-

☆ An ext3 inode has twelve direct pointers.

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 275

Fig. 7 Throughput (files/s) delete.

Fig. 8 PostMark benchmark results.

cause Arbre, storing metadata in files, suffers
higher cost of inode operations. Furthermore,
it also suffers overhead for computing hashes.
The large performance drop of ext3 at 64KB
results from the overhead of logging an indirect
block such as the create and write benchmark
as described. The drop of Arbre is due to the
overhead of reading an indirect block such as
the write benchmark.

6.4 Macrobenchmark Results
To evaluate the performance of Arbre in com-

mon workloads, we ran the PostMark bench-
mark 13) on the remote disk. The PostMark
benchmark is designed to measure performance
in the ephemeral small-file workloads seen by
Internet Service Providers. We set the bench-
mark to run with 20,000 files, 50,000 trans-
actions, and file sizes between 512 bytes and
16KB.

Figure 8 shows the results. Ext3 is 10.8%,
18.9%, and 28.3% faster than Arbre respec-
tively. The results show that Arbre is more sen-
sitive to delay conditions because it must serial-
ize most of writes, as explained before. Further-
more, Arbre relies on high-performance sequen-
tial disk access to achieve high performance by
allocating physically continuous blocks. How-
ever, sequential I/O performance is severely im-
pacted by network delay, unlike random I/O
performance whose latency can be hidden by

the disk random-access latency 14).

7. Related Work

There have been a number of previously de-
veloped file systems that have been designed
to protect data integrity in a remote untrusted
repository. However, there have been few for
remote untrusted block-level storage using ex-
isting block-oriented delivery protocols. Most
of them assume file-oriented delivery protocols
or newly designed block-oriented protocols.

As far as we know, the protecting file system
(PFS) 15) is the only file system that achieves
data integrity for remote storage using exist-
ing block-oriented delivery protocols. PFS is
most like the potential implementation protect-
ing data integrity at the block level as described
in Section 3.1.1 and guarantees hash and meta-
data consistency by using the journaling ap-
proach. As explained, this approach is vulnera-
ble to replay attacks. With the hash tree tech-
nique PFS could provide data integrity at the
file system level, however, integrating the hash
tree technique with the PFS design is not easy
because it stores hashes separately from the file
system. PFS keeps the block map, data struc-
ture for mapping a file system block number
to its hash. PFS divides up the block map
and writes each piece in a log-like structure
in a round-robin fashion because of the large
size of the block map. The hash tree tech-
nique forces PFS to commit the whole block
map in a tree-like structure at a time. This
operation takes a long time and requires the
complex locking scheme to synchronize access
to the block map. A large amount of memory
for keeping the whole block map is also required
to perform this operation with reasonable per-
formance. Arbre, on the other hand, tightly in-
tegrates the hash tree into the design to update
the file system with touching a small amount
of data while keeping the integrity of the entire
file system.

The read-only secure file system (SFSRO) 16)

is a read-only file system intended for content
distribution. The SFSRO inodes contain a hash
tree, and an authorized user signs the root hash.
SFSRO uses not existing block-oriented deliv-
ery protocols but a newly designed protocol.
The protocol uses the hash of a file-data block
as the block identifier to guarantee data in-
tegrity. SFSRO does not address the consis-
tency problems after a system crash since it
does not assume frequent updates.

276 IPSJ Transactions on Advanced Computing Systems Aug. 2005

Another system is SUNDR 17), which pro-
vides data integrity at the file system level with-
out relying on trust in remote storage. SUNDR
designs a new block-oriented delivery protocol.
SUNDR remote storage indexes blocks by their
hash instead of their block number. The host
computer requests blocks from the remote stor-
age by using their hash.

Ivy 18), a peer-to-peer file system, also uses
a similar technique known as distributed hash
tables (DHT) to index blocks by their hash 19).
It stores changes made to the file system in a
log-like structure. Therefore data integrity at
the file system level is provided. Ivy is not
a general-purpose file system, but a special-
purpose file system for sharing data in P2P net-
works. It does not provide performance com-
parable with to that of a general-purpose file
system.

WAFL 5) and Venti 8) structure all blocks as a
single tree like Arbre, and use a technique sim-
ilar to the phase tree algorithm. WAFL, a file
system designed for an NFS appliance, does not
address data integrity. Venti uses a newly de-
signed storage protocol to index blocks by their
hash to provide a flexible location for archival
storage. Venti provides data integrity at the file
system level; however, Venti is an archival stor-
age system for special-purpose applications. It
does not keep the general file system interface.

The Arbre design, which structures all blocks
as a tree, where metadata blocks contain
hashes of data blocks, is comparable to that
of the Trusted Database (TDB) 20), which is a
database designed to be housed in untrusted
storage. However, Arbre, which provides a gen-
eral file system interface, has to deal with prob-
lems peculiar to a file system.

The technique used in Cepheus 21) of storing a
pointer to a block and its hash together to pro-
tect the integrity of the block is comparable to
that of Arbre. Cepheus is most like the poten-
tial implementation protecting data integrity at
the file level as described in Section 3.1.2. It
uses a modified version of the NFS protocol,
and thus does not protect the integrity of some
metadata such as block bitmap data. Further-
more, hash, metadata, or file-data consistency
are not addressed.

SNAD 22) is network attached storage provid-
ing confidentiality and integrity at the file level.
Unlike Arbre, it uses a newly designed block-
level storage architecture.

For data confidentiality, Arbre can use

device-mapper crypto target feature 23) in the
Linux kernel that transparently encrypts and
decrypts data at the block level.

An important extension for future work is the
reliability of data. Though it is impossible to
prevent a person who gets complete access to
storage from wiping out data stored in it, Ar-
bre can alleviate the danger of losing data in
such a case by replicating data over multiple
storage sites. Many works 24) have addressed
the issue of data reliability in the presence of a
site disaster through replicating storage at the
block level.

8. Conclusion

The advent of IP-SAN has increased concern
about data security. However, general-purpose
file systems can not detect data modification.

This paper describes Arbre, a file system de-
signed for remote block-level storage using the
standard IP storage protocols. Without rely-
ing on trust in remote storage or changes to
the block interface between a host and stor-
age systems, Arbre guarantees the integrity of
the entire file system on a large amount of un-
trusted remote storage by using a small amount
of trusted storage. An unauthorized person has
no way to modify or replay any part of the
blocks that constitute the file system without
being detected.

Arbre structures all file system blocks as a
tree and storing a pointer to a block and its
hash. It achieves data integrity at the file sys-
tem level by synthesizing the tree structure and
the no-overwrite technique.

Arbre alleviates the overheads of updating
blocks all the way up to the root by perform-
ing system calls asynchronously, delaying allo-
cations of disk space, and making it possible
to modify a block that is being transferred to
disk. Consequently, it provides acceptable per-
formance.

References

1) Satran, J., Meth, K., Sapuntzakis, C.,
Chadalapaka, M. and Zeidner, E.: Internet
Small Computer Systems Interface (iSCSI),
RFC 3720 (2004).

2) Tomonori, F. and Masanori, O.: Protecting
the Integrity of an Entire File System, First
IEEE International Workshop on Information
Assurance (IWIA ’03), Darmstadt, Germany,
pp.95–105 (2003).

3) National Institute of Standards and Technol-

Vol. 46 No. SIG 12(ACS 11) Arbre: A File System for Untrusted Remote Block-level Storage 277

ogy, FIPS 180-1, Secure Hash Standard, US
Department of Commerce (Apr. 1995).

4) Bellare, M., Canetti, R. and Krawczyk, H.:
Keying Hash Functions for Message Authenti-
cation, Advances in Cryptology — Crypto ’96,
Lecture Notes in Computer Science, Vol.1109,
Santa Barbara, CA, pp.1–15, Springer (1996).

5) Hitz, D., Lau, J. and Malcolm, M.: File Sys-
tem Design for an NFS File Server Appliance,
USENIX Winter 1994 Technical Conference,
San Francisco, CA, pp.235–245 (1994).

6) Merkle, R.C.: A Digital Signature Based on
a Conventional Encryption Function, Advances
in Cryptology — Crypto ’87, Lecture Notes
in Computer Science, Vol.293, Santa Barbara,
CA, pp.369–378, Springer, (1987).

7) Phillips, D.R.: The Tux2 Failsafe Filesystem
for Linux. http://marc.merlins.org/linux/
linux.conf.au 2001/Day2/Tux2.html

8) Quinlan, S. and Dorward, D.: Venti: a new
approach to archival storage, USENIX Confer-
ence on File and Storage Technologies, Mon-
terey, CA, pp.89–102 (2002).

9) Rosenblum, M. and Ousterhout, J.K.: The
Design and Implementation of a Log-
Structured File System, ACM Trans. Comput.
Syst., Vol.10, No.1, pp.26–52 (1992).

10) The National Institute of Standards and Tech-
nology: NIST Net network emulator. http://
snad.ncsl.nist.gov/nistnet/

11) Seltzer, M., Ganger, G., McKusick, M.K.,
Smith, K., Soules, C. and Stein, C.: Journaling
Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems, USENIX Annual
Technical Conference, San Diego, CA, pp.71–
84 (2000).

12) Ganger, G.R., Mckusick, M.K., Soules,
G.A.N. and Patt, Y.N.: Soft Updates: A Solu-
tion to the Metadata Update Problem in File
Systems, ACM Trans. Comput. Syst., Vol.18,
No.2, pp.127–153 (2000).

13) Katcher, J.: PostMark: A New File System
Benchmark, Technical Report TR3022, Net-
work Appliance (1997).

14) Ng, W.T., Hillyer, B., Shriver, E., Gabber, E.
and Özden, B.: Obtaining High Performance
for Storage Outsourcing, USENIX Conference
on File and Storage Technologies, Monterey,
CA, pp.145–158 (2002).

15) Stein, C.A., Howard, J.H. and Seltzer, M.I.:
Unifying File System Protection, USENIX
Annual Technical Conference, Boston, MA,
pp.79–90 (2001).

16) Fu, K., Kaashoek, M.F. and Mazières, D.: Fast
and secure distributed read-only file system,
4th USENIX Symposium on Operating System
Design and Implementation, San Diego, CA,

pp.181–196 (2000).
17) Mazières, D. and Shasha, D.: Building se-

cure file systems out of Byzantine storage, 21st
ACM Symposium on Principles of Distributed
Computing, Monterey, CA, pp.108–117 (2002).

18) Muthitacharoen, A., Morris, R., Gil, T.M. and
Chen, B.: Ivy: A Read/Write Peer-to-Peer File
System, 4th USENIX Symposium on Operating
System Design and Implementation, Boston,
MA, pp.31–44 (2002).

19) Dabek, F., Kaashoek, M.F., Karger, D.,
Morris, R. and Stoica, I.: Wide-Area Coop-
erative Storage with CFS, 18th ACM Sympo-
sium on Operating Systems Principles, Banff,
Canada, pp.202–215 (2001).

20) Maheshwari, U., Vingralek, R. and Shapiro,
W.: How to Build a Trusted Database System
on Untrusted Storage, 4th USENIX Symposium
on Operating System Design and Implementa-
tion, San Diego, CA, pp.135–150 (2000).

21) Fu, K.: Group Sharing and Random Access in
Cryptographic Storage File System, Master’s
thesis, Massachusetts Institute of Technology
(1998).

22) Miller, E., Long, D., Freeman, W. and Reed,
B.: Strong Security for Network-Attached Stor-
age, USENIX Conference on File and Storage
Technologies, Monterey, CA, pp.1–14 (2002).

23) Saout, C.: dm-crypt: a device-mapper crypto
target. http://www.saout.de/misc/dm-crypt/

24) Gabber, E., Fellin, J., Flaster, M., Gu, F.,
Hillyer, B., Ng, W.T., Özden, B. and Shriver,
E.: StarFish: Highly-Available Block Storage,
USENIX Annual Technical Conference, San
Antonio, TX, pp.151–164 (2003).

(Received January 19, 2005)
(Accepted May 12, 2005)

Tomonori Fujita received
his B.E. and M.E. degrees
from Waseda University in 1998
and 2000 respectively. He
has worked in Nippon Tele-
graph and Telephone Corpora-
tion since 2000 and has engaged

in research on operating systems. He is a mem-
ber of IPSJ, USENIX, and ACM.

278 IPSJ Transactions on Advanced Computing Systems Aug. 2005

Masanori Ogawara received
the B.E. and M.E. degrees in
Electrical Engineering from Keio
University, Yokohama, Japan in
1992 and 1994, respectively. In
1994, he joined NTT Network
Service Systems Laboratories,

where he had engaged in research on photonic
network communications. He is currently work-
ing at NTT Comware Corporation. His re-
search interests include user-oriented service
platform on a home network. He is a member
of IEICE. He received the paper award from
IEICE, Japan, in 1999.

