
Accelerate Parallel Deep Learning Inferences

with MCTS in the game of Go

Ching-Nung Lin1,a) Shi-Jim Yen1,b) Jr-Chang Chen2,c)

Abstract: The performance of Deep Learning Inference is a serious issue when combining with
speed constraint Monte Carlo Tree Search(MCTS). Traditional hybrid CPU and Graphics process-
ing unit solution is bounded because of frequently heavy data transferring. This research focuses on
accelerating parallel synchronized Deep Convolution Neural Network(DCNN) prediction in MCTS.
This paper proposes a method to accelerate parallel DCNN prediction and MCTS execution at
GPU, Intel AVX-512 CPU and Xeon Phi Corner. It outperforms the original architecture using
the GPU forwarding server. In some cases, GPU speeds up 7.2 times; AVX-512 CPU increase 15.7
times speed. Xeon Phi Corner accelerates 11.1 times performance. In addition, with 64 threads in
Google Cloud Platform, maximal 53.8 times faster is achieved.

1. Introduction

The Computer Go programs combining Deep Con-

volutional Neural Network(DCNN) and Monte Carlo

Tree Search(MCTS) make a big step ahead in the

game of Go[1][2]. Achieving this level requires huge

computation power. However, using devices such as

the graphics processing unit(GPU) does not utilize all

the resource in the hardware when doing deep learning

inferences with Batch size = 1. Also, in the current

computer architecture, the number of CPU threads

is more than GPU devices(A server usually has more

than 64 threads and has 8 GPUs or less, the ratio is

8 to 1 or more). This research provides a method to

utilize all the threads in CPU and GPU to maximize

the overall performance when DCNN forwarding with

Batch size = 1.

Unlike deep learning in image recognition and other

similar domains, throughput performance(How many

forwarding can be done per second) in DCNN with

searching is not so important. Simulating or search-

ing with DCNN usually requires the batch size as small

as better. In this kind of applications, if the state is

not divergent enough, all the forwarding results are

duplicated and useless. Some researches[3] try to use

1 Dept. of Computer Science and Information Engineer-
ing, National Dong Hwa University, Hualien, Taiwan

2 Dept. of Computer Science and Information Engineer-
ing, National Taipei University, Taiwan

a) 810221001@gms.ndhu.edu.tw
b) sjyen@mail.ndhu.edu.tw
c) jcchen@cycu.edu.tw

statistic to estimate the states in order to achieve the

performance with the big batch size to accelerate for-

warding performance. However the result is not signif-

icantly better than the small batch size. The statistic

states might occur rarely in the real searching tree.

Therefore, this research focuses on DCNN inferences

with Batch size = 1.

The DCNN inference speed is usually slower than

tradition pattern based evaluation when doing search

or simulation. Usually, the researcher[2] uses the asyn-

chronized method to utilize all hardware resources.

There is a forwarding server. Because DCNN forward-

ing is usually 1000 time slower than traditional pattern

based ones, when threads are waiting for the forward-

ing server to return the results, pattern based evalua-

tions are used to do expansion and simulation at the

same time. Synchronized DCNN expanding or simu-

lating with MCTS is selected in this research because

it is not domain specific. This architecture is straight

and easy to be implemented. So, it is easy to port to

other applications and possible to be efficiently.

This research introduces a new method to share

single hardware(GPU,CPU and Xeon Phi(PHI)) with

many threads simultaneously. On the other hand, For

one GPU, it can be considered as many small virtual

GPUs(vGPU) to maximize the forwarding speed in

deep learning. For CPU and PHI, intuitively each

thread is considered as a unit. In MCTS, a single tree

with global lock is used. This paper is described as

below: Firstly, this method requires threads to direct

connect the hardware(GPU or CPU) to each thread.

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 131 -

i7-7800X Tesla P100
Cores 6 56 SMs

Threads 12 3584
Clock Speed 4.6GHz 1.33GHz

AVX-512 Speed 4.4GHz
L1 Data(KB) 32 64 + 48
L2 Data(KB) 1024 ∗ 6 4096
L3 Data(KB) 1375 ∗ 6

Independent unit 12 with some sharing 56

Xeon Phi(31SP1) GTX 1070
Cores 57 15 SMs

Threads 228 1920
Clock Speed 1.1GHz 1.797GHz
L1 Data(KB) 32 64 + 48
L2 Data(KB) 512 ∗ 57 2048

Independent unit 228 15

Google Cloud
Cores 64 vCPU

Threads 64
Clock Speed 2.0GHz

AVX-512 Speed 2.0GHz
L1 Data(KB) 32
L2 Data(KB) 1024 ∗ (32or64)

Total Cache(KB) 56320
Independent unit 64

Table 1 Table of Intel i7-7800X, Nvidia Tesla P100, Intel
Xeon Phi Corner, Nvidia GTX 1070 and Google
Cloud Platform architectures

Secondly, it shares the read-only trained model with

all threads in the same GPU or CPU and keeps private

individual necessity data only. For the computation

part: In GPU. the cuDNN library is used; In CPU,

AVX-512 and IMCI instructions are used. Then, the

experimental results are presented. Finally a conclu-

sion and future work are described.

2. Architecture

Table 1 shows all architectures used in the experi-

mental tests. The on-board memory is excluded be-

cause of at least 10 times slowness. The main differ-

ences between GPU and CPU are that GPU has more

computation power and CPU has more local cache.

The GPU can execute more threads simultaneously

which is efficient for deep learning training and for-

warding. On the contrary, PHI has more Independent

cores which can run different processes concurrently

and each core has bigger cache size. For CPU, the

clock is fixed as 4.6GHz, and clock for AVX-512 is

4.4GHz. With AVX-512 instructions, the computa-

tion performance increases dramatically. All CPU ar-

chitectures support 512 bit Single instruction, multiple

data(SIMD) instructions, Load, store and max(which

is used in ReLU) 16 float or integer values simultane-

ously. In addition, SIMD can do 16 FMA(A∗B+C) at

one time which is important at matrix multiplication.

About Half Precision Floating-point Format(FP16) or

8 Bit Integer Format(INT8), store everything with the

16 bit float or the 8 bit integer type, which is half or

1/4 size and not sacrificing any inference quality[4].

However, there is no big advantage in our case(Test

training on Tesla P100 and forwarding on PHI).

In addition, bigger cache size makes data locality

easily. For accelerating DCNN inference, fit as much

as data in the local cache memory is an important

key point. Obviously, CPUs has more local memory

per core. For example, each core having 4 threads in

PHI can share 512KB memory comparing to 56 SMs in

Telsa P100 sharing with 4096KB memory. In addition,

AVX-512 CPUs have bigger cache size(1024KB/2). In

addition, the latency accessing the local L2 cache: PHI

is about 11 cycles; AVX-512 CPU is about 13 cycles;

GPU is more than 100 cycles. Both GPU and CPU

can scale up to 8 chips in a single hardware. However,

CPU can scale up more with the Omni-Path architec-

ture.

3. Method

There are two steps to accelerate parallel deep learn-

ing inferences with MCTS in the game of Go. First,

use direct connection to replace a DCNN forwarding

server. Second, sharing a single hardware with multi-

ple threads to maximize the overall resources.

3.1 Direct connection

The darkforestGo[1] uses a forwarding server to

handle the DCNN inference. Each thread sends the

input feature planes to the server and waits for the pre-

diction result returning from the server. It consumes 2

spare threads to keep the server running at each GPU.

Instead of this, our method connects the input feature

planes to GPU directly via NVIDIA cuDNN library.

Therefore, there is no synchronizing and locking over-

head in this direct connection architecture. It can min-

imize the communication overhead between CPU and

GPU. For CPU and PHI, everything executes on the

same hardware. There is no communication bottle-

neck.

3.2 Sharing a single hardware with multiple

threads

In GPU, split the SMs to small groups as many

individual vGPUs. For example, Tesla P100 can be

grouped as 8 vGPUs, so each vGPU has 7 SMs. Also,

GTX 1070 can be split to 5 vGPUs, each vGPU has

3SMs(See Table 1). When parallel DCNN forwarding

in a single GPU, if the network model size fits into

the L2 cache, it will gain the best performance. For

GTX 1070, it can handle approximate 50000 weight

parameters. For Tesla P100, it can handle 1 millions

weight parameters in the L2. Since the Cache hit miss

is reduced, parallel kernels on GPU have less penalty

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 132 -

to read weight data from the GPU memory. So it

can achieve the maximal utilization. Because cuDNN

and CUDA are binary-only software, it is difficult to

hack it to get better performance. Our method cannot

scale up to over 16 threads whatever trying different

configurations in the 10 GPU server.

In CPU, in order to maximize the performance, data

locality and SIMD are required. AVX-512 and IMCI

intrinsics are heavily used in the forwarding engine.

few data prefetch instructions are used in AVX-512

CPU and more are used in PHI. There are two parts:

Table 2 a 7x7 Input matrix and a 3x3 Filter matrix

x11 x21 x31 x41 x51 x61 x71
x12 x22 x32 x42 x52 x62 x72
x13 x23 x33 x43 x53 x63 x73
x14 x24 x34 x44 x54 x64 x74
x15 x25 x35 x45 x55 x65 x75
x16 x26 x36 x46 x56 x66 x76
x17 x27 x37 x47 x57 x67 x77

y11 y21 y31
y12 y22 y32
y13 y23 y33

First, calculate the matrix multiplication and store

the result in the cache. Table 2 is an example. The

stride size is 1 and zero padding is 1, so the input

size is 7x7 and the output size is 7x7. The first ele-

ment in the output is calculated as x11 ∗ y22 + x21 ∗

y32+x12∗y23+x22∗y33; Then, stride one cell right,

the second element in the output is x11 ∗ y12 + x21 ∗

y22 + x31 ∗ y32 + x12 ∗ y13 + x22 ∗ y23 + x32 ∗ y33.

All elements in the input matrix mostly are required

to multiply all elements in the filter matrix. So, cal-

culate the multiplication of each element in the input

matrix and every element in the filter matrix. By the

benefit of vectorization, sixteen input elements can be

processed at the same time. An example is in one

instruction x11, x21, x31, x41, ..., x13, x23 can multi-

ply y11 simultaneously. Then the result is save to a

cache. In our application, the input size is 19x19 and

the filter size is 3x3. an two dimension array [9][361]

is necessary to cache all the result whose size is ap-

proximate 13KB.(We change 361 to 368 to maintain

the alignment memory loading). It fits to the CPU L1

cache.

The Pseudo-code is below(See algorithm 1). Usu-

ally there are many channels in each layer, when cal-

culating the second channel, the fused multiply-add

(FMA) instruction can be applied as multiple input

and weight and add previous result at the same time.

In this algorithm, only inputs are repeatedly loading C

times. Because it fits the L1 cache, the memory load-

ing penalty remains small. For AVX-512 CPU, the

mm512 set1 ps can be replaced with mm512 load ps

Algorithm 1 Matrix multiplication

Require: Exist array temp store[9][368], Channel Size C

Ensure: 16input, 1weight, loadinput, loadweight

for i = 1 to C do

for j = 1 to 23 do

loadinput ← mm512 load ps(16input) {Load 16

data}

for k = 1 to 9 do

loadweight ← mm512 set1 ps(1weight) {Load 1

data and broadcast}

temp store = loadinput∗ loadweight+temp store

{FMA}

end for

end for

end for

Algorithm 2 AVX-512 SIMD reduction

Require: Exist array temp store[9][368]

Ensure: loadweight, index0 cache, nonempty mask, fi-

nal result

for i = 1 to 23 do

loadweight ← mm512 load ps(temp store) {Load

aligned data}

index0 cache ← mm512 permutexvar ps(loadweight)

{Faster than load unaligned data, and the left

(0,12),(0,13),(0,14),(0,15) can be used at the input 32-

47}

nonempty mask ← mm512 int2mask((0,0), ...,(0,11)

) {add (0,0) to (0,11) only}

final result ← mm512 mask add ps(fianl result,

nonempty, index0 cache, final result) {SIMD add}

...

end for

and mm512 permutexvar ps which gains a little bet-

ter performance.

Second, Reducing with SIMD. Table 3 shows the

relationship between temp store and the final output.

There are some patterns. With SIMD, 16 elements can

be calculated at the same time. The Pseudo-codes are

below(See algorithm 2 and 3). For AVX-512 CPU, us-

ing aligned data SIMD load and permutation instruc-

tions is faster than unaligned data load. For PHI,

unaligned data SIMD load instructions are the only

solution. With 2 masks and SIMD mask add, the 16

elements can be calculated in 9 cycles. This is faster

than mm512 reduce add ps.

Table 3 Input 16-31 elements reduction from temp store

(0,-4) (1,-3) (2,-2) (3,15) (4,16) (5,17) ...
(0,-3) (1,-2) (2,-1) (3,16) (4,17) (5,18) ...
(0,-2) (1,-1) (2,0) (3,17) (4,18) ...
(0,-1) (1,0) (2,1) (4,19) (5,20) ...
(0,0) (1,1) (2,2) (3,19) (4,20) (5,21) ...
(0,1) (1,2) (2,3) (3,20) (4,21) (5,22) ...
...
(0,11) (1,12) (2,13) (3,30) (4,31) (5,32) ...

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 133 -

Algorithm 3 IMCI SIMD reduction

Require: Exist array temp store[9][368]

Ensure: loadweight1, loadweight2, index0 cache,

nonempty mask, final result

for i = 1 to 23 do

loadweight1 ← mm512 loadunpacklo ps(temp store)

{Load unaligned data (5,17) to (5,31)}

loadweight2 ← mm512 loadunpackhi ps(temp store)

{Load unaligned data (5,32)}

nonempty mask ← mm512 int2mask((5,17),(5,18)

and (5,20),...,(5,32)) {skip (5,19)}

final result ← mm512 mask add ps(fianl result,

nonempty, index0 cache, final result) {SIMD add}

...

end for

Finally, it is important to train a smaller net-

work which fits the cache in order to gain parallel

DCNN forwarding performance. For example, the

darkforestGo model has 57% accuracy, but its network

has 14 million weight parameters which does not scale

well with the sharing hardware method. Table 4 de-

scribes the DCNN models trained with smaller weight

parameters and pretty good accuracy. It is about 1/40

size or less than the one in darkforestGo. It can run

more than 4 threads concurrently in a Tesla P100. In

face, it is not easy to get a smaller network with good

accuracy. There are two methods: The first method

is deep compression[5] which prunes some network

weights out and reorganize the same data together.

But it is time consuming and the retraining result is

not guaranteed. The second method is using knowl-

edge planes[6] which can reduce the network size. In

Table 4, the original darkforestGo Torch training pro-

gram is used. The ReLU activation function is used as

same as the original one after each layer but the last

one. Some networks use Batch Normalization layer

and some do not. The Last Layer is always the same

size 3x3x3. However, in the DCNN forwarding, only

3x3x1 is used. The accuracy is validated with the

same validating data in the darkforestGo. The train-

ing data is different. 446832 9 Dan games from Tygen

Go server are used. For the feature planes, it remains

as same as darkforestGo instead of few modification.

Since all the games have the same rank, so 9 rank

feature planes are removed and one all 0 and one all

1 feature planes are added. The additional 2 and 4

planes are the 2 liberty Ladder and Snapback feature

plane(LAD) and the 1 liberty Ladder escape feature

plane(ESP). In the 20 feature plane network, the op-

ponent side groups LAD and the self side groups ESP

are considered. In the 22 feature plane network, both

sides are considered. If some stones can be captured

or escaped, the locations for those stones in the LAD

or ESP plane are set to 1; Others are set to 0.

Usually, the DCNN forwarding benchmark only

considers pure forwarding speed because the feature

planes are simple. A good example is DCNN for-

warding in the image recognition. But, in the domain

such as games, the time to construct feature planes

should be considered as a factor to affect overall per-

formance. For example, AlphaGo uses 48 planes. To

construct those feature planes costs extra computing

power which is most efficiently on CPU. It is a trade

off between more feature planes and smaller network

size. When the network size is small enough, the mul-

tiple threads can share the same hardware and fit to

the cache to achieve better performance. Finally, all

threads use the same forwarding function with own

private data.

Network Features First Layer Inner Layers
A 20 20x5x5 3x3x32x17
B 22 22x5x5 3x3x24x18
C 22 22x5x5 3x3x16x18
NA 22 64x3x3 3x3x64x9
NB 22 32x3x3 3x3x32x14
NC 22 22x3x3 3x3x22x12

Network Acc. % Batch Norm. Weights
A 49.1 Yes 175841
B 47.2 Yes 109009
C 44.8 Yes 51937
NA 50.7 No 345665
NB 48.4 No 136129
NC 45.8 No 57113

Table 4 The 6 architectures use on the experimental tests

4. Experimental Result

The test program is modified from Facebook dark-

forestGo which uses synchronized DCNN when ex-

panding in the tree[1], and the simulation is pattern

base which is 1000 times faster than DCNN forward-

ing. All the setting remains default. For direction

connection: In GPU. a Torch forwarding server is re-

placed by the cuDNN library; In CPU, the cuDNN

library is replaced with the AVX-512 or IMCI instruc-

tion engine. In DCNN simulation, the playout is re-

placed with previous GPU and CPU engines. More

detail is described in each subsection. First, present-

ing synchronized DCNN with MCTS make a strong go

program. Second, showing the method provides good

performance improvement. Third, comparing the scal-

ability with the previous method and the providing

method. Forth, describing the speed gains on CPU

and GPU in different network settings. Finally, pre-

senting that it is practical to use DCNN forwarding

on MCTS simulation.

4.1 Synchronized DCNN with MCTS

The darkforestGo from Facebook with synchro-

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 134 -

nized DCNN whose tree is expanded after getting

the result from DCNN evaluation is tested against

Pachi. The simulation number of Pachi(11.00) is

fixed as 400000(about Elo 1298(KGS 2D)) without

using DCNN and loading any pattern. The pattern

is not used because huge number of random simu-

lations sometimes benefits for Semeai. It beats the

darkforestGo even with DCNN rollout equal to 40000

by killing it. Table 5 shows that the winning rate in-

creases significantly when the number of DCNN roll-

out is big enough. However, the rank is stopped

around KGS 6D. The number of 20000 simulations

is that the server with 8 GPUs can play when each

move is constrained around 6 to 7 seconds. When in-

creasing the rollout number to 40000, the Elo does not

improve.

Pachi Elo
Rollout = 1 44.75% ± 2.49% 1261(KGS 2D)
Rollout = 256 85.75% ± 1.75% 1610
Rollout = 1024 89.5% ± 1.53% 1670
Rollout = 20000 97.5% ± 0.78% 1934(KGS 6D)
Rollout = 40000 96.75% ± 0.9% 1888(KGS 6D)

Table 5 Results (Winning rates) of various DCNN rollout
against Pachi

4.2 Direct connection and a single GPU

with multiple threads

The test system is dual CPU E5-2675 v3 at 1.8GHz

with 1 Tesla P100 and 9 GTX 1070. The operat-

ing system is Cent OS 7.3 with default g++ compiler

and the GPU driver uses Cuda 8.0 and cuDNN 5.1.10.

Table 6 compares the time in seconds(averaging first

150 self-playing moves) with the number of 100000

rollout(simulation) for each move on a NVIDIA Tesla

P100(The detail is in Table 1). The Network architec-

ture is described in Table 4. For direct connection,

the performance increases 2.01, 1.58 and 1.32 times in

the network A,B and C. It seems that GPU prefers

bigger channel size such as 32 than 24. It might be

caused by removing many unnecessary communication

overhead.

Network A B C
Via server 1011.5±13.0 997.2±9.2 1046.0±11.6
Directly 491.6s±2.4 631.0±15.3 794.2±16.7

Table 6 Results of 100000 simulation time(seconds)

Then, test scalability in the Tesla P100. The dark-

forestGo is implemented as MCTS tree paralleliza-

tion with global atomic lock. Here executing multiple

threads running DCNN forwarding simultaneously in

the same card is tested. Table 7 describes the perfor-

mance of scalability at different size of network archi-

tectures. The performance is increasing at 3.5 times

in the network A with 8 threads, 4.0 times in the net-

work B with 10 threads and 4.6 times with 8 threads

in the network C. However, It is bounded at 8 threads

in the networks A and B. The result is really good.

On the other hand, one GPU can be virtually treated

as 4 vGPUs in this case.

Network A B C
Thread = 1 491.6±2.4 631.0±15.3 794.2±16.7
Thread = 2 318.6±4.6 345.6±14.8 349.1±6.4
Thread = 4 182.6±1.0 214.2±2.8 227.9±2.9
Thread = 6 150.9±0.7 208.2±4.0 188.4±1.3
Thread = 8 140.1±0.1 171.6±0.8 170.7±0.8
Thread = 10 148.7±2.4 156.4±1.4 176.3±0.6

Table 7 Time(seconds) of multiple threads in a Tesla P100

4.3 Multiple threads with multiple GPUs

Our method works on multiple GPUs. But, the scal-

ability is bounded by 16 threads. The reason is un-

known and it is difficult to debug because of binary-

only software. However, with CPU, this is not an is-

sue. Table 8 shows the scalability in the original dark-

forestGo pipeline forwarding server with Network A.

The hardware spec is as the same as previous section,

the server has 32 cores(64 hyperthreads). The scala-

bility is quite good. But comparing to our method.

One single Tesla P100 is only 3.3 times slower than 10

GPUs. Furthermore, the CPU solutions is really good

although the network A and network NB are slightly

different.

Network A NB
Thread = 1 1011.5±13.0 Google Cloud
Thread = 2 467.2±1.4 Thread = 64
Thread = 4 264.6±1.3 18.8±0.2
Thread = 8 123.2±0.3
Thread = 16 81.6±0.3 i7-7800X
Thread = 32 66.3±0.3 Thread = 6
Thread = 64 42.7±0.2 64.2±0.8

Table 8 Time(seconds) of multiple threads in the 10 GPU
server

4.4 Single hardware performance on GPU

and CPU

The time is measured by averaging first 150 self-

playing moves with the number of 100000 roll-

out(simulation) for each move. The test is stopped

when the current test time is not less than the pre-

vious test time minus 2 standard error. Otherwise,

the thread number is increased one each time. Be-

cause the i7-7800X platform does not support Tesla

P100, so GTX 1070 GPU is used as comparison. The

hardware spec is at Table 1. The operating system is

Ubuntu 16.04. The compiler is Intel C++ Compiler

2016 update 4 because Nvidia Nvcc does not support

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 135 -

Intel compiler 2017 yet. The GPU driver is Cuda 8.0

and cuDNN 5.1.5. The Network architecture is de-

scribed in Table 4. In the network NC setting, Ta-

ble 9 describes the performance of scalability. The

performance is increasing at 8.0 times in CPU with 6

threads and 3.3 times in GPU with 3 threads. The

CPU outperforms than GPU in this network archi-

tecture. Google Cloud is about 2.6 times faster than

i7-7800X. When the model size is small, the hyper-

threading works better because the two threads share

the same resource.

i7-7800X GTX 1070 Google Cloud
Thread = 1 268.1±14.1 384.3±20.7
Thread = 2 146.2±2.4 166.0±4.9
Thread = 3 119.0±3.2 115.5±2.0
Thread = 4 83.6±2.1 127.0±0.8
Thread = 5 53.5±1.0
Thread = 6 55.2±1.2
Thread = 7 43.3±0.8
Thread = 8 44.4±0.7
Thread = 9 41.4±0.8
Thread = 10 33.7±0.4 Thread = 64
Thread = 11 36.8±0.4 13.0±0.1

Table 9 Time(seconds) of multiple threads in the network
NC

In the network NB setting, Table 10 describes the

scalability. The performance is increasing at 5.3 times

in CPU with 6 threads and 4.6 times in GPU with 3

threads. The CPU is faster than GPU in this network

architecture. Google Cloud is about 3.3 times faster

than i7-7800X. It shows the parallel DCNN forward-

ing with MCTS can scale up in the CPU architecture

because Google Cloud has about 3 times more com-

putation power.

i7-7800X GTX 1070 Google Cloud
Thread = 1 342.7±3.2 667.6±5.7
Thread = 2 166.3±1.4 202.8±4.0
Thread = 3 115.7±1.3 146.2±2.5
Thread = 4 96.8±1.0 161.2±5.7
Thread = 5 77.8±1.0 165.3±1.0
Thread = 6 64.2±0.8 Thread = 64
Thread = 7 79.6.3±1.6 18.8±0.2

Table 10 Time(seconds) of multiple threads in the net-
work NB

In the network NA setting, Table 11 shows the per-

formance of scalability. The performance is increasing

at 5.5 times in CPU with 6 threads and 3.1 times in

GPU with 4 threads. The CPU is outperforms than

GPU, but the gap is getting smaller. Google Cloud re-

mains about 3.0 times faster than i7-7800X. The net-

work parameter number is 345665 which fits in the

cache.

PHI runs on Cent OS 7.3 with Intel C++ Compiler

2017 update 4 due to the compatible issues. Table 12

i7-7800X GTX 1070 Google Cloud
Thread = 1 516.4±4.4 454.0±7.8
Thread = 2 305.7±2.7 205.2±1.2
Thread = 3 188.1±1.5 145.7±0.9
Thread = 4 158.2±4.9 171.1±2.7
Thread = 5 112.9±2.2
Thread = 6 93.4±0.8 Thread = 64
Thread = 7 97.5±0.8 31.1±0.2

Table 11 Time(seconds) of multiple threads in the net-
work NA

shows parallel scalability. It scales up well[7] and the

speed is faster than GPU. It is possible DCNN for-

warding utilizes more VPU than the traditional pat-

tern based method.

Network NB NC
Thread = 1 6833.4±331.6
Thread = 2 2848.4±57.2
Thread = 4 1461.5±23.3
Thread = 8 1345.2±95.9
Thread = 16 594.7±9.7 553.7±16.5
Thread = 32 398.2±7.6 194.4±5.2
Thread = 56 147.1±1.4 123.2±3.0
Thread = 112 91.4±0.6 76.6±1.6
Thread = 168 97.3±1.3 65.0±1.0
Thread = 224 76.9±1.8

Table 12 Time(seconds) of multiple threads in PHI

4.5 DCNN forwarding on expanding and

simulating with MCTS

Since the speed for DCNN forwarding is so fast

with small networks, doing simulation with DCNN

inference is practical. For pattern based simulation

method, the accuracy is lower comparing the DCNN

models. However, it is usually 1000 times faster than

DCNN inference. With a smaller network, it is possi-

ble to reduce the gap between both. The same network

NC is used to do DCNN forwarding when MCTS is ex-

panding and simulating. In addition, a random selec-

tion algorithm is used to prevent from states duplica-

tion when doing DCNN forwarding. Instead of choos-

ing the move with the highest score in the softmax.

Before the 300th move, if the softmax score is bigger

or equal to 20%, the legal move with highest score is

used. If the softmax score is smaller than 20%, there is

a 1% chance that the legal move with second large soft-

max score is selected. After the 300th move, the legal

move with highest score which is not filled its self eye is

selected. After the 600th move, force to pass and end

the game. Above algorithm prevents from that DCNN

forwarding always plays the same action in the same

state. The average number of moves for each game is

around 420 moves. Table 13 shows the performance

of DCNN inference at expanding and simulating. The

result is very good. The previous research[3] states

approximately 1000 rollout/s in a system consisting

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 136 -

of 8x high-end GPUs with Batch size = 64. In the

google cloud platform, 30.9 rollout/s is achieved with

Batch size = 1. The i7-7800X and PHI can do 9.9 roll-

out/s and 5.0 rollout/s. But, the network accuracy is

45.8% which is far better than 34.8%. It is tested on

GTX 1070 also. With 1 thread, it takes about 520

seconds for 640 rollout. However, it is crashed after

first move when executing with 2 threads. The time

is measured by averaging first 150 self-playing moves

with the number of 640 rollout(simulation) for each

move.

Hardware setting Time(seconds)
PHI(Thread = 112) 128.6±1.8
i7-7800X(Thread = 12) 64.5±0.4
Google Cloud(Thread = 64) 20.7±0.3

Table 13 DCNN forwarding on expanding and simulating
in the network NC

5. Conclusions

Sharing a single hardware with multiple threads in

deep learning inference is efficiently. It improves over-

all performance when launching multiple threads con-

currently. In the same time constraint, it can have

more simulations. In addition, one single GPU or CPU

can run many different programs at the same time.

This is good at utlizing computing resource efficiently.

For example, one single hardware can handle many

DCNN go programs playing at the same time and use

all resource to the maximum. For small DCNN mod-

els, CPU outperforms GPU in our method. Althought

the value network[2] is useful for the computer Go, it

is very difficult to train and get a good accuracy. Sim-

ulation with DCNN forwarding might be a good idea

to develop for other applications when it is difficult to

get a good value network.

In the future, the relationship between DCNN accu-

racy and real program strength will be tested. How-

ever, it requires some tuning in the MCTS parameters.

Also, training a network with FP16 or INT16 is a good

topic because computer Go is a good Testbed.

6. Acknowledgement

The authors would like to thank anonymous ref-

erees for their valuable comments in improving the

overall quality of this paper, and Ministry of Science

and Technology of Taiwan for financial support of this

research under the contract numbers 105-2218-e-259-

001-.

References

[1] Tian, Yuandong and Zhu, Yan, ”Better Computer Go
Player with Neural Network and Long-term Predic-
tion”, ICLR, 2016.

[2] David Silver and Aja Huang and Christopher J. Mad-
dison and Arthur Guez and Laurent Sifre and George
van den Driessche and Julian Schrittwieser and Ioan-
nis Antonoglou and Veda Panneershelvam and Marc
Lanctot and Sander Dieleman and Dominik Grewe and
John Nham and Nal Kalchbrenner and Ilya Sutskever
and Timothy Lillicrap and Madeleine Leach and Koray
Kavukcuoglu and Thore Graepel and Demis Hassabis,
”Mastering the game of Go with deep neural networks
and tree search”, Nature, 2016, Pages 484-503, Volume
529.

[3] Peter H. Jin and Kurt Keutzer, ”Convolutional Monte
Carlo Rollouts in Go”, CoRR, 2016.

[4] Suyog Gupta and Ankur Agrawal and Kailash
Gopalakrishnan and Pritish Narayanan, ”Deep Learn-
ing with Limited Numerical Precision”, CoRR, 2015.

[5] Song Han and Huizi Mao and William J. Dally, ”Deep
Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding”,
CoRR, 2017.

[6] Ching-Nung Lin and Shi-Jim Yen, ”Accelerate Deep
Learning Inference with MCTS in the game of Go on
the Intel Xeon Phi”, Game Programming Workshop,
2016.

[7] S. Ali Mirsoleimani and Aske Plaat and H. Jaap van
den Herik and Jos Vermaseren, ”Scaling Monte Carlo
Tree Search on Intel Xeon Phi”, CoRR, 2015.

The 22nd Game Programming Workshop 2017

© 2017 Information Processing Society of Japan - 137 -

