
Vol. 46 No. SIG 16(ACS 12) IPSJ Transactions on Advanced Computing Systems Dec. 2005

Regular Paper

Development of the Efficient Electromagnetic Particle Simulation Code

with High Performance Fortran on a Vector-Parallel Supercomputer

Hiroki Hasegawa,†,☆ Seiji Ishiguro†,†† and Masao Okamoto†,††

A three-dimensional, relativistic, electromagnetic particle simulation code is developed using
the “Exact Charge Conservation Scheme” on a vector-parallel supercomputer. This scheme
is a method for calculating current densities. Applying this method, correction of electric
fields is not needed. In this paper, some techniques to optimize the above scheme for a
vector-parallel supercomputer are shown. The method for vectorization and parallelization in
shared memory and in distributed memories are discussed. The code is written in Fortran90
and High Performance Fortran (HPF). Examination of this code is also made.

1. Introduction

The Particle-in-Cell (PIC) method is a com-
mon simulation scheme which has been used to
study plasma physics 1) (mainly, laser plasmas,
space plasmas, and so on). In this method, mo-
tions of individual particles and time evolutions
of the self-consistent fields are computed alter-
nately. In relativistic, electromagnetic (EM)
PIC codes, first, charge and current densities
on spatial grids (cells) are calculated from parti-
cle positions and velocities. Then, substituting
these charge and current densities in Maxwell
equations, the self-consistent electric and mag-
netic fields at the next time step are obtained.
Finally, using these fields, particle velocities
and positions are advanced by the relativistic
equation of motion. This cycle is continued for
simulation time.

Although there are several methods for cal-
culating time evolutions of the fields, finite-
difference Maxwell equations are often used. In
this case, however, one has to correct the elec-
tric field by the Gauss law (Poisson equation)
(Ref. 1) and the references therein). Also, this
means that the continuity equation is not held
rigorously.

Therefore, using the “Exact Charge Con-
servation Scheme 2),3),” we develop the three-
dimensional, relativistic EM-PIC code. In this
scheme, current densities are computed with
rigorous satisfaction of the finite-difference con-

† Theory and Computer Simulation Center, National
Institute for Fusion Science

†† The Graduate University for Advanced Studies
(Soken-dai)

☆ Presently with Earth Simulator Center, Japan
Agency for Marine-Earth Science and Technology

tinuity equation. Then, from Ampère’s law in
finite differences, we find that the Gauss law
is also held. Thus, applying this algorithm as
scheme to calculate current densities, one needs
no correction process. Further, because of the
accuracy of current densities, in an open system
simulation code 4), consistent boundary condi-
tions are given.

This paper describes a coding method which
optimize the above scheme for a vector-parallel
supercomputer. In actual calculation, we use
the SX-7 supercomputer (NEC Corporation),
which is used at the Theory and Computer
Simulation Center, National Institute for Fu-
sion Science (NIFS). Since this machine has five
nodes (one node has 32 processors), we have to
use not only automatic parallelization in shared
memory on each node but also manual paral-
lelization in distributed memories among nodes.
For this purpose, we write simulation code with
High Performance Fortran (HPF) which is a
distributed parallel processing language for For-
tran 5).

In Section 2, we show an outline of our PIC
code. Locations where field components are de-
fined on a spatial grid and the flow of calcula-
tion are discussed. In Section 3, we review es-
sential points of the “Exact Charge Conserva-
tion Scheme.” It is explained how current den-
sities are obtained in this scheme. In Section
4, we present the actual source code written in
HPF. Further, methods for parallelization and
vectorization are discussed. In Section 5, the
performance of our code is examined. In Sec-
tion 6, we summarize our work.

2. Overview of PIC Code

In our code, time evolutions of the fields are

144

Vol. 46 No. SIG 16(ACS 12) Development of the Efficient EM-PIC Code with HPF 145

calculated by Ampère’s law and Faraday’s law
in finite differences. Figure 1 shows locations
where the electric field E, the magnetic field B,
the current density J , and the charge density
ρ are defined on a cell. Using these definitions,
we obtain Ampère’s law as

1
c

Ex n+1
α,β,γ − Ex n

α,β,γ

∆t
=(

B
z n+1/2
α,β+1,γ − B

z n+1/2
α,β,γ

∆y

−B
y n+1/2
α,β,γ+1 − B

y n+1/2
α,β,γ

∆z

)

−4π

c
J

x n+1/2
α,β,γ , (1)

and Faraday’s law as

1
c

B
x n+1/2
α,β,γ − B

x n−1/2
α,β,γ

∆t
=

−
(

Ez n
α,β,γ − Ez n

α,β−1,γ

∆y

−Ey n
α,β,γ − Ey n

α,β,γ−1

∆z

)
, (2)

where c is the speed of light, ∆t is the time
step, ∆x, ∆y, and ∆z are the grid spacing, the
subscripts α, β, and γ denote the integer in-
dices of cells, and the index n is the integer time
step. Also, Eqs. (1) and (2) represent only the
x component of original equations. The other
components are given by cyclic substitution of
space coordinates.

Further, velocities and positions of particles
are derived via the relativistic equation of mo-
tion,

p
n+1/2
s − p

n−1/2
s

∆t
=

qs

∑
α,β,γ

S(xα − xs) S(yβ − ys) S(zγ − zs)

×
(

En
α,β,γ

+
(pn+1/2

s + p
n−1/2
s) × Bn

α,β,γ

2msΓn
s c

)
, (3)

and

xn+1
s − xn

s

∆t
=

p
n+1/2
s

msΓ
n+1/2
s

, (4)

where m is the mass, p is the momentum, q is
the charge, S is the form-factor of the finite-

Fig. 1 (a) Locations where the electric field E, the cur-
rent density J, and the charge density ρ are de-
fined on a cell, and (b) those of the magnetic
field B.

size particle 1), xα,β,γ is the position of grid, xs

is the particle position, Γ is the Lorentz factor,
and the subscript s denotes the particle number
including the particle species.

The flow of calculation is presented in Fig. 2.
First, using momenta, particle positions for the
next time step are obtained. Then, from the
old (time index n) and the new (time index
n+1) positions, current densities are computed
via the “Exact Charge Conservation Scheme.”
(This calculation is described in detail in Ref. 3)
or the following section.) Next, substituting
these current densities and magnetic fields in
Eq. (1), we have the new electric fields. And
then, using these electric fields, the new mag-
netic fields are given by Eq. (2). Finally, substi-
tuting the new fields into Eq. (3), particle mo-
menta are advanced. Here, we note that par-

146 IPSJ Transactions on Advanced Computing Systems Dec. 2005

Fig. 2 Flow of calculation.

ticle positions and electric fields are defined at
integer time step and that, on the other hand,
the time steps for particle momenta, current
densities, and magnetic fields are half-integer.
Such a calculation scheme is called “the leap-
frog method 1).”

3. Method for Calculating the Current
Density

Now, we briefly review the “Exact Charge
Conservation Scheme 2),3).” In this scheme, to
avoid correction of electric fields by the Gauss
law, current densities are calculated with rigor-
ous satisfaction of the finite-difference continu-
ity equation,

ρn+1
α,β,γ − ρn

α,β,γ

∆t
+

J
x n+1/2
α+1,β,γ − J

x n+1/2
α,β,γ

∆x

+
J

y n+1/2
α,β+1,γ − J

y n+1/2
α,β,γ

∆y

+
J

z n+1/2
α,β,γ+1 − J

z n+1/2
α,β,γ

∆z
= 0. (5)

For this purpose, we use a vector W ,

W
x n+1/2
α,β,γ =

−(Jx n+1/2
α+1,β,γ − J

x n+1/2
α,β,γ)

1
q

∆t

∆x
. (6)

We now consider a contribution of one parti-
cle to W . Assuming that S is the second-order
form-factor, a vector W is given as

W
x n+1/2
α+i,β+j,γ+k = DSx

i

×
(

Sy
j Sz

k +
1
2
DSy

j Sz
k

+
1
2
Sy

j DSz
k +

1
3
DSy

j DSz
k

)
. (7)

Here, α, β, and γ are the indices of cell which
is the nearest to an old particle position, the

Fig. 3 Schematic diagram showing the order to calcu-
late the current densities. Here, the new nearest
index is α − 1, where α is the old one.

subscripts i, j, and k are integral numbers from
−2 to 2, Sy

j denotes S(yβ+j − yn
s), and DS is

the difference between the old and the new S,

DSx
i =S(xα+i−xn+1

s)−S(xα+i−xn
s). (8)

Computing a vector W with the aid of Eq. (7),
we have current densities by Eq. (6).

4. Subroutine of Calculating the Cur-
rent Density

We then discuss a coding technique which
optimize the “Exact Charge Conservation
Scheme” for a vector-parallel supercomputer.
In Section 4.1, we consider how many elements
for each variable are necessary to the subrou-
tine. In Section 4.2, we show a calculation flow
in the subroutine. In Section 4.3, we explain
methods for parallelization and vectorization.

4.1 Number of Elements for W and J
We assume that the index of the new nearest

cell is α − 1. (Because c ∆t < ∆x, its decrease
(or increase) is zero or one.) In this case, we
obtain S and DS as shown in Fig. 3. Here, for
the sake of simplicity, we omit the subscripts α,
β, and γ. Although, from Eq. (7), we find that
W x

i,j,k has a nonzero value at the point where
DS is not zero, it is enough to calculate just
three elements for W x

i,j,k.
Since a part of the charge does not pass

through the surface between α + 1 and α + 2
cells, we have Jx

2,j,k = 0. Thus, from only
W x

1,j,k, we find Jx
1,j,k by Eq. (6). Then, follow-

ing the order as arrow in Fig. 3, Jx
i,j,k is given

via Eq. (6). Hence, it is sufficient to prepare
three elements for W x

i,j,k (i = −1, 0, 1).
Figures 4 and 5 show other situations; the

index of the new nearest cell is α or α + 1. In
all cases, it is enough to prepare only three el-
ements for W x

i,j,k and four elements for Jx
i,j,k

(i = −1, 0, 1, 2) for calculating current densi-
ties. The order to compute Jx

i,j,k, however, is

Vol. 46 No. SIG 16(ACS 12) Development of the Efficient EM-PIC Code with HPF 147

Fig. 4 Schematic diagram showing the order to calcu-
late the current densities. Here, the new nearest
index is α.

Fig. 5 Schematic diagram showing the order to calcu-
late the current densities. Here, the new nearest
index is α + 1.

different in each case. Then, decisions which
situations individual particles produce are usu-
ally taken with the IF statement.

On the other hand, with respect to j (or k),
we find that only four elements for W x

i,j,k and
Jx

i,j,k are needed. Assuming that the index of
the new nearest cell for the y component is β−1,
we have Sy

2 = 0 and DSy
2 = 0. Hence, from

Eq. (7), we obtain W x
i,2,k = 0 and Jx

i,2,k = 0. It
is thus concluded that the elements for j = 2 are
not necessary. We, however, note that elements
used in calculation are different in situations.
Therefore, in the loop for j = −1, 2 (or k = −1,
2), one has to modify the index j (or k) about
all particles.

By the above methods, the total of calcula-
tions can be reduced.

4.2 Calculation Flow in Subroutine
In the subroutine, calculation is done along

the following arrangement;
Large Loop 1
Loop 1

Step 1.1
Find the index number of the nearest cell
to xn

s .
Step 1.2

Compute xn+1
s .

Step 1.3
Find the index number of the nearest cell
to xn+1

s .
Step 1.4

Difference between the old and the new in-
dex number is given.

Step 1.5
Check the value of the index difference.

Step 1.6
Calculate S and DS.

Loop 2
Sub Loop A

Step A.1
W−1,j,k ∼ W1,j,k are obtained from S and
DS.

Step A.2
Using Wi,j,k, Ji,j,k is computed.

Sub Loop B
Step B.1

Ji,j,k is added to work arrays for current
densities.

Large Loop 2
Obtain current densities on grids by sum-
mation of work arrays.

Large Loop 1 is a double loop which has lengths
of the total number of processors (np) and
blocks (nb). Loop 1 is a single loop with a max-
imum vector register length (veclen) of 256.
Here, the total number of simulation particles is
taken to be np × nb × veclen. Further, Loop 2
is a double loop, j, k = −1, 2. Sub Loop A and
B are single loop which has a maximum vec-
tor register length. The actual source code in
Fortran90 and HPF is shown in Appendix.

4.3 Optimization
4.3.1 Parallelization
This code is parallelized in distributed mem-

ories with HPF and in shared memory with an
automatic parallelizing function of sxf90 com-
piler, which is a Fortran90 compiler for the SX
supercomputer. In PIC simulation, the total
calculation for particles is more than 100 times
as large as the one for field data.

In our code, subroutines for calculating cur-
rent densities (subroutine CURRENT) and ad-
vancing particle momenta (subroutine PUSH)
include the computations about particles.
Hence, we now especially optimize these sub-
routines.

First, arrays for particle data (positions, mo-
menta) are distributed to each HPF process.
The extent of last rank for these arrays is taken
to be np. Then, inserting DISTRIBUTE direc-
tive lines (!HPF$ distribute) to the code as
shown in Appendix, they are distributed with
respect to the last rank.

Further, in an HPF process, calculations are

148 IPSJ Transactions on Advanced Computing Systems Dec. 2005

automatically parallelized in shared memory by
the sxf90 compiler. We take the total number
of generated tasks to be np / npro, where npro
is the total number of HPF processes.

In the subroutine, we write the INDEPEN-
DENT directive line (!HPF$ independent) and
the sxf90 compiler directive to force paralleliza-
tion (!cdir parallel do) 6) immediately be-
fore the DO statement for Large Loop 1. Then,
this loop is parallelized in both distributed
memories and shared memory. Also, Large
Loop 2 is parallelized in distributed memories.

4.3.2 Vectorization
Aiming at effective vectorization, we set the

loop count of the innermost loop at a maxi-
mum vector register length and use no IF state-
ment; instead, we prepare the array cx to check
the particle moving direction in Step 1.5. If
the nearest index difference is l (= −1, 0, or
1), cx(iv,l) = 1.0, and other components
are zero. Further, we add some directive lines
above these loops, to promote vectorization.
Applying this way, we vectorize Loop 1 and Sub
Loop A. (Directive lines shown in Appendix are
explained in detail in Ref. 7).)

On the other hand, Sub Loop B is gener-
ally not vectorized, due to uncertainty of de-
pendency between a particle number and an in-
dex of its nearest cell. Then, although work ar-
rays, whose first rank extent is equal to the loop
count, have been used to vectorize this loop,
this vectorization scheme needs large memo-
ries. In this subroutine, however, using the
LISTVEC compiler directive (!cdir listvec),
we can vectorize Sub Loop B without these
work arrays. (This directive option is described
in detail in Refs. 7) and 8).)

5. Examination of Code

We then examine the accuracy and the per-
formance of this code. The test simulation pa-
rameters are as follows. The total number of
cells in system is 64 × 64 × 64. Both the num-
bers of electrons and ions per cell are 216; that
is, the total number of simulation particles is
113,246,208. The test calculations have been
done for 100 time steps.

Figure 6 presents a time variation of the
quantity dQ, where dQ is defined as

dQ =
∑

α,β,γ

(
ρn+1

α,β,γ − ρn
α,β,γ

∆t

Fig. 6 Time variation of the quantity dQ.

Table 1 Results of test runs with the LISTVEC di-
rective. Here, the total number of generated
tasks is 32.

RUN1 RUN2 RUN3
Total PE (np) 32 64 96

node 1 2 3
HPF process (npro) 1 2 3

Real Time (sec.) 915.24 470.10 328.72
nsec/step/particle 80.8 41.5 29.0

Conc. Time (PE≥ 1) 888.30 455.32 318.38
Conc. Time (PE= 32) 834.01 431.83 294.25

Memory Size (GB) 10.9 14.6 18.2
Vector Length 255.4 254.8 254.2

Vector Ratio (%) 99.92 99.91 99.89

Execution Time for subroutines
CURRENT 666.22 342.52 239.70

PUSH 221.51 110.55 74.42

For Large Loop 1 in subroutine CURRENT
Vector Length 256.0 256.0 256.0

Vector Ratio (%) 99.93 99.93 99.93

+
J

x n+1/2
α+1,β,γ − J

x n+1/2
α,β,γ

∆x

+
J

y n+1/2
α,β+1,γ − J

y n+1/2
α,β,γ

∆y

+
J

z n+1/2
α,β,γ+1 − J

z n+1/2
α,β,γ

∆z

)2

. (9)

It is found that the continuity equation have
been held over simulation time in a range of
round-off error.

Table 1 shows the results of test runs in
which the total numbers of tasks are np / npro
= 32, while Table 2 displays those of other
runs in which np / npro = 16. In these tables,
we find that the calculation time is in inverse
proportion to the total number of HPF pro-
cesses. This fact indicates that the distributed
parallelization with HPF is very successful.

We show, in Fig. 7, the dependence of the

Vol. 46 No. SIG 16(ACS 12) Development of the Efficient EM-PIC Code with HPF 149

Table 2 Results of test runs with the LISTVEC di-
rective. Here, the total number of generated
tasks is 16.

RUN4 RUN5 RUN6
Total PE (np) 16 48 144

node 1 3 5
HPF process (npro) 1 3 9

Real Time (sec.) 1860.32 582.87 224.06
nsec/step/particle 164.3 51.5 19.8

Conc. Time (PE≥ 1) 1834.86 572.59 216.30
Conc. Time (PE= 16) 1817.12 557.67 202.67

Memory Size (GB) 10.8 14.8 26.9
Vector Length 255.7 255.0 253.1

Vector Ratio (%) 99.93 99.92 99.88

Execution Time for subroutines
CURRENT 1373.79 425.39 163.46

PUSH 460.54 135.25 49.16

For Large Loop 1 in subroutine CURRENT
Vector Length 256.0 256.0 256.0

Vector Ratio (%) 99.94 99.93 99.93

Fig. 7 Dependence of the computing performance
(GFLOPS) on the total number of processors
(PE). Here, the circles are the observed values
in RUN1∼3 which appear in Table 1, the trian-
gles represent those in RUN4∼6 which are pre-
sented in Table 2, and the solid line denotes the
value of 12% of theoretical peak performance.

computing performance (GFLOPS) on the to-
tal number of processors. The value of FLOPS
linearly increases with the total number of pro-
cessors.

Also, Table 1 shows that the difference be-
tween concurrent times (Conc. Time) with one
processor or over, and with 32 processors, is
quite small. This means that the code achieves
the highly parallelized state in shared memory.
Since subroutines CURRENT and PUSH oc-
cupy most of the calculation time as shown in
the table of execution time, the performance of
this code is highly improved by only paralleliza-
tion of these subroutines.

Further, the observed vector length is almost

Table 3 Results of test runs with the work arrays.

RUN7 RUN8 RUN9
Total PE (np) 32 64 96

node 1 2 3
HPF process (npro) 1 2 3

Real Time (sec.) 756.54 445.15 344.92
nsec/step/particle 66.8 39.3 30.5

Conc. Time (PE≥ 1) 729.06 428.72 331.80
Conc. Time (PE= 32) 672.41 405.53 308.30

Memory Size (GB) 68.6 130.0 191.4
Vector Length 228.0 207.8 192.5

Vector Ratio (%) 99.74 99.57 99.41

Execution Time for subroutines
CURRENT 506.85 317.64 255.49

PUSH 223.46 110.77 74.03

For Large Loop 1 in subroutine CURRENT
Vector Length 256.0 256.0 256.0

Vector Ratio (%) 99.94 99.94 99.94

equal to a maximum vector register length, and
vector ratios are close to 100 percents.

Table 3 shows the results for the case using
work arrays instead of the LISTVEC directive
line. From comparison between Tables 1 and
3, it is found that the required memory size
decreases with LISTVEC directive.

6. Summary

We have developed a three-dimensional, rel-
ativistic, electromagnetic particle simulation
code that uses the “Exact Charge Conserva-
tion Scheme” on a vector-parallel supercom-
puter. Although PIC codes with this scheme is
more useful than those with conventional EM-
PIC methods due to the accuracy of current
densities (especially, in an open system code),
we further have succeeded in optimization of
this scheme for vector-parallel supercomputers.

In parallelization, in order to make the code
adequate at multi-node jobs, we have used not
only an automatic parallelizing function of the
sxf90 compiler in shared memory but also HPF
for distributed parallelization. In vectorization,
inserting the LISTVEC directive line, the re-
quired memory size is saved.

Test calculations indicate that parallelization
and vectorization are successful. Thus, our
code will make plasma particle simulation more
efficient and fast.

Acknowledgments This work is per-
formed with the support and under the auspices
of the NIFS Collaborative Research Program
(NIFS04KDAT007) and supported in part by
a Grant-in-Aid for Scientific Research from the
Ministry of Education, Culture, Sports, Science

150 IPSJ Transactions on Advanced Computing Systems Dec. 2005

and Technology.
The authors are grateful to Prof. R. Horiuchi

(NIFS), Dr. H. Ohtani (NIFS), and Mr. N.
Horiuchi (NEC) for stimulating discussions.

References

1) Birdsall, C. K. and Langdon, A. B.: Plasma
Physics via Computer Simulation, Adam Hilger
(1991).

2) Villasenor, J. and Buneman, O.: Rigorous
charge conservation for local electromagnetic
field solvers, Comput. Phys. Comm., Vol.69,
pp.306–316 (1992).

3) Esirkepov, T. Zh.: Exact charge conservation
scheme for Particle-in-Cell simulation with an
arbitrary form-factor, Comput. Phys. Comm.,
Vol.135, pp.144–153 (2001).

4) Takamaru, H., et al.: A Self-Consistent Open
Boundary Model for Particle Simulation in
Plasmas, J. Phys. Soc. Jpn., Vol.66, pp.3826–
3836 (1997).

5) High Performance Fortran Forum: High Per-
formance Fortran Language Specification Ver-
sion 2.0 (1997); translation to Japanese:
Springer-Verlag Tokyo (1999).

6) NEC Corporation: FORTRAN90/SX Multi-
tasking User’s Guide, NEC Corporation, Re-
vision No.11 (2002).

7) NEC Corporation: FORTRAN90/SX Pro-
grammer’s Guide, NEC Corporation, Revision
No.13 (2002).

8) Sugiyama, T., et al.: Vectorized Particle Simu-
lation Using “LISTVEC” Compile-directive on
SX Super-computer, IPSJ Trans. on Advanced
Computing Systems (in Japanese), Vol.45,
No.SIG6 (ACS6), pp.171–175 (2004).

Appendix

We here show the actual source code of sub-
routine of calculating current densities. This is
written in Fortran90 and HPF. The variables
and arrays in the code denote as follows. The
arrays x, px, and lorentz are the particle po-
sition, momentum, and Lorentz factor, respec-
tively. The array curx represents the current
density on a grid. The arrays jxm, jx0, jx1,
and jx2 are work arrays for the current densi-
ties. The array alpha0 denotes the old near-
est index. The variable x1 is the new parti-
cle position. The variable alpha1 is the new
nearest index. The array ldx represents the
nearest index difference. The arrays sx0(iv,i)
and dsx(iv,i) are Sx

i and DSx
i , respectively.

The array wx(i) denotes W x
i,j,k. The array

jx(iv,i) is Jx
i,j,k.

Also, in this code, the form-factor is given as

S(xα − xs) =
3
4
− (xα − xs)2, (10)

S(xα±1 − xs) =

1
2

(
1
2
∓ (xα − xs)

)2

. (11)

!--------------------------------------
subroutine current(x,px,...,curx,...)

!--------------------------------------
!hpf$ processors pro(npro)

:
:
:

!hpf$ distribute (*,block) onto pro &
!hpf$& :: x,px,y,py,z,pz,lorentz
!hpf$ distribute (*,*,*,block) &
!hpf$& onto pro :: jxm,jx0,jx1,jx2
!--------------------------------------
! Large Loop 1
!--------------------------------------
!hpf$ independent, new(j,k,ii,...)
!cdir parallel do
!cdir& private(j,k,ii,...)
do ip = 1, np
do ii = 1, nb

!--------------------------------------
! Loop 1
!--------------------------------------
!cdir nodep
!cdir noinner
!cdir shortloop
do iv = 1, veclen
m = iv + (ii-1)*veclen

!--------------------------------------
! Step 1.1
!--------------------------------------

alpha0(iv) = int(x(m,ip) + 1.0d0)
beta0(iv) = int(y(m,ip) + 1.0d0)
gamma0(iv) = int(z(m,ip) + 1.0d0)

!--------------------------------------
! Step 1.2
!--------------------------------------

x1 = x0+dt*px(m,ip)/lorentz(m,ip)
y1 = y0+dt*py(m,ip)/lorentz(m,ip)
z1 = z0+dt*pz(m,ip)/lorentz(m,ip)

!--------------------------------------
! Step 1.3
!--------------------------------------

alpha1 = int(x1 + 1.0d0)
beta1 = int(y1 + 1.0d0)
gamma1 = int(z1 + 1.0d0)

Vol. 46 No. SIG 16(ACS 12) Development of the Efficient EM-PIC Code with HPF 151

!--------------------------------------
! Step 1.4
!--------------------------------------

ldx(iv) = alpha1 - alpha0(iv)
ldy(iv) = beta1 - beta0(iv)
ldz(iv) = gamma1 - gamma0(iv)

!--------------------------------------
! Step 1.5 (write only the x component)
!--------------------------------------

cx(iv,-1) = &
dble(ldx(iv)*(ldx(iv)-1)/2)

cx(iv, 0) = &
dble((1-ldx(iv))*(1+ldx(iv)))

cx(iv, 1) = &
dble(ldx(iv)*(ldx(iv)+1)/2)
:
:
:

!--------------------------------------
! Step 1.6 (write only the x component)
!--------------------------------------

dx0 = dble(alpha0(iv)) - 0.5d0 - x0
dx1 = dble(alpha1) - 0.5d0 - x1
sx0(iv,-2) = 0.0d0
sx0(iv,-1) = 0.5d0*(0.5d0+dx0)**2
sx0(iv, 0) = 0.75d0 - dx0*dx0
sx0(iv, 1) = 0.5d0*(0.5d0-dx0)**2
sx0(iv, 2) = 0.0d0
sx1(-1) = 0.5d0*(0.5d0+dx1)**2
sx1(0) = 0.75d0 - dx1*dx1
sx1(1) = 0.5d0*(0.5d0-dx1)**2
dsx(iv,-2) = cx(iv,-1)*sx1(-1)
dsx(iv,-1) = cx(iv,-1)*sx1(0) &

+ cx(iv, 0)*sx1(-1) &
- sx0(iv,-1)

dsx(iv, 0) = cx(iv,-1)*sx1(1) &
+ cx(iv, 0)*sx1(0) &
+ cx(iv, 1)*sx1(-1) &
- sx0(iv, 0)

dsx(iv, 1) = cx(iv, 0)*sx1(1) &
+ cx(iv, 1)*sx1(0) &
- sx0(iv, 1)

dsx(iv, 2) = cx(iv, 1)*sx1(1)
:
:
:

end do
!--------------------------------------
! Loop 2
!--------------------------------------
!cdir novector
!cdir noconcur
do k = -1, 2
!cdir novector

!cdir noconcur
do j = -1, 2

!--------------------------------------
! Sub Loop A
!--------------------------------------
!cdir nodep
!cdir noinner
!cdir shortloop
do iv = 1, veclen

!--------------------------------------
! Modify j and k
! with the aid of the index difference
!--------------------------------------

jj = j - ldy(iv)*(ldy(iv)-1)/2
kk = k - ldz(iv)*(ldz(iv)-1)/2

!--------------------------------------
! Step A.1
!--------------------------------------

wx(-1) = dsx(iv,-1)* &
(sy0(iv,jj)*sz0(iv,kk) &
+ dsy(iv,jj)*sz0(iv,kk)*0.5d0 &
+ sy0(iv,jj)*dsz(iv,kk)*0.5d0 &
+ dsy(iv,jj)*dsz(iv,kk)/3.0d0)

wx(0) = dsx(iv, 0)* &
(sy0(iv,jj)*sz0(iv,kk) &
+ dsy(iv,jj)*sz0(iv,kk)*0.5d0 &
+ sy0(iv,jj)*dsz(iv,kk)*0.5d0 &
+ dsy(iv,jj)*dsz(iv,kk)/3.0d0)

wx(1) = dsx(iv, 1)* &
(sy0(iv,jj)*sz0(iv,kk) &
+ dsy(iv,jj)*sz0(iv,kk)*0.5d0 &
+ sy0(iv,jj)*dsz(iv,kk)*0.5d0 &
+ dsy(iv,jj)*dsz(iv,kk)/3.0d0)

!--------------------------------------
! Step A.2
!--------------------------------------

jx(iv,-1) = (1/dt)* &
cx(iv,-1)*(wx(-1)+wx(0)+wx(1))

jx(iv, 0) = (1/dt)* &
(cx(iv,-1)*(wx(0)+wx(1)) &
-cx(iv, 0)*(wx(-1)) &
-cx(iv, 1)*(wx(-1)))

jx(iv, 1) = (1/dt)* &
(cx(iv,-1)*(wx(1)) &
+cx(iv, 0)*(wx(1)) &
-cx(iv, 1)*(wx(-1)+wx(0)))

jx(iv, 2) = (1/dt)* &
-cx(iv, 1)*(wx(-1)+wx(0)+wx(1))

end do
!--------------------------------------
! Sub Loop B
!--------------------------------------
!cdir listvec
do iv = 1, veclen

152 IPSJ Transactions on Advanced Computing Systems Dec. 2005

a0 = alpha0(iv)
b0 = beta0(iv)
c0 = gamma0(iv)

!--------------------------------------
! Modify j and k
! with the aid of the index difference
!--------------------------------------

jj = j -ldy(iv)*(ldy(iv)-1)/2
kk = k -ldz(iv)*(ldz(iv)-1)/2

!--------------------------------------
! Step B.1
!--------------------------------------

jxm(a0-1,b0+jj,c0+kk,ip) = &
jxm(a0-1,b0+jj,c0+kk,ip) &

+ jx(iv,-1)
jx0(a0, b0+jj,c0+kk,ip) = &

jx0(a0, b0+jj,c0+kk,ip) &
+ jx(iv, 0)

jx1(a0+1,b0+jj,c0+kk,ip) = &
jx1(a0+1,b0+jj,c0+kk,ip) &

+ jx(iv, 1)
jx2(a0+2,b0+jj,c0+kk,ip) = &

jx2(a0+2,b0+jj,c0+kk,ip) &
+ jx(iv, 2)

end do
end do
end do
end do
end do
!--------------------------------------
! Large Loop 2
!--------------------------------------
!hpf$ independent, new(i,j,k), &
!hpf$& reduction(curx)
do ip = 1, np
do k = -1, nz+2
do j = -1, ny+2
!cdir nodep
do i = 0, nx+2
curx(i,j,k) = curx(i,j,k) &

+ jxm(i,j,k,ip) + jx0(i,j,k,ip) &
+ jx1(i,j,k,ip) + jx2(i,j,k,ip)

end do
end do
end do
end do

(Received April 28, 2005)
(Accepted August 13, 2005)

Hiroki Hasegawa received
his Ph.D. degree from Nagoya
University in 2004. Since 2004
until 2005 he had been in Na-
tional Institute for Fusion Sci-
ence (NIFS) as a COE re-
searcher. He is now a research

scientist of the Earth Simulator Center of Japan
Agency for Marine-Earth Science and Technol-
ogy (JAMSTEC). He has engaged in the re-
search of particle acceleration in plasmas. Also,
his current research interest is computer simu-
lation on a vector-parallel supercomputer. He
is a member of JPS.

Seiji Ishiguro received his
Ph.D. degree from Nagoya Uni-
versity in 1987. He has worked
for Tohoku University and Na-
tional Institute for Fusion Sci-
ence since 1987. He is now a
Professor of National Institute

for Fusion Science. His current research inter-
ests are potential formation in plasmas, laser-
plasma interaction, and simulation science. He
is a member of JPS and JSPF.

Masao Okamoto received
his Ph.D. degree from Kyoto
University in 1971. Since then,
he has worked for Osaka Uni-
versity, Japan Atomic Energy
Research Institute (JAERI), In-
stitute of Plasma Physics of

Nagoya University, and National Institute for
Fusion Science (NIFS). He is now Professor and
the Director of Theory and Computer Simu-
lation Center at NIFS. His special fields are
plasma physics, fusion science, and simulation
science. His recent interest is multi-scale simu-
lations for toroidal plasmas. He is a member of
APS, JPS, and JSPF.

