
Parametrized Control in Soccer Simulation with
Deep Reinforcement Learning

Yang Xu1,a) Tsuruoka Yoshimasa2

Abstract: The recent advances in deep reinforcement learning have proved itself as a very promising and
competitive solution for making sequential decision in games with discrete action space and well-defined
reward signal, e.g., Atari games [3] and robotics simulation[11]. However, when applied outside of these
experimental environments deep reinforcement learning is still challenged by increase of state and action
space dimensions. Also, when dealing with more complex environments with continuous or parametrized
action space. Deep reinforcement learning does not always display stable learning. In this work we intro-
duce Half Field Offense, a new experimental environment for deep reinforcement learning. We tested some
state-of-the-art algorithms in this new environment to test their adaptivity and performance.

1. Introduction

One very crucial and important goal of artificial intelli-

gence is to allow artificial intelligence controlled agents to

learn and carry out real-life tasks. In the recent development

of deep reinforcement learning a lot of research is focused on

using computer game environments to develop algorithms

that have potential to be applied in real-life tasks. Many

successes in the game environments have shown promising

future for deep reinforcement learning. The ”Deep Q Net-

work” [3] have successfully allowed a deep reinforcement

learning agent to learn to play almost all different Atari-

2600 games with near human performance. In 2015, Schul-

man et al. was able to let an agent learn to complete several

tasks of robotics simulation in the MuJoCo [11] environ-

ment. Furthermore, a deep reinforcement agent powered by

Deep Deterministic Policy Gradient (DDPG) is able to learn

to the same set of tasks with less training time and similar

performance [4].

Fig. 1: Basic mechanism of deep reinforcement learning.

Basic mechanism of deep reinforcement learning is displayed

in Fig.1. Where an agent observes the state of an environ-

ment and then issue an action according to the agent’s pol-

1 Dept. of Electrical Engineering and Information Systems,
Graduate School of Engineering, the University of Tokyo.

2 Dept. of Information and Communication Engineering, Fac-
ulty of Engineering, the University of Tokyo.

a) yangxu@logos.t.u-tokyo.ac.jp

icy. This policy is produced by the interpretation of the

agent’s deep neural networks. The environment receives the

action and proceeds into the next state while providing a

reward signal to the agent. This reward signal serves as a

reference for the network to update itself.

More formally, we consider the games played by the

deep reinforcement learning agent as a Partially Observ-

able Markov Decision Process (POMDP) defined by the tu-

ple (S,A, P, r, µ0, γ). S is a set of states, A is a set of

actions, P : SxAxS → [0, 1] is the transition probability,

r : SxA → R is the reward function, µ0 is the initial state

distribution and γ is the discount factor. These elements of

reinforcement learning will be described in detail in Chapter

2.

Most of these previous successes are achieved in exper-

imental environments such as OpenAI’s gym-Atari [12] or

MuJoCo [11]. There are a some points making tasks in these

environments different from actual real-life tasks. Firstly,

the action space of these tasks are relatively small. The

Atari tasks contains only 9 discrete actions. Whereas the

MuJoCo tasks has an action space of smaller than 6 con-

tinuous actions. In Real-life it is very easy to find tasks

with more than 20 available actions. Secondly, these ex-

perimental environments has a relatively small size of state

space. For Atari tasks, simplified game images are used to

represent states. which are represented as a 80 x 80 array of

discrete numbers. For the MuJoCo tasks, feature sets of var-

ious length (normally smaller than 30 continuously figured

features per feature set) are used to represent the state. The

size of features or state representations in real world is much

larger. Thirdly, these environments provide a true reward

for the tasks the agent is carrying out. This is not always

true for real-life tasks as we normally can not provide a true

reward. Typical real-life tasks like auto driving cannot be

easily evaluated to provide exact figure for reward signals.

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 208 -

Agent developers would need to provide an approximation

to the reward by either hard code a reward function or use

a reward approximator.

Another problem of the state-of-the-art deep reinforce-

ment learning achievements is the lack of ability to learn hi-

erarchical tasks. This problem have first started to emerge

from the original DQN work. In the DQN work the agent

scored very low in a game called Montezuma’s Revenge. In

order to get high score in this game, an agent has to do

logical and rational moves like gather a key to open a door.

However the DQN agent failed to understand this simple

logic. This problem continues to trouble researchers in later

works. Methods like apply human language as a guide [16]

or complex actor-critic structure [15] have been proposed.

But most of them still focus on the Montezuma’s revenge

game and are not generalized into other environments.

In order to solve the above issues on the current testing

environments for deep reinforcement learning. We need to

introduce a more complex and more close-to-reality testing

environment. In this work we used the Half Field Offense

(HFO) [1]. This platform origins from the RoboCup 2D

competition platform, which is a testing and competition

platform with long history. HFO provides possibilities for re-

searchers to explore single agent, multi-agent and teamwork

tasks for learning agents. The HFO environment provides

a large continuous low-level state space and a parametrized

continuous action space. More specifically, this action space

requires the agent to select both the type of the action and

the parameters of the action. This structure of action se-

lection is very commonly seen in real life but have not been

found in other testing environments. HFO’s tasks are all

hierarchical. Even the simplest task we carried out in this

work involves multiple steps for the agent to learn if high

reward is desired.

In this work we apply some state-of-the-art deep reinforce-

ment learning algorithms in HFO. We test the performance

and adaptivity of these algorithms by letting the agents learn

to complete a simple task in the HFO domain with minimum

tuning of hyper parameters and neural network structures.

Despite difference in learning pace and style. All of the

tested algorithms have shown stable learning behaviors to-

wards positive rewards.

The rest of the papers will first introduce the charac-

teristics of the Half Field Offense environment. And then

describe the methods used in this work. Followed by the

information on experiment settings and experiment results.

2. The Half Field Offense Environment

The Half Field Offense (HFO) environment origins from

RoboCup 2D, a 2D soccer simulation league belongs to the

RoboCup international competition that promotes Artificial

Intelligence and robotics development. It was then coded

into a reinforcement learning algorithm by Hausknecht and

Stone. The environment abstracts a whole soccer game into

a two dimensional representation. HFO allows researchers

to carry out full game of soccer as well as soccer related mini

tasks.

The actual program of the environment is composed by a

game server and agent clients. With each agent client run as

an individual process on the host PC. The HFO environment

can generally be modeled as a Partially Observable Markov

Decision Process (POMDP) as each agent can only obtain

limited information about other players in the game. How-

ever, in the specific task we carry out in this work. Only one

player is in the game. Therefore the game can be considered

as a Markov Decision Process.

In this work we train agents based on different algorithms

to learn to score a goal against no defenders. This can be

considered as the most easy task in HFO. Details of experi-

ment setting are shown in Chapter 4. Details about the task

is discussed in the next sub-section.

A screen-shot of an agent trying to score against no

defenders in HFO.

2.1 HFO Task Design

In order to show the performance of existing algorithms

we let our agent to learn to play a simple task in HFO. The

agent needs to score a goal with no other players defending.

Start conditions are the following:

• The player is spawn on a random spot on the pitch

• The ball is placed on a random spot near the center

circle of the pitch.

• The ultimate goal for the player is to put the ball into

the goal area, which is located on the center rightmost

side of the pitch.

In order to finish this task fast and stably. We have hand-

crafted a reward function to encourage relative behaviors in

different state of the game. The details of the reward func-

tion can be found in Table 3 and chapter 2.4. The desired

behavior we want to agent to learn is:

• Run towards the ball when the game starts.

• After getting control of the ball, the agent should make

the ball closer to the goal by kicking it with appropriate

power and angle.

• Eventually the ball would be kicked into the goal or out

of bound. If none of these happed. The game finishes

itself after 100 time-steps.

While being seemingly simple, this task is hierarchical. As

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 209 -

we mentioned in the previous chapter, hierarchical tasks

are considered relatively hard for the existing algorithms

to learn. Also from the state and action space descriptions

below we can find that they are higher than the existing

tasks in Atari and MuJoCo.

2.2 State Space

Feature Type Example feature Example Value

Landmark Goal Centre (23.1, 32.1, 50)

Angle Self Ang -180.0

Valid Self Pos Valid 1.0

Proximity Ball Dist 0.35

Other Stamina 8000

Boolean Colliding with ball 0.0

Table 1: Categories of features and example features in HFO

The HFO environment can provide three different levels of

feature sets that abstracts different level of information. In

this work we use the low level feature set as we aim to ex-

plore efficiency of algorithms in large state space. The state

set contains 58 continuously-valued features. Features are

composed by information including agent’s own stamina and

position, the distance and angle to the objects on the pitch,

whether the agent is having control of the ball and whether

the agent is able to kick the ball. These features are catego-

rized into several types. Examples of categories and features

are shown in Table 1. The full list of states can be found in

the documentation of HFO [8].

Compared to the MuJoCo environment which also uses

continuous feature array with maximum size of 20 (depend-

ing on the actual robot simulation task that the agent is

carrying out) to represent the state of the game, HFO has a

much larger state space. This makes the training time much

longer than MuJoCo tasks. This is stated in the Results

section.

2.3 Action Space

Action Parameters Min Value Max Value

Dash
Power 0.0 100.0

Direction -180.0 180.0

Kick
Power 0.0 100.0

Direction -180.0 180.0

Turn Direction -180.0 180.0

Tackle Direction -180.0 180.0

Catch Direction -180.0 180.0

None N/A N/A N/A

Table 2: Actions and relevant parameters

In each time-step of HFO, the agent needs to select an action

and a parameter set related to the action. All the available

actions and related parameters are listed in Table 2. In this

work our agent only needs to play as an attacker. Therefore,

the defender specific catch and tackle actions are not being

considered for our agents.

As stated in the previous section, the HFO environment

holds a very special characteristic. For every action one

or more relevant parameters are required. This is a new

challenge for the existing deep reinforcement learning algo-

rithms. The capability of these algorithms to relate and

understand the relationship between the action and its pa-

rameters.

2.4 Reward Function

One very important perspective of the reinforcement

learning scheme is the reward signal. As we mentioned

above, environments like Atari provides true reward to the

agent during playing and training. This makes the accu-

racy of reward signal very high and allow the agent to learn

and complete tasks easily. However, in real-life tasks devel-

opers have to figure out the reward function on their own.

The same problem exists in HFO. In this work we have lit-

tle intention on designing an accurate and scientific reward

function. We use a rough approximation for the reward,

which was provided by Hausknecht and Stone [2] .

The reward is composed by four major parts. The move

reward, the kick reward, the ball-controlling reward, and

the goal reward. Detailed values and definition of rewards

are shown in Table 3. Since the coordinate data was nor-

malized to be between -1 and 1 in the HFO environment.

The move, ball-controlling and kick reward will be much

smaller than the goal reward. Therefore, scoring behaviors

are emphasized and strongly encouraged.

2.5 Related Works

The initiative of this work is inspired by Duan et al. [7].

They have benchmarked some state-of-the-art deep rein-

forcement learning algorithms using similar settings and

training time to benchmark existing deep reinforcement

learning algorithms on tasks in Atari and MuJoCo. Their

work provides great view on the existing algorithms. But it

is still constrained in these experimental environments.

Besides [7], We have also observed that even reproducing

results of previous work in the same environment is becom-

ing a serious problem for a lot deep reinforcement learning

researchers. This further proves that some extended test

of existing algorithms are required to show the capability

of them adapting to different environments under different

hyper parameters.

Hausknecht and Stone have successfully implemented

DDPG in the HFO environment [2]. Which provides a

strong argument on the effectiveness of existing deep rein-

forcement learning in HFO. Other work on the HFO envi-

ronment are mainly focused on doing multi-agent tasks with

relatively naive reinforcement algorithms (non-deep learning

based) [9][10].

3. Methods involved

To select potentially good algorithm for the HFO envi-

ronment given that we have limited time is a big challenge.

In the end we designed to apply three methods. The first

one is Deep Deterministic Policy Gradient (DDPG) method.

We decided to use this not only because the previous work

using DDPG by Hausknecht and Stone [2] have proved its

efficiency and effectiveness, but also because DDPG showed

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 210 -

Reward Value Condition

move Distance of agent moved towards the ball
Awarded when agent moves.

This may be negative if the agent move
away from the ball.

kick Distance of ball moved towards the goal
Awarded when ball is kicked.

This may be negative if the ball
is kicked away from the goal.

ball-controlling 2
Awarded when agent

first gain control of the ball

goal 5
Awarded when the game ends

in goal status
Table 3: Rewards and conditions

great performance in the work by Duan et al. [7]. Moreover,

DDPG is a classical and representing algorithm for on-line

policy update algorithm.

Based on Duan et al.’s benchmarking of algorithms, NPO

based methods such as TRPO and TNPG was the top per-

former of most of the tasks. This makes these two algorithms

very attractive. Besides, these methods have never been ap-

plied to the HFO environment before. Therefore, these 2

algorithms are used in our experiments as well.

Besides these we have also looked at other classical ap-

proaches in reinforcement learning. Such as Cross Entropy

Method (CEM) [13] and Covariance Matrix Adaption Evo-

lution Strategy (CEA-ES) [14]. However these methods does

not out-stands in previous reports. We therefore putting the

testing of these in the future plan.

Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient algorithm was

first proposed by Lillicrap et al. [4] as a successor inspired

by Deep-Q Network (DQN) [3]. Unlike the DQN which is

designed to play games with a discrete action space, DDPG

is capable of playing games with a continuous action space.

DDPG utilizes two deep neural networks to complete the

task. A policy network is used to generate a policy and a

critic network is used to judge this policy and provides the

policy network the gradients for parameter update. This

critic network updates itself by using the reward signal ob-

tained during game play. Updates of both networks are

done by sampling game play trajectories randomly. In order

to adapt DDPG to the HFO environment, some tricks like

bounding action parameters by adjusting the update gradi-

ents of neural networks are introduced.

Fig. 2: Playing flow of DDPG

We now explains the mechanism of DDPG. If we define state

as s, action as a, and an action selected at time step t as

at. We have our policy network monitored as µ(s) and critic

network defined as Q(s, a)

As displayed in Fig. 3, the Action selection process when

playing the game for DDPG is fairly simple. The algorithm

selects an action by:

at = µ(st|θµ) (1)

where θµ stands for the parameters in the actor neural net-

work.

Fig. 3: Training flow of DDPG

The training and updating of DDPG’s two neural network

based function approximators is a bit complicated. The up-

date of critic is done by minimizing the loss:

L =
1

N

∑
i

(yi −Q(si, ai | θQ))2 (2)

Where yi is defined as:

yi = rewardi + γQ
′
(si+1, µ

′
(si+1 | θµ

′

| θQ
′

) (3)

Whereas the policy network was updated by calculating the

gradient of action output of policy network against the Q

value output of the critic network.

∆θµJ ≈ 1
N

∑
i ∆aQ(s, a|θQ) |s=si,a=µ(si) ∆θµµ(s | θµ) | si

(4)

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 211 -

Natural Policy Gradient (NPO) Methods

Fig. 4: Flow of TRPO algorithm

The idea of NPO was first proposed in 2002 by S. Kakade [6]

and the best example working implementation of it is Trust

Region Policy Optimization (TRPO) [5]. Instead of using

critic gradients to update the policy, which may lead to un-

stable updates and a worse policy. TRPO aims to always

find a better policy and always let the average reward in-

crease. After collecting trajectories, the algorithm updates

its current policy network by calculating an advantage value.

This advantage value represents the reward difference be-

tween a new policy and the old policy. A series of tech-

niques were introduced in the TRPO algorithm to reduce the

amount of calculation for the advantage value. In theory this

method always produces a better policy. We also applied an-

other version of the NPO algorithm, namely Truncated Nat-

ural Policy Gradient (TNPG). This algorithm is similar in

mechanism to TRPO but it only backtracks once when opti-

mizing the parameters. It has been proved that it has good

performance in both Atari and MuJoCo tasks [7]. However,

it demonstrated similar problems of increasing perplexity

during training like the TRPO algorithm.

The induction steps of TRPO and TNPG are rather com-

plicated [5]. The final algorithm flow is displayed in Fig.5.

Where the algorithm maximizes θ in:

Es∼ρθold
,a∼q

[
πθ(a|s)
q(a|s) Aθold

(s, a)
]

(5)

subject to:

Es∼ρθold
[DKL(πθold

(· | s) ∥ πθ(· | s))] ≤ δ.
(6)

4. Experiments

In the design of experiments we followed some previous

success experiments’ hyper parameter settings. Some ra-

tional adaptations are also applied during the experiments.

Some of them have shown significant improvements on the

performance of agents. General design principles are listed

as below:

• Due to the limitation of time we are not able to training

every agent till convergence. Therefore we train each

agent for a fixed time.

• Due to differences in mechanism of algorithms, we train

each algorithm for one day instead of some fixed number

of iterations.

• Original settings of Hausknecht and Stone (for

DDPG) [2] and Duan et al. [7] (For NPOs) were used.

We then altered the neural network structure and

hyper parameters with the following rationalities:

– We halfed the size of all layers in the neural networks of

the original DDPG unit. The original amount of nodes

are very large compared to other works of similar tasks

in MuJoCo.

– We have tried to increase the number of neurons in the

NPO based algorithms since this task is much more

complex than the previous tasks. Also our initial ex-

periments using settings based on Duan et al.’s Mu-

JoCo settings does not provide very convincing results.

– We tried to remove a non-intuitional part from

Hausknecht and Stone’s work. In order to bound

the output of action parameters, they have used a

reversing gradient technique to change the direction

of weight update under certain conditions. According

to their experiment results, this technique is an im-

portant and essential part that ultimately makes their

method worked. However, to intentionally tweak with

gradients during weight update is not normally seen

in training of neural networks. Therefore, we test if

we can use some generalized methods to bound the

parameters

• Every agent was trained three times and the final aver-

age reward for the best agent was listed in Table 4.

5. Results

Results of the experiments are shown in Table 4. We car-

ried out five kinds of different experiments with each agent

being trained for three times and we use the best result out

of the three. The first agent DDPG1 uses DDPG with two

dense networks (actor and critic), as same as Hausknecht

and Stone. The agent did not perform as well as the previous

work stated and it was outperformed by an agent using the

same settings but half-sized neural networks. The best per-

former is DDPG2 using a relatively simpler network. This

agent was able to score a goal during the one day training

and got the best average reward.

However, drawbacks of DDPG were also observed in the

experiments. Similar behavior have been described by Duan

et al. in their experiment results section for DDPG. Learn-

ing of DDPG does not always advance towards positive re-

ward stably. When the algorithm searches for optimum pol-

icy it always gets stuck in local optimum due to inaccurate

update step length. Also, when an bad policy is learned

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 212 -

by the algorithm, game trajectories of bad moves would be

collected. Updating the agent further using these trajecto-

ries would likely to generate a worse policy. Eventually the

agent has a chance to break down.

Special attention needs to be paid on the

DDPG NoRevGrad case. In this test case we removed

the reversing gradient part of the DDPG implementation

proposed by [2]. In order to bound the parameters we used

a sigmoid activation layer to output the power parameters

(ranged between 0 to 100). The output is scaled up to

fit the boundary of the parameters. We then used the

same method on a tanh activation layer to output the

degree parameters (ranged from -180 to 180). However

this modification of the previous algorithm does not seem

to success. In the start of the training process the agent

picks a route towards positive rewards. After around 200

iterations of training the agent starts to produce extreme

parameter values close to the boundary of the parameters.

We can see that with naive bounding of the parameters the

neural network does not produce suitable parameter values

to gain high reward. We therefore proved that although

unnatural, the bounding of parameter outputs are required.

The current model of neural network seems not capable of

dealing with parameter boundaries by its own.

Compared to DDPG, NPO-based algorithms did not per-

form well under the existing settings. Signs of learning have

been found as the agents are able to achieve small increase in

the average reward. After one day of training, TNPG1 and

TRPO1 achieved similar performance in terms of average

reward and max reward.

Inspired by [7], we also used perplexity, a standard that

is often used in natural language processing models to eval-

uate how well the NPO agents understand the environ-

ments. Perplexity describes the branching factor when a

agent makes decisions on the next action. Therefore, the

smaller the perplexity value, the better the agent under-

stands how to deal with the current situation in a game.

Notable jumps of perplexity is observed during initial train-

ing training. The agents suffer drop of average reward when

these perplexity jumps occurs. Since perplexity reflects how

well does the agent consider itself understand the environ-

ment. These sudden surges of perplexity shows that the

agents continuously underestimates the complexity of the

environment.

When further training is applied, perplexity normally

gradually goes down again with the observable re-rise on

average reward of the agent. This surge and drop can be

observed multiple times during training. In one way, this

behavior shows that more time is required to train these

NPO-based agents so that the perplexity goes stable and

agents are understanding the environment well enough. The

other way of thinking about perplexity rise is that we can

alter the batch size for each batch update for the NPO al-

gorithms so these algorithms understand more about the

environment in each update run.

We stabilized the perplexity during training to make it

does not fluctuate too much by setting the batch size for

each iteration of the algorithm larger. This is shown in ex-

periment case TRPO3. However the final training outcome

does not change too much. We need to do some more ex-

periments before deciding if the convergence is finished for

NPO based algorithms.

We have also found that NPO based algorithms with

deeper and wider neural network does not converge at all.

When training with large neural networks（experiment case

TRPO2）, perplexity of policy get stuck in the beginning

of the experiment and no obvious sign of positive reward

increase. The ability of these algorithms to train larger net-

works for complex problems is still in doubt.

6. Conclusions and Future Work

In this work we investigated an interesting environment,

Half Field Offense (HFO) for the latest deep reinforcement

learning algorithms. We use HFO as a benchmark environ-

ment as it has multiple characteristics that may test the

limits of these algorithms. These includes large state and

action space, parameterized action space and potentially

multi-agent testing capabilities.

The parameterized action space in the HFO environment

is what makes the environment special and stands out. We

can find this property in many real-life tasks that can be po-

tentially completed by deep reinforcement learning agents.

During the experiments we have observed that learning to

produce correct parameters is a very difficult task for most

of the existing models.

We were able to observe positive updates towards higher

reward for all the tested algorithms rational hyper param-

eter and neural network settings. Although DDPG some-

times displays unstable fluctuations in terms of average re-

ward and got stuck into local optimum or even break down

at times, one agent powered by DDPG still got the best

performance out of the five. NPO based algorithms showed

great potential of learning a good policy if they converge.

However significant increase of training time is required to

obtain better results.

We have also observed that DDPG is unable to learn to

produce rational parameters if no special procedure is done

to prevent parameters going to extreme values during gra-

dient descent. In [2] a extra step of reversing gradient is

proposed and proved to be working. However, this method

is not very intuitive and does not utilize the power of deep

learning throughly. Also checking every gradient update

during training to see if reverse is required is computation-

ally expensive. Therefore in the future we need to figure

out a vectorized method to update the parameters within

boundaries.

Unfortunately, due to the long time requirement for train-

ing each agent and the limited computation resource. We

are not able to tune and test each algorithm to the point

that they converge and obtain stable scoring behavior. Also

we do not have time to test some other existing algorithms

that was mentioned by Duan et al. In the future we aim to

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 213 -

Algorithm & No. Neural Network Structure Training Time Perplexity Able to Score Max Reward
Average
Reward

DDPG1 Dense 1024x512x256x128 24 hours N/A False 1.55 0.82
DDPG2 Dense 512x256x128x64 24 hours N/A True 8.03 2.53

DDPG NoRevGrad Dense 512x256x128x64 24 hours N/A False 0.93 -0.02

TRPO1 Dense 100x50x25 24 hours
Starting: ≈80000

Maximum: ≈300000
Minimum: ≈60000

False 1.35 0.08

TRPO2 Dense 1024x512x256x128 24 hours
Starting: ≈80000
Maximum: ≈80000
Minimum: ≈80000

False 0.13 0.00

TRPO3 Dense 100x50x25 24 hours
Starting: ≈80000
Maximum: ≈80000
Minimum: ≈30000

False 1.28 0.10

TNPG1 Dense 100x50x25 24 hours
Starting: ≈80000

Maximum: ≈150000
Minimum: ≈30000

False 1.32 0.14

Table 4: Results for running different algorithms on the HFO environment.

work on the following milestones to make deep reinforcement

learning development in HFO contributes more to the how

society of deep reinforcement learning and take one more

step further into real-life applications of deep reinforcement

learning in complex tasks:

• Further training of existing algorithms with existing hy-

per parameters to get better performance and observe

convergence.

• Tuning of existing algorithms to get better performance.

• Experiment with more neural network structures for

NPO based algorithms to see how they can handle large

and deep neural networks. Also, we want to see the in-

crease of size and depth of the neural networks affect

the performance of these algorithms.

• Apply DDPG or other algorithms without the gradient

reversing technique.

• Apply more available algorithms in the HFO task.

• Test existing algorithms on other more complex HFO

tasks.

• Design an algorithm to play the game with multiple-

agent scenarios. Beyond the above goals, we want to

encourage game AI and deep reinforcement learning re-

searchers to look further than existing experimental en-

vironments like Atari or MuJoCo. At the moment many

exciting and challenging video game environments are

being announced and released almost every year. Many

of these games are like

References

[1] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Sub-
ramanian, Shivaram Kalyanakrishnan, and Peter Stone Half
Field Offense: An Environment for Multiagent Learning and
Ad Hoc Teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop, Singapore, May 2016.

[2] Matthew Hausknecht, Peter Stone Deep Reinforcement
Learning in Parameterized Action Space. In ICLR 2016, Feb
2016.

[3] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei
A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, Demis Hassabis. Human-level control through deep re-
inforcement learning. Nature 518, 529–533, Feb. 2015.

[4] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel,

Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan
Wierstra Continuous control with deep reinforcement learn-
ing. In ICLR 2016 , Feb 2016.

[5] John Schulman, Sergey Levine, Philipp Moritz, Michael I.
Jordan, Pieter Abbeel Trust Region Policy Optimization. In
ICML 2015, Feb 2015.

[6] Sham Kakade A Natural Policy Gradient. In NIPS 2002
[7] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter

Abbeel Benchmarking Deep Reinforcement Learning for
Continuous Control. In ICML 2016, May 2016

[8] Matthew Hausknecht RoboCup 2D Half Field Offense Tech-
nical Manual

[9] Felipe Leno da Silva, Ruben Glatt, and Anna Helena Re-
ali Costa Simultaneously Learning and Advising in Multia-
gent Reinforcement Learning. In AAMAS 2017 Proceedings
of the 16th Conference on Autonomous Agents and MultiA-
gent Systems, May 2017

[10] Samuel Barrett, Avi Rosenfeld, Sarit Kraus, and Peter Stone.
Making friends on the fly: Cooperating with new teammates.
Artificial Intelligence, October 2016.

[11] Emanuel Todorov, Tom Erez and Yuval Tassa MuJoCo: A
physics engine for model-based control. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2012.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, Wojciech ZarembaOpe-
nAI Gym. arXiv preprint, arXiv:1606.01540, 2016.

[13] Szita, I. and Lorincz, A. Learning Tetris using the noisy
cross-entropy method. Neural Comput., 18(12):2936–2941,
2006.

[14] Hansen, N. and Ostermeier, A. Completely derandom-
ized self adaptation in evolution strategies.. Evol. Comput.,
9(2):159–195, 2001.

[15] Kulkarni, Tejas D and Narasimhan, Karthik and Saeedi, Ar-
davan and Tenenbaum, Josh Hierarchical Deep Reinforce-
ment Learning: Integrating Temporal Abstraction and In-
trinsic Motivation In NIPS 2016, 2016.

[16] Russell Kaplan, Christopher Sauer, and Alexander Sosa.
Beating atari with natural language guided reinforcement
learning. In arXiv:1704.05539, 2017.

[17] Riashat Islam, Peter Henderson, Maziar Gomrokchi and
Doina Precup. Reproducibility of Benchmarked Deep Rein-
forcement Learning Tasks for Continuous Control In arXiv:
1708,04133.pdf, Accepted to Reproducibility in Machine
Learning Workshop, ICML 2017

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 214 -

