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Abstract: A novel unconstrained person identification method is presented in this paper. This method is for table-
top systems which exist not only in daily life but also in working environments such as offices and factories. Recent
state-of-the-art ubicomp, computer-vision, and CSCW studies have tried to recognize a user’s activities and actions
on a table using a ceiling-mounted device that overlooks the table, since we can install the ceiling-mounted device in
an environment with limited space such as daily life environments and factory environments. Instead of conventional
unconstrained person identification methods, such as face identification, we focus on a user’s soft biometrics that can
be captured from the ceiling such as the shoulder length, shape of the head, and posture of the back to achieve un-
constrained person identification by using a ceiling-mounted depth camera. We achieve robust person identification
by combining the soft biometrics within a framework of multiview learning. Multiview learning allows us to deal
effectively with data consisting of features from multiple sources with different data distributions, i.e., multiple soft
biometrics in our case. Our experimental evaluation revealed that our proposed method achieved high identification
accuracy of about 94%.
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1. Introduction

In recent years there has been a proliferation of tabletop sys-
tems due to the progress of ICT technologies. For example, table-
top display systems for browsing information and playing games,
such as Microsoft PixelSense have been commercialized. In ad-
dition, because tables are readily available in environments that
are typical of everyday life, tabletop systems have been devel-
oped for supporting and augmenting various daily activities, e.g.,
recording or supporting discussion, meal preparation, eating, and
studying [1], [2], [3]. In addition, recognition of working activi-
ties on a table, e.g., medical work and assembly work, has been
studied in the pervasive computing and vision research commu-
nities [4], [5]. In order to record activities on a table and/or to
provide real-time feedback according to a user’s action or gesture
on a table, recent state-of-the-art ubicomp, computer-vision, and
HCI studies have employed a ceiling-mounted camera device that
overlooks the table [6], [7] as shown in Fig. 1.

Meanwhile, to provide a personalized service to tabletop
users, e.g., assembly-work management, personalized lifelog-
ging, CSCW, and personalized recommendation for tabletop dis-
plays, person identification technologies for tabletops have been
actively studied. Many existing tabletop systems perform person
identification by using wireless tags such as RFID tags possessed
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by users [8]. However, this approach is burdensome for users,
making its application difficult in everyday environments.

With a view to achieving unconstrained person identification,
many vision and pervasive computing studies have employed face
identification using a camera and identification based on skele-
ton information obtained from a depth sensor, e.g., Microsoft
Kinect [9], [10]. However, these approaches have the following
problems when applied to tabletop systems.
• The face-based identification methods employ images cap-

tured by a camera in front of the user. Therefore, a sensor
device should be installed in front of a user, but the types of
environments in which it is practicable to install such a sen-
sor device are limited. For example, it is difficult to place a
sensor device on a table because the device interferes with
work and other activities performed on the table. When a
sensor cannot be mounted on a table, it should be mounted
on or embedded in a wall in front of a user. However, em-
bedding a sensor device in a wall, e.g., a wall in a kitchen, is
difficult.

• If a camera is embedded in or attached to a wall, a user may
be occluded by others in the case of multi-user tabletop sys-
tems. In addition, a single camera cannot capture the faces
of all the users because they sit/stand around a table and thus
the face directions of the users differ. Therefore, multiple
cameras should be installed.

To achieve unconstrained person identification for tabletop
users, we focus on a ceiling-mounted depth camera that overlooks
a table, which has already been used in many existing tabletop
studies [6], [7] related to recognizing assembly work in a factory,
CSCW for tabletop displays, interactive dining tables, recogniz-
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Fig. 1 Our assumed environment where a tabletop user is observed by a
ceiling-mounted depth camera.

ing food preparation activities, etc. By using the ceiling depth
camera, we can cope with the above problems as follows.
• Because the camera is ceiling-mounted, a user is not oc-

cluded by other users.
• One ceiling-mounted camera can capture multiple users si-

multaneously, thus reducing the installation cost of the sys-
tem.

• Electrical power can be supplied to the camera from, e.g., a
power source of a ceiling light above the table. Moreover,
because several tabletop display systems employ a ceiling-
mounted projector, electrical power can be easily supplied
to the depth camera from the power source of the projector.

• Since the camera is ceiling-mounted, it is unobtrusive, un-
like a table-mounted sensor, and does not interfere with the
user’s activity on the table.

In this paper, we propose the idea of making use of a user’s
soft biometrics that can be captured from the ceiling, such as the
shape of the user’s head and the shoulder width, to identify the
user using a depth camera installed above the table. Here, soft
biometrics is physical or behavioral features that do not identify
individuals unlike hard biometrics that uniquely identifies indi-
viduals over time such as fingerprint and palm vein. A feature
of our identification method is that robust person identification is
achieved by combining several soft biometrics that can be cap-
tured from the ceiling within the framework of multiview learn-
ing. Multiview learning allows us to deal effectively with data
consisting of features from multiple sources with different data
distributions, i.e., multiple soft biometrics in this case.

In this paper, we assume that a table (or tabletop display sys-
tem) is installed in an environment of interest, such as a residence,
office, factory, or laboratory, and a depth camera is installed above
the table. When a user performs a certain activity on the table,
e.g., eating at a dining table or browsing web pages using a table-
top display, our method automatically extracts camera biometric
features to help identify the user. Specifically, this study focuses
on the following features that can be extracted from the ceiling.
• Skeleton information: Using the depth camera, we detect

the user’s joints, such as shoulders and elbows, that can be
observed from the ceiling, and then obtain skeleton infor-
mation of the user from the detected joints. The distance
between adjacent joints corresponding to, for example, the
shoulder width and the length of the upper arm, can be use-
ful features for person identification because they indicate
the user’s body height.

• Shape of body part: We extract the shape of a body part,
such as the head shape, and use it as one of the soft biomet-
rics. For example, the head shape, which is easily captured

Fig. 2 Application for factory.

by a ceiling-mounted camera, varies greatly among users.
• Dimension of body part: The dimension of a body part, such

as the shoulder indicates the user’s physical size and can be
a distinguishing feature. For example, the dimension of a fat
user’s body part and that of a thin user differ greatly.

• Habitual posture: We assume that the user performs a certain
activity at the table, e.g., eating. When the user performs the
activity, the user may adopt a unique habitual posture. When
a user eats meals or browses web pages on a table, for exam-
ple, the user’s hunched posture may be a unique feature.

Note that each of the above soft biometrics has several disad-
vantages. For example, the shape of the head slightly changes de-
pending on hairstyle. Therefore, this study employs a multiview-
learning-based unified framework for supplementing the disad-
vantages of the soft biometrics by combining them. Because data
distributions of the above soft biometric features are different, we
prepare kernels for each feature and combine them based on mul-
tiple kernel learning (MKL). We investigate the effect of the com-
bination in the evaluation section.

The identification system with a ceiling depth camera can be
used in various environments including residence, office, factory,
and laboratory. In the domestic environments, our method can be
used to provide/collect health and diet-related information when
the system is installed to a dining table. Those information can
also be provided/collected by the identification system in office
environments installed to a shared table where workers eat lunch.
Providing personalized information such as news or announce-
ment is another good application for office environments where
tabletop displays are installed. While our experiment in this pa-
per mainly focuses on domestic applications, we introduce appli-
cations of our identification method other than domestic applica-
tions. Identifying assembly workers in a factory is one promising
application since sensor-based monitoring and assistance of as-
sembly work have been actively studied [11], [12]. Many facto-
ries have limited spaces to install sensing devices such as Kinect,
because many tools and facilities for operation process such as
jigs and testers are placed around operators (workers). In this en-
vironment, a ceiling-mounted depth camera permits us to capture
clear depth images without some occlusion as shown in Fig. 2.
Therefore a ceiling-mounted camera is an effective solution of
the problem. Since the workers do not always work at the same
place in many factories, unobtrusive identification methods are
required. In addition, monitoring and evaluating work in kitchens
in restaurants is another good application because the workers
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frequently bustle everywhere in the kitchen. Note that, while
identification for factories and restaurants are good potential ap-
plications, our experimental evaluation mainly focuses on domes-
tic and office applications.

The contributions of this study are: (1) we propose a new un-
constrained person identification method for tabletops using a
ceiling-mounted depth camera by combining several soft biomet-
ric features captured from the ceiling based on multiview learning
employing MKL, which can deal effectively with data consisting
of features from different sources, (2) we evaluate the method
by using real sensor data obtained from 19 participants who per-
formed two different activities, and (3) we confirmed the effec-
tiveness of our method assuming office and domestic environ-
ments, showing feasibility of personalized tabletop services such
as personalized life logging and news recommender services in
these environments.

To the best of our knowledge, this is the first study that investi-
gates the feasibility of person identification for tabletop users by
a ceiling-mounted depth camera.

With our identification method, we can achieve such applica-
tions as personalized food logging, monitoring and recording as-
sembly work in a line production system, a personalized infor-
mation service for tabletop displays, and multi-user collaboration
for tabletop systems.

2. Related Work

2.1 Sensing Daily and Working Environments
In view of the recent progress of sensing technologies, in many

ubicomp studies attempts have been made to sense and recog-
nize various kinds of daily activities in order to support, aug-
ment, and record them. In these studies, such sensors as body-
worn inertial sensors, RGB-D cameras, and RFID tags attached
to everyday objects have been used [13], [14]. In addition, sev-
eral studies have attempted to capture daily activities performed
on a table by using a camera overlooking the table. For example,
eating, meal-preparation, medical, and workshop activities have
been captured by a camera [5], [15], [16]. In order to provide per-
sonalized services in such settings, person identification using a
ceiling-mounted sensor is required.

2.2 Device-free Person Identification with Hard Biometrics
While there are some person identification techniques using

tags or sensors possessed by a user, such as RFID-based authenti-
cation and gesture-based identification, these approaches require
the user to always carry a tag or inertial sensor [8], [17]. To re-
duce the burden on the user, device-free person identification us-
ing hard biometrics has been studied and developed. Fingerprint-
based identification is the most common approach and used in
many identification systems [18]. In addition, other physical at-
tibutes such as hand vein [19] and iris [20] are also applied for
identification. While these approaches can uniquely identify
users, these approaches require messy actions by users, e.g., plac-
ing fingers on a scanner.

2.3 Device-free Person Identification with Soft Biometrics
Because it is difficult to obtain hard biometrics in natural daily

life settings, person identification using soft biometrics, which
are easier person identification based on soft biometrics, has been
actively studied in the ubicomp and HCI research communities.
In Ref. [21], for example, a camera embedded in a table captures
the shape (contour) of the hand when a user places his hand flat
on the tabletop, and the shape is used to identify the user. While
this method is device-free, a user is required to perform a spe-
cific action. In addition, several studies employ gait information
captured by a camera [22]. However, it is difficult to capture gait
sensor data in tabletop settings.

While face- and skeleton-based identification is uncon-
strained [9], [10], these approaches have issues related to occlu-
sion and installation in tabletop settings as mentioned in the intro-
ductory section. Also, the face-based identification does not work
well when a ceiling-mounted camera is used. In Ref. [23], the au-
thors employ table-edge-mounted RGB-D cameras to capture a
user’s shoes, and then identify the user by matching the camera
image with known shoe images in a database. In Ref. [24], the au-
thors capture a user’s sole pattern by using an instrumented floor.
In contrast, our study extracts soft biometrics from a ceiling and
combines them by using a state-of-the-art statistical approach. As
mentioned in the introductory section, person identification using
a ceiling-mounted sensor has various advantages in tabletop set-
tings.

Similar to our approach, the authors of Ref. [25] try to capture
soft biometrics from a ceiling. A user’s height captured by ultra-
sonic distance sensors mounted above doorways is used for per-
son identification. The authors of Ref. [26] also use a depth cam-
era mounted above doorways to capture the height and silhouette
of the body for person identification. In contrast, we capture soft
biometrics in tabletop settings and combine several biometric fea-
tures using multiview learning.

This study employs soft biometrics for person identification for
tabletop systems. Here automated soft biometric extraction has
a number of applications [27] such as image-tagging and video
indexing for photo or video album management, which enables
person search with queries specifying physical traits, human com-
puter interaction where personalized avatars can be automatically
designed based on physical traits, and health monitoring for early
diagnosis of illness, sickness prevention and health maintenance.
Such traits include body weight, body mass index, skin abnor-
malities, and wrinkles.

3. Method

3.1 Overview
Our method assumes that a user with an unknown ID (here-

inafter called unknown user) is performing an activity or work on
a table as shown in Fig. 1 and the user is identified by using a
time series of depth images obtained from a depth camera above
the table. When the depth camera detects the user, the camera
starts recording depth images and our method uses Ntest depth
images from the start of the recording. Specifically, we estimate
a user ID by using each image and then the final result is deter-
mined based on the results of the Ntest images using the majority
vote. We also assume that training data for a person identification
model are collected under the same setting, i.e., training data can
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Fig. 3 Overview of process for identifying user by using time-series depth images.

be acquired during daily life. Training data are prepared for each
user registered in the system. That is, we assume closed environ-
ments such as an office, laboratory, and home where training data
for every user are prepared.

Figure 3 shows the procedures of our method. Our method
first recognizes body parts such as the head and the right elbow,
i.e., body part classification, by using the random forest algo-
rithm [28]. Then our method extracts biometric features of the
recognized data such as the distance between joints and the shape
of a body part as mentioned in the introductory section. After
that, our method identifies the user by using the extracted fea-
tures based on the multiple kernel learning.

3.2 Soft Biometrics Used in This Study
Before explaining the detailed procedures of our method, we

explain rationales of our approach, i.e., what kinds of soft biomet-
rics are used and reasons why we focus on them. As mentioned
in the introductory section, this study employs 1) skeleton infor-
mation, 2) shape of body part, 3) dimension of body part, and 4)
habitual posture.
3.2.1 Skeleton Information

The skeleton information has usually been used for person
identification. Specifically, the height and the length of limbs,
which can be obtained by a depth camera capturing a person
from in front of the person using Microsoft Kinect API, are re-
ported to be useful [29]. Since it is difficult to extract this in-
formation from the ceiling, we focus on the shoulder and arms,
which can be easily captured by the ceiling depth camera. Sev-
eral anthropometric studies included surveys related to the means
and standard deviations for anthropometric parameters such as
the shoulder width [30], [31]. For example, Ref. [31] reported
that the mean and standard deviation of the shoulder width for
43 adult subjects are 45.90 cm and 3.78 cm, respectively. Also,
Ref. [30] reported that the mean and standard deviation of the up-
per arm length for 4,348 adult males in the U.S. are 39.4 cm and
3.96 cm, respectively. From the means and standard deviations,
the anthropometric statistics (2σ/μ) are computed, which indi-
cate the variability of the measurements. Because the statistics
for the shoulder length and the upper arm length are 0.165 and
0.201, respectively, and larger than the statistics for the height
(0.137), these body lengths will be useful soft biometrics for our
purpose.
3.2.2 Shape of Body Part

The head is the best body part that the ceiling-mounted camera
can capture without occlusion. In Ref. [31], the anthropometric
statistics for the head width and depth are reportedly 0.131 and
0.129. (The head depth means the distance between the forehead
and the back of the head.) Therefore, this information can serve
as well as the height for person identification. However, calculat-

ing the head width and depth is difficult because which direction
a person faces is unknown and difficult to estimate by using the
depth camera. Our idea is to directly compare the shape of the
head, i.e., point clouds, of an unknown user and the shape stored
in a database using registration techniques for finding a transfor-
mation that aligns one point cloud to another.
3.2.3 Dimension of Body Part

Skeleton information provides clues to distinguish between a
tall person and a short person. Here we incorporate soft biomet-
rics that are useful to distinguish between a fat person and a thin
person because, in Ref. [30], the anthropometric statistics related
to the body sizes are reportedly large, e.g., 0.700 for the weight
and 0.560 for the waist circumference. In order to capture soft
biometrics related to the body sizes using the ceiling-mounted
camera, we focus on the dimension of an upper body part such as
the bust because it strongly relates to the waist circumference.
3.2.4 Habitual Posture

Several vision-based person identification studies use silhou-
ette [32] to capture the posture of the user. When the user per-
forms a certain activity at the table such as eating, the user may
adopt a unique habitual posture, e.g., hunched posture. To cap-
ture such characteristics using the ceiling-mounted camera, we
focus on the postures of the neck and shoulders, which can be
easily captured from the ceiling, since our preliminary investiga-
tion revealed that the shape of the back well reflects the posture
of a person. To the best of our knowledge, there are no person
identification studies that harness 3D posture information of the
neck and the shoulders. In the evaluation section, we investigate
the usefulness of this feature.

We explain our method illustrated in Fig. 3 in detail. We also
explain our proposed approach for extracting sensor data features
that well reflect the above soft biometrics.

3.3 Body Part Classification
To extract soft biometric features such as length and shape of

body parts, we first recognize body parts using a depth image.
We classify each pixel of a depth image into a body-part class
(or background class) as depicted in Fig. 4. Because Microsoft
Kinect API provides skeleton information only when a depth sen-
sor captures a person from in front of him/her, we should imple-
ment the body-part classification model by ourselves. While our
method is mainly based on the approach used in Kinect API [33],
the method should be rotation invariant as regards the user’s di-
rection of sitting because the user is free to choose whichever side
of the table he/she prefers.

The procedures of the body part classification are simple. We
first extract features from each pixel and construct a feature vec-
tor concatenating the features. We then classify the vector into
an appropriate class. In this study, the vector is classified into
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Fig. 4 Example of depth image captured from a ceiling (left), and example
of body part classification results (right). The right-hand figure also
shows detected skeleton.

head, right hand, left hand, right elbow, left elbow, right shoulder,
left shoulder, right lower arm, left lower arm, other body parts, or
background class, i.e., an eleven-class classification problem.
3.3.1 Feature Extraction for Body Part Classification

We classify each pixel of a depth image into a body-part class
by using shape information around the pixel. Therefore, we ex-
tract features that reflect the shape around the pixel. Based on
[33], [34], we compute the difference in depth between the pixel
of interest and another pixel around the pixel of interest, and the
difference will be one of the features.
3.3.2 Preparing Labeled Depth Data

During the training phase, a visual marker is attached to each
body part of a participant, and detected markers using RGB im-
ages are used to annotate corresponding depth images. Note that
the test phase is undertaken without using visual markers. Here,
to construct a rotation-invariant classifier, we randomly rotate
depth images obtained during the training phase around the Z axis
and extract feature vectors used for training the classifier.
3.3.3 Classification with Random Forests

To achieve robust and fast classification, this study uses the
random forest algorithm [28]. In the random forest algorithm, a
set of features and a set of training instances are randomly se-
lected, and then a decision tree is trained by using the features
and instances. This procedure is iterated T times and thus T ran-
domized trees are constructed. Prediction for a test feature vector
x′ can be made by combining the predictions from all the individ-
ual trees. In this study, the probability with which x′ belongs to
class Cn is simply computed as

p(Cn|x′) = n(x′,Cn)
T

,

where n(x′,Cn) is the number of trees that classify x′ into Cn.
3.3.4 Skeleton Detection

We first cluster pixels belonging to the head class, i.e.,
p(Chead |x′) > thc, by using the x-means algorithm [35]. The
largest cluster is regarded as a head cluster. Then, right shoul-
der, left shoulder, and other body part clusters (See Fig. 4.) are
associated with the head cluster. After that, a right (or left) elbow
cluster adjacent to an other body part cluster is associated with
the other body part cluster. Similar to the above procedures, right
lower arm, left lower arm, right hand, and left hand clusters are
associated with their adjacent clusters.

Then we compute the joint coordinates of the right shoulder,
left shoulder, right elbow, left elbow, right hand, and left hand

Fig. 5 Comparing sequences of soft biometric features of two users to com-
pute the distance between feature values. Depth images including
outlying biometric features are removed.

clusters by simply averaging 3D coordinates of the cluster mem-
bers. The right portion of Fig. 4 shows the detected joints. Finally,
we connect joints as shown in Fig. 4.

3.4 Biometric Feature Extraction and Distance Computa-
tion

We extract soft biometric features from the detected joints and
body part clusters. As shown in the upper portion of Fig. 5, we
have a series of test images of an unknown user. We extract fea-
tures such as the shoulder width from each test image. Here, there
may exist outlying feature values due to, for example, skeleton
detection errors. So, we detect outlying feature values by com-
paring with feature values of the other test images, and we then
remove (ignore) depth images having outlying feature values. In
the upper portion of Fig. 5, because the 3rd test image has outly-
ing feature values, it is removed. We also apply the same proce-
dures to training images of each user registered in the system in
advance as shown in the lower portion of Fig. 5. (The first image
is removed.)

When we judge whether or not an unknown user of the series
of test images is identical to a user of a series of training images
(for example User01 in Fig. 5), we compare biometric features of
each test image with those of a randomly selected training im-
age of User01. For example, the first image of the test images is
compared to the fourth image of User01 in Fig. 5. This is because
comparing a test image with each training image is computation-
ally expensive. When we compare the features, we compute the
distance between a test feature and its corresponding training fea-
ture. For example, when the shoulder width of the 1st test image
is 0.86 meters and that of the 4th training image of User01 is 0.80
meters as shown in Fig. 5, the distance is |0.86 − 0.80| = 0.06
meters. We compute the distance for each feature of a pair of
a test image and a training image, and construct a distance vec-
tor concatenating the distances as shown in the right portion of
Fig. 5. The distance vectors are used to judge whether or not the
unknown user is identical to User01.

We explain biometric features extracted from each depth image
and also explain how to compute the distance between two bio-
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Fig. 6 Lateral view of head point clouds of two participants and registration
results of ICP algorithm using them.

metric feature values as follows. Furthermore, we explain how to
find outlying feature values in the series.
3.4.1 Skeleton Information

The length of a body part is one of the indicators of the user’s
body size. From the detected joints, we compute the shoulder
width and the lengths of the right lower arm, left lower arm, right
upper arm, and left upper arm, which can be observed from the
ceiling. When we compute the distance between the length from
a test image and that from a training image, we simply use the
absolute difference as the distance. Note that, when the hands are
occluded, for example, we assume the lengths of the lower arms
as missing values.

Due to the skeleton detection errors, the computed length sel-
dom has large errors. So, we find outlying lengths extracted from
the series of the test images (or training images) and discard depth
images including the outliers that are detected according to the
following procedure. In this study, we assume each computed
length value as a data point and we employ the mean shift [36].
With the mean shift, we find a small window that includes the
maximum number of data points, and data points outside the win-
dow become outliers.
3.4.2 Shape of Body Part

We compare the shape of a detected body part of the unknown
user and that of a user registered in the system. In this study,
we employ the shape of the head because the ceiling camera can
easily capture it and the head shape varies depending on users.
Specifically, we compute the distance between a point cloud cor-
responding to the unknown user’s head and that corresponding
to the registered user’s head. In this study, we use the iterative
closest point (ICP) algorithm [37] to compute the distance be-
tween two shapes (point clouds). Figure 6 shows examples of
the head point cloud registration. The upper portion of the figure
shows the registration result of two head point clouds obtained
from the same participant. Meanwhile, the lower portion of the
figure shows the registration result of head point clouds from two
different participants. Because their shapes are different, the ICP
algorithm could not find a good transformation.

Note that, due to the limitation of the depth sensing, a depth
image sometimes contains missing data (white pixels in the left
portion of Fig. 4). The shape of the head cluster in Fig. 4 is irreg-

ular and using this shape may degrade the person identification
performance. Therefore, we find the outlying head shapes in the
series of the depth images and discard them. In this study, we
employ agglomerative hierarchical clustering [38] to find outly-
ing head shapes where each head shape is assumed to be a data
point in the clustering. The agglomerative hierarchical clustering
is a bottom-up approach where each data point starts in its own
cluster and a pair of the closest clusters is iteratively merged as
one cluster. In the agglomerative hierarchical clustering, we use
the single linkage criterion: the distance between two clusters is
the minimum distance between any single data point in the first
cluster and any single data point in the second cluster. In this
study, to find outliers, we merge clusters until we cannot find a
pair of clusters having the distance smaller than a threshold. We
assume that data points that are not included in the largest cluster
are outliers.

Here, the ICP algorithm is computationally expensive. In our
current implementation, it takes about 0.2 seconds to compute the
distance between two head point clouds. Therefore, we use only
the first Nicp depth images (head point clouds) of the unknown
user to compute the distances. When we want the distance be-
tween, for example, the Nicp + 1th image of the unknown user
and an image of User01, we simply re-use the randomly selected
distance that has already been computed using images of the un-
known user and User01.
3.4.3 Dimension of Body Part

The dimension of a body part is also one of the indicators
showing the user’s body size. We compute the dimension of a
body part in the 3D space by using its corresponding point cloud.
In this study, we compute the dimensions of the right shoulder,
left shoulder, and bust (sum of right shoulder, left shoulder, and
other body part clusters). To compute the dimension, we simply
construct a polygon mesh of a body part whose vertices corre-
spond to points included in the point cloud of the body part. Then
we compute the dimension of the surface of the constructed poly-
gon mesh by simply summing the dimension of each polygon.

We detect outlying dimension values caused by body part clas-
sification errors by using the mean shift in the way described in
Section 3.4.1.
3.4.4 Habitual Posture

A posture of a user when performing an activity (e.g., sitting
posture) can have a distinguishing feature. In our preliminary in-
vestigation, we found that the curvature of the back well reflects
the posture of a person. Figure 7 shows example point clouds of
the upper bodies of our participants. The curvature of a person
who has a good posture is greatly different from that of a person
who has a bad posture. The good posture means a posture with a
straight back, and the bad posture means a posture with a curved
back as shown in Fig. 7. However, because it is difficult to cap-
ture the curvature of the back by using a ceiling-mounted camera
in some cases, e.g., when it is occluded by the back of a chair, the
present work attempts to capture the posture of the neck and the
curvature of the shoulders from the ceiling.

We first explain the posture of the neck. Because the backbone
is connected to the neck, we believe that we can capture the cur-
vature of the back from the neck. We assume that the average 3D
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Fig. 7 Lateral view of upper-body point clouds of two participants. The
left portion shows a good posture and the right portion shows a bad
posture.

coordinates of the left shoulder joint and the right shoulder joint
correspond to the root of the neck. We then assume that the neck
corresponds to a line segment connecting the root of the neck and
the centroid of the head cluster. We use the angle between the
vertical direction and the line segment as one of the soft biomet-
ric features, i.e., neck angle. When we compute the distance be-
tween the angle from a test image and that from a training image,
we simply use the absolute difference as the distance.

Note that the posture of a user can change during an activity.
For example, the posture captured when the user is just eating
is different from that captured when the user is picking up food
located far from him. In this study, we find the most frequent
posture (neck angle) that appeared in the activity and we assume
that postures other than the most frequent posture are outliers. We
find the outlying angle values by using the mean shift in the way
described in Section 3.4.1.

We then explain the curvature of the shoulders. As shown in
Fig. 7, the shape of the shoulders of a person with a bad posture
tends to be curved. In this study, we use a point cloud consist-
ing of data points included in point clouds of both shoulders and
points exist between the shoulders as a soft biometric feature. We
compute the distance between two point clouds in the way de-
scribed in Section 3.4.2.

To find the most frequent posture, we also use the agglomer-
ative hierarchical clustering as described in Section 3.4.2. and
assume data points belonging to the largest cluster as the frequent
postures, i.e., data points (depth images) that do not belong to the
largest cluster will be outliers.

3.5 Classification with Multiple Kernel Learning
3.5.1 Overview

We use the distances of biometric features between the un-
known user and a user registered in the system to identify the
unknown user. Figure 8 shows the overview. In our method, the
extracted biometric features of the unknown user are compared
to those of each registered user. (In the upper portion of Fig. 8,
the unknown user is compared to User01.) As depicted in Fig. 5,
distance vectors are constructed concatenating the computed dis-
tances, and then the vectors will be inputs of a binary SVM. With
this SVM, we can compute the probability with which the un-
known user is identified as User01 by using the margins of the
vectors (the signed distances from the SVM hyperplane). We out-
put an ID of a registered user with the largest probability (margin)

Fig. 8 User identification by using binary SVM prepared for each user reg-
istered in the system.

as the classification result of the distance vector. We compute the
final result based on the weighted majority vote of the classifica-
tion results of the distance vectors. Note that a weight of each
vote corresponds to the probability.

When the SVM of User01 is trained, the training distance vec-
tors (instances) of the positive class are computed by comparing
pairs of User01’s biometric features with different time stamps.
The training distance vectors of the negative class are computed
by comparing User01’s biometric features with those of other
registered users. Note that the vectors consist of distance values
computed from various biometric features such as the skeleton
information and shape of a body part. To deal effectively with
the vectors consisting of features from different sources, we use
a multiple kernel learning (MKL) method in the binary SVM.
MKL is one of the multiview learning methods. It employs a
linear combination of multiple base kernels and each kernel can
describe a different property of the data. So, we prepare a kernel
for each different data source, i.e., skeleton information, shape of
body part, etc., and combine them.
3.5.2 Multiple Kernels and Person Identification

We use a kernel function to compute the distance between
instances to determine a linear decision function in the feature
space. Assume that we have N training instances {xi ∈ X}Ni=1. In
the kernel-based learning, the decision function, which is used to
predict the estimation of unseen test instance x�, is written as

f (x�) = aTk� + b,

where a and b are the vector of the weights assigned to each train-
ing instance and the bias. Also, k� = [k(x1,x�) . . . k(xN ,x�)]T,
where k(·, ·) is a kernel function that calculates the distance (sim-
ilarity) between two instances.

In MKL, we employ the following linear combination of mul-
tiple base kernels as the decision function:

f (x�) = aT
(
eskksk,� + eshksh,� + edkd,� + ehkh,�

)
+ b, (1)

where em is the weight of the m-th kernel and km,� =

[km(x1,x�) . . . km(xN ,x�)]T. Note that m ∈ {sk, sh, d, h}, and sk,
sh, d and h show skeleton information, shape of a body part, di-
mension of a body part, and habitual posture, respectively. That
is, we prepare kernels for these soft biometric features. (In our
actual implementation, we prepare three kernels for each feature:
radial basis function, sigmoid, and polynomial.) In each kernel,
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we configure each kernel’s hyperparameters to capture the data
distributions of the corresponding biometric feature by using grid
search. Refer to Ref. [39] for more detail about the setting of
the hyperparameters. Bayesian efficient multiple kernel learning
(BEMKL) [40] is used to estimate the parameters in Eq. (1).

4. Evaluation

4.1 Data set
We collected sensor data with Microsoft Kinect v2 mounted

about 1.5 meters above a table and sampling rates of 2 Hz. The
participants performed two activities while sitting on a chair at the
table. Each participant completed three data collection sessions
for each activity, and the first 140 seconds of each session was
recorded by Kinect. The two activities are ‘browsing a web page
with a tabletop display’ and ‘eating meals at a table.’ With regard
to browsing, we asked the participants to find an interesting news
article from a news portal site and read it by using a tabletop dis-
play on the table. We selected this activity because we assume
an application that provides personalized recommendations, e.g.,
news search. With regard to eating, we assume a shared table
installed in a laboratory or office, and also assume a general per-
sonalized information service, e.g., providing personalized news
or activity-related information during activities, or a personalized
lifelogging application, e.g., recording eating activity for dietary
control.

In this research, we investigate person identification when per-
sons use tabletop displays or usual tables in house and office en-
vironments. While tabletop displays have not yet been common
in houses, we believe that web content browsing will be one of
the most common activities on the displays because the activity
is now one of the most common activities on tablet computers in
houses. In contrast, there are many kinds of activities performed
on usual tables, such as studying, reading, taking tea, and so on.
However, these activities are too simple and they can make the
person identification task easy. Therefore, our evaluation focuses
on eating.

19 participants participated in our experiment (i.e., a 19-class
classification problem), and the experimental period was about
one month. The participants consist of 16 males and 3 females,
and their average age is 23.5 years. Figures 9, 10, 11, and 12
show the distributions of height, weight, BMI, and age of our par-
ticipants. As shown in the figures, our participants have similar
body sizes. Each participant performed three sessions on three
different days while wearing his/her clothing during the experi-
mental period. Each participant wore different clothing each day
and each participant’s clothing was different from that worn by
the other participants. In order to confirm the long-term perfor-
mance of our method, one participant collected data over a period
of about 60 days. During the 60 days, the participant collected
data on different 8 days. The long-term performance is consid-
ered below.

4.2 Evaluation Methodology
We prepare a person identification model for each activity, in-

dependently training a model only on corresponding activity sen-
sor data. The model is trained and tested based on the ‘leave-one-

Fig. 9 Distribution of height of subjects.

Fig. 10 Distribution of weight of subjects (excluding female subjects).

Fig. 11 Distribution of BMI of subjects (excluding female subjects).

Fig. 12 Distribution of age of subjects.

session-out’ cross-validation approach. That is, we employ test-
ing and training data collected on different days. When evaluating
the model, we used the first Ntest depth images included in the test
session. (The sensor sampling rate was about 2 Hz. Note that we
use only the first Nicp depth images to compute point cloud reg-
istration. Ntest = Nicp = 40.) The impact of the number of depth
images used is considered below.

To investigate the effectiveness of our method, we prepared the
following methods.
• MKL: This is our proposed method that uses all the biometric

features based on MKL.
• SVM: This is our proposed method that uses all the biometric

features. Note that this method uses multi-class SVM with a
linear kernel function instead of MKL.

• MKL w/o skeleton: This method does not use the lengths of
the body parts obtained from the skeleton as features.

• MKL w/o shape: This method does not use the head shape.
• MKL w/o dimension: This method does not use the dimen-

sions of the body parts.
• MKL w/o posture: This method does not use the habitual

posture, i.e., the neck angle and the shoulder shape.
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Table 1 Person identification accuracy [%].

browsing eating average

MKL 91.2 96.5 93.9
SVM 91.2 91.2 91.2

MKL w/o skeleton 82.5 91.2 86.8
MKL w/o shape 78.9 87.7 83.3

MKL w/o dimension 91.2 91.2 91.2
MKL w/o posture 82.5 89.5 86.0

MKL only skeleton 59.6 70.2 64.9
MKL only shape 84.2 87.7 86.0

MKL only dimension 50.9 49.1 50.0
MKL only posture 61.4 59.6 60.5

Fig. 13 Visual confusion matrix of MKL (combined result of eating and
web browsing).Number in each cell shows the percentages of test
instances classified into a corresponding class.

4.3 Results
4.3.1 Identification Performance

Table 1 shows the classification accuracies for the methods.
Surprisingly, MKL achieved very high accuracy of about 94%.
(Random guess ratio is only 5.3% because we have 19 partic-
ipants.) With regard to eating, our method achieved over 96%
accuracy even though our participants had similar body sizes as
shown in Fig. 9. Our method achieved almost the same accura-
cies as the existing state-of-the-art unconstrained identification
method for tabletop systems using RGB-D images of shoes [23]
(95.8% for 18 participants). Note that the method in Ref. [23]
relies on a shoe, which can be occasionally changed. In addi-
tion, the method in Ref. [23] requires RGB-D cameras mounted
on each edge of a table. In contrast, our method requires only one
ceiling-mounted depth camera.

MKL also outperformed SVM (about a 2.7% increase). This
may be because MKL combines multiple kernels tailored for the
biometric features. As shown in Table 1, the classification accu-
racy using the web browsing data was slightly poorer than that
using the eating data. This is because some participants used
the tabletop display with a slouching posture, and thus their arms
were occluded by their bodies.

Figure 13 shows a confusion matrix of MKL (combined result
of eating and web browsing). Because we have six test sessions
for each participant, 17% means wrong identification in only one
session (1/6). As shown in the matrix, User C is wrongly identi-
fied as User I and User L. The difference of the heights of User

C and User I is only 0.03 meters. Also, the difference of the
heights of User C and User L is 0.01 meters. So, we believe that

the wrong estimations were caused by their similar body sizes. In
contrast, the difference of the heights of User A and User L is 0.10
meters. Also, the difference of the heights of User B and User F

is 0.19 meters. We confirmed that the postures of the participants
(neck angles) were similar.

As mentioned above, the person identification accuracy of our
method is not perfect because our method employs soft biomet-
rics. Therefore, our method is not appropriate for applications
that require true security, e.g., applications dealing with computer
accounts or banking information. We believe that our method
achieved enough accuracy to achieve a general personalized in-
formation service, e.g., providing personalized news and tips, and
a lifelogging service.
4.3.2 Usefulness of Biometric Features

Table 1 also shows the classification accuracies when we did
not use a certain biometric feature. When we did not use the
shape feature, the classification accuracy decreased about 10%.
So, we conclude that the shape feature greatly contributed to the
classification performance. When we did not use the shape fea-
ture, our method failed to distinguish between participants with
similar heights. (The mean absolute height difference between
participants that were not distinguished is 0.058 meters. That for
MKL is 0.063 meters) Therefore, the feature is useful for distin-
guishing participants whose body sizes are similar. Note that,
because workers wear a hat or helmet in many factories, the head
shape information cannot be used for the identification and thus
the identification accuracy degrades. However, because works of
many factory workers are repetitive and similar sensor data can be
observed on different days, identification accuracy can improve
due to the contributions of other soft biometrics. Investigating
our method in actual factories is our important future work.

As shown in the table, the contributions of the skeleton and
posture features were greater than the contribution of the dimen-
sion feature. The upper body dimension of a fat participant was
greatly different from that of a thin participant, and we assumed
that this feature contributes to distinguishing such participants.
However, because the upper body was partially occluded depend-
ing on the posture of a person, a computed dimension value of the
upper body was unstable.

In real environments, the identification performance will
greatly drop due to such reasons as wearing a hat, change in hair
style, and wearing a heavy down jacket. We can say that Table 1
also indicates the lower bound of the identification accuracy when
a certain feature does not completely work. For example, the re-
sult of MKL w/o shape shows a situation where a user wears a hat
or greatly changes his/her hair style. Also, the result of MKL w/o

dimension shows a situation where a user wears heavy clothes.
Moreover, the result of MKL w/o posture shows a situation where
a user does not perform any activities. While we consider that
a user’s skeleton information does not greatly change, the result
of MKL w/o skeleton can indicate a situation where a skeleton
detection accuracy significantly drops. When a person holds an
object, we confirmed that the estimated length of the arm some-
times has small errors. Therefore, when we cannot use the shape
information, e.g., users wear helmets, the identification accuracy
can degrade by up to about 10%. In addition, when we cannot
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Fig. 14 Transitions of identification accuracies when we changed Ntest and
Nicp (average of browsing and eating).

use the skeleton information, e.g., users always hold objects, the
identification accuracy can degrade by up to about 8%.

The lower portion of Table 1 shows the classification perfor-
mance of our method using only the skeleton, head shape, di-
mension, or habitual posture feature. As shown in the table, it is
difficult to identify users by using a single feature. In other words,
we could confirm the effectiveness of our multiview learning-
based approach, which combines multiple soft biometric features.
While using only the head shape feature achieved the best perfor-
mance, the accuracy was lower than 90%. This may be because
the head shape slightly changes depending on hairstyle.
4.3.3 Impact of Ntest

The person identification is undertaken by using the first Ntest

depth images of test data. Figure 14 shows the transition of the
classification accuracies for MKL when we changed Ntest (Ntest

line). When Ntest is very small, the classification accuracies are
poor. Since our method outputs the final classification result
based on the majority vote of the classification results of each
test image, small Ntest is affected by noises. When Ntest is 4, our
method reaches about 90% accuracy. Because the sensor sam-
pling rate was about 2 Hz, Ntest = 4 corresponds to about two
seconds.
4.3.4 Impact of Nicp

Because it takes about 0.2 seconds to compute the distance be-
tween two head point clouds by using the ICP algorithm, this
distance computation is the main bottleneck of our identification
method. (We should compare a test point cloud to that of each
user registered in the system. Also, our method uses the head, left
shoulder, right shoulder, and bust point clouds.) Figure 14 shows
the transition of the classification accuracies for MKL when we
changed Nicp. (Ntest = 40) As shown in the figure, when Nicp is
18, our method reaches about 90% accuracy. Because ICP is used
to capture the shape feature, it greatly contributed to the identifi-
cation accuracy.
4.3.5 Computation Cost

We have measured the computation time of our identification
method. When Ntest = Nicp = 10, our method outputs the identifi-
cation result 10.5 seconds after the 10th depth image is captured.
(Ntest = 10, Nicp = 1: 5.6 seconds. Ntest = 10, Nicp = 5: 7.6
seconds.) It took about 9.3 seconds to compute the point cloud
distances with the ICP algorithm. Using the skeleton and dimen-
sion features, we plan to reduce the cost related to the ICP algo-
rithm by finding and ignoring registered users whose body sizes
are apparently different from the size of a test user.

Fig. 15 Histogram of average probability for classified class over Ntest im-
ages (web browsing).

Fig. 16 Histogram of average probability for classified class over Ntest im-
ages (eating).

4.3.6 Dealing with an Unregistered Person
Even though houses and offices are “closed”, these environ-

ments can have a visitor. Therefore, here we consider a situation
where sensor data from an unregistered person are processed by
our identification system. Our method outputs a probability with
which a depth image is classified into a registered user class. So,
we compute the average probability for the class over Ntest im-
ages, and the class with the largest average is the classified class.
When the largest average is smaller than a threshold, we can re-
gard the unknown user as unregistered. Figures 15 and 16 show
histograms of the largest averages for our 114 test sessions. Note
that the orange stacked bars indicate incorrectly classified ses-
sions. We can assume that users of the incorrectly classified ses-
sions are unregistered because their classification results do not
change regardless of whether or not the users are registered.

With regard to web browsing, when the threshold is 0.65, we
can perfectly detect unregistered users in our data. However,
about 35% of registered users (sessions) are rejected. With re-
gard to eating, when the threshold is 0.70, we can perfectly de-
tect unregistered users. However, about 58% of registered users
are rejected. As explained above, it is difficult to perfectly de-
tect unregistered users without rejecting registered users, and our
method is suitable for closed environments.
4.3.7 Long-term Performance

One participant collected data over a period of 63 days. Our
method correctly identified the participant during the period. Fig-
ure 17 shows the transition of the probabilities with which the
participant is classified into the correct class. During the pe-
riod, the participant visited a barber on the 13th day. The hair-
cut slightly changes the shape of the head, and the shape fea-
ture greatly contributed to the person identification as mentioned
above. However, as shown in the figure, the probability on the
14th day was unchanged. Because our method combines several
biometric features, it is robust against such noises.
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Fig. 17 Transition of the probabilities with which a participant is classified
into the correct class. The identification model is trained on the 1st
day.

5. Conclusion

We proposed a novel unconstrained person identification
method for tabletops. We focus on a user’s soft biometrics that
can be captured from the ceiling such as the shoulder length,
shape of the head, and posture of the back to achieve uncon-
strained person identification by using a ceiling-mounted depth
camera. We achieve robust person identification by combining
the soft biometrics within a framework of multiview learning. We
evaluated the method by using real sensor data and confirmed the
effectiveness of the method. Our method achieved very high ac-
curacy of about 94%. Also, our evaluation revealed that the shape
feature greatly contributed to the classification performance. As a
part of our future work, we plan to apply our method to real indus-
trial environments such as factories. Since many factory workers
wear hats, identifying the workers will be a challenging task. In
addition, because our evaluation experiment focuses only on a
single activity, i.e., an identification model only for browsing or
eating, training our identification model on data including multi-
ple activities is important future work towards practical identifi-
cation systems.
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