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Multiple kernel support vector machine can generate weights of 
feature matrices for toxicity prediction 
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Abstract: In order to reduce drug discovery period and costs, development of prediction system for toxicities and effects of 
medicine by artificial intelligence (AI) is expected. In our laboratory, a toxicity prediction system with multiple kernel support 
vector machine (MK-SVM) was constructed using SHOGUN library. In this study, sub-kernel matrices are created from three 
feature matrices (qRT-PCR expression values, correlations between genes by Bayesian network, and structure-activity 
relationships of each compound quantitated by E-Dragon) and a kernel matrix generated by the linear sum of these sub-kernel 
matrices was used for SVM prediction. Weights of each sub-kernel matrix in the linear sum indicate the contribution degree of 
each feature matrix in the classification. Therefore, focusing on the weights, we discuss whether each feature matrix can correctly 
predict toxicity or not. 
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1. Introduction     

  In recent years, drug discovery period and cost are increasing. 
The decline in the success rate of new drug development leads 
to worsening business of pharmaceutical industry, which leads 
to increase in the price of drugs as a countermeasure. In fact, 
Nivolumab, marketed drug for cancer immunotherapy recently, 
has become a problem for its high price [1]. Too high treatment 
cost significantly limits the patient's treatment options. In order 
to overcome the problem, drug discovery support systems by a 
computer have been developed. By predicting drug efficacy and 
toxicity before experiments, it is expected to reject unnecessary 
experiments and reduce drug discovery period and cost. 
  We aim to develop a prediction system for compound toxicity 
to human by artificial intelligence (AI), but it is difficult to 
predict toxicity to humans. The conventional method, toxicity 
tests by animal experiments, has very low success rate. If any 
these tests are passed, unidentified side effects are sometimes 
found later. However, it is impossible to conduct toxicity tests 
on humans. Therefore, we are developing a toxicity prediction 
system using human embryonic stem (hES) cells [2]. Of course, 
there is still ethical problem, so we paid maximum attention 
according to the manual of the ethics committees. 
  In this toxicity prediction system, the differential pattern of 
the gene expression level in hES cells between before and after 
compound exposure is regarded as feature values, and the 
presence or absence of an interested toxicity of the compound is 
predicted. In addition, relationship information data between 
genes are also prepared by the Bayesian network method as 
feature values. These feature values are input to support vector 
machine (SVM) classifier and are used as indicators of 
two-class classification of toxicity. We predicted three types of 
toxicity; neurotoxin (NT), genotoxic carcinogen (GC), and 
non-genotoxic carcinogen (NGC) to hES cells. Our toxicity 
prediction system succeeded in predicting these toxicities with 
accuracy rates of 95%, 100%, 95%, respectively. 

                                                                    
 †1 Theoretical Cell Science Lab, Center for iPS Cell Research and Application, 
Kyoto University, Japan 

  Based on these results, we are developing new toxicity 
prediction method with multiple kernel support vector machine 
(MK-SVM) in this study. SVM is an algorithm for finding a 
data-separating hyperplane that maximizes the margin between 
the hyperplane to the nearest neighbor vectors, what are called 
"support vector". Instead of solving the main problem of 
maximizing this margin, we can obtain the separation 
hyperplane by solving the dual problem with Lagrangian 
function [3]. 

max
𝜶

𝐿(𝜶) = max
𝜶

𝛼!

!!!

!!!

− 𝛼!𝑦!𝛼!𝑦!𝑘(𝒙! ,𝒙!)
!!!

!!!

!!!

!!!

 

𝑠. 𝑡.      0 ≤ 𝛼! ≤ 𝐶, 𝛼!𝑦!

!!!

!!!

= 0 

Above equation means that each element k(xi,xj) of the kernel 
matrix is used for optimization of the hyperplain. These element 
k(xi,xj) is the product of two basis function φ(xi) and φ(xj). 
There exist various kernel functions for creating a kernel matrix, 
such as linear kernel, polynomial kernel, and Gaussian kernel. 
  The multiple kernel learning is a learning method with one 
kernel produced by the linear sum of sub-kernel matrices [4]. In 
this study, we created three sub-kernel matrices from three 
feature data (qRT-PCR gene expression value, Bayesian net- 
work feature values and quantitative structure-activity relation- 
ship feature values) and classify compounds into two classes 
using a kernel matrix based on these sub-kernel matrices. 
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In the above equation, βi means the weight of the ith sub-kernel. 
As β increases, the proportion in the generated kernel matrix 
increases. Therefore, β can be regarded as the index parameter 
of classification contribution of the subkernel matrix. That is, 
when calculate a maximum prediction rate, the sub-kernel 
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matrix with the largest β is capable of predicting the presence or 
absence of toxicity. According to the viewpoint, we consider the 
classification contribution of each sub-kernel matrices using 
weight β. 

2. Method 

2.1 Data preparation and normalization 
  Data preparation and normalization were carried out accord- 
ing to [2]. The data includes 9 neurotoxins (valproic acid, cyclo- 
pamine, phenytoin, methylmercury, acrylamide, 4-OH-2',3,3',4', 
5'-PCB, 2,5-hexanedione, warfarin, thalidomide), 5 genotoxic 
carcinogens (benzo[a]anthracene, 3-methylcholanthrene, benzo 
[a]pyrene, diethylnitrosamine, diethylstilbestrol), and 6 non- 
genotoxic carcinogens (2,3,8-tetrachlorodibenzodioxin (TCDD), 
lithocholic acid, thioacetamide, butylated hydroxyanisole, 
methapyrilene hydrochloride, phenobarbital) to predict its toxi- 
city. The dataset can be downloaded from our website (http:// 
stemcellinformatics.org/toxicology/). The qRT-PCR gene ex- 
pression data was fitted to an empirical Bayesian linear model to 
exclude batch effects, and normalized by dividing them by the 
expression level of ACTB as internal standard. 
  We can use the normalized data as feature amount data, or use 
intergenic correlation data created by RX-TAOgen, which can 
construct Bayesian network (BN) based on the Gibbs sampling 
[5]. As a conventional feature dataset, 1,665 feature values of 
quantitative structure-activity relationship (QSAR) were 
prepared by E-Dragon website (http://www.vcclab.org/lab/ 
edragon/) [6]. 

2.2 Feature extraction based on the result of previous study 
  The qRT-PCR gene expression data is composed of 10 genes, 
5 doses (1, 1/2, 1/4, 1/8 and 1/16 with the maximum non-toxic 
dose as 1), and 4 time points (24, 48, 72 and 96 hours after 
exposure), so it has 10 × 5 × 4 = 200 features per one data point. 
In the BN dataset, there exists 10 genes × 10 genes = 100 
relationship network information values as features. Since we 
performed twice for each compound, there are a total of 40 data 
points. If we use all features, the number of features is far 
exceeded than the number of data points, which leads to decline 
of prediction accuracy. In order to optimize the number of 
features, we calculated the accuracy rates for each number (from 
1 to N; N is the total number of features). Based on the results of 
the previous study [2], we extracted feature values used for the 
subsequent analysis with the optimum numbers (Figure 1). 

2.3 Running multiple kernel support vector machine 
  Sub-kernel matrices are created from the above three features, 
and one combined kernel matrix produced by the linear sum of 
them is used to perform two-class classification. The subsequent 
procedures were performed by the SHOGUN library (version 
6.0.0) [7]. We used three kernels (Linear, Polynomial, and 
Gaussian kernel), and various parameters; seven regularization 
parameters (C = 10-3, 10-2, 10-1, 1, 10, 102, 103), seven degree 
parameters of polynomial kernel (D = 1, 2, 3, 4, 5, 6, 7), and 
seven width parameters of Gaussian kernel (W = 1, 5, 10, 50, 
100, 500, 1,000). Cross validation was performed on each of 20 
compounds and we calculated the prediction accuracy rate and 
weights of sub-kernel matrices for each compound from its 

Figure 1. SVM prediction accuracies with vectorial kernels 
The figure shows the highest prediction accuracies in each number of features using vectorial kernel (Linear, 
Polynomial, Gaussian). For each feature, p-value by Student's t-test is calculated, and those with a small p-value are 
preferentially used. Result of toxicity prediction with (A) Bayesian network values, (B) qRT-PCR expression values, 
and (C) E-Dragon features. 
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results. 

3. Result 

3.1 Weights of sub-kernel matrices by MK-SVM 
  The weights used for the linear sum of sub-kernel matrices 
were calculated with CombinedKernel class of SHOGUN library. 
We extracted weights with the highest accuracy in the various 
parameters. In this study, the highest accuracies were 85.0% for 
NT, 95.0% for GC and 100.0% for NGC. Figure 2 shows 
weights of sub-kernel matrices with the maximum accuracy. 

3.2 Frequency of giving the maximum weight among the 
three weights 
  However, such weight is not always only one case. Since the 
accuracy rate is calculated using 40 data points, there are only 
41 possible patterns of prediction accuracy (i / 40 × 100; i is 
from 0 to 40). On the other hand, there are (1 + 7 + 7) 3 × 7 = 
23,625 parameter cases, so there is high possibility that two or 
more weights exist with the maximum accuracy and other 
parameters. In fact, in this analysis, the weights with various 
parameters were extracted (39 for NT, 51 for GC, and 20 for 
NGC). In order to evaluate the difference of these weights, we 
used the frequency of giving the maximum weight among the 
three ones. The results are shown in Table 1. In the case of NT, 
39 weights were extracted, and the weights of BN were the 

largest in all cases. Likewise, in the case of NGC, the weights of 
PCR were the largest in all 20 cases. However, in the case of 
GC, the weight of BN is largely large, but depending on the 
compound, QSAR was larger than BN. Therefore, calculating 
weights for each compound may give high accuracy, but it may 
be inappropriate to obtain the classification contributions of 
each sub-kernel matrices. 

4. Discussion 

  In this study, we regarded the weights of linear sum in multi- 
ple kernel learning as contribution of toxicity prediction of each 
sub-kernel matrix. However, in the prediction of GC toxicity, 
3.2 result shows that the required features are different by the 
compound. In terms of obtaining classification contribution, it is 
not best to use the weight calculated in this study. In future, we 
would like to analyze all compounds with the same weight. 
  We used only three kinds of kernels in this study (Linear, 
Polynomial and Gaussian). In the previous study [2], three more 
structured kernels (EKM, Saigo, ME) were used [8]. These 
kernels can be used with kemba-svm, which is the SVM analysis 
tool. It is known that the structured kernels are able to calculate 
with higher accuracies than the vectorial kernels for all toxicity. 
We would like to use these kernels by combining the SHOGUN 
library with kemba-svm kern mode. 

Figure 2. Weights of sub-kernel matrices 
One of the weights of sub-kernel matrices with the highest accuracy rate is randomly selected and showed by the 
white-red heatmap. Red color indicates that the weight is larger. Weight_ID on the horizontal axis notes that 1 is PCR, 2 
is BN, and 3 is QSAR. Chemical_ID of the vertical axis is equal to the row numbers of the compounds in Table 1. (A) 
Weights in NT toxicity prediction. (B) Weights in predicting GC toxicity. (C) Weights in NGC Toxicity Prediction. 
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  The highest rates in this study were calculated to be roughly 
high, but NT prediction showed a lower accuracy than the result 
of the previous study [2]. It is thought that being too compatible 
with training data is caused. To prevent from such over learning 
may also be necessary depending on toxicity. 
  There is also room for improvement on the used data. ES cells 
are cultured through breaking the fertilized eggs, which remains 
some ethical problems. On the other hand, since induced 
pluripotent stem (iPS) cells can be prepared by reprogramming 
somatic cells such as skin cells or fibroblasts [9]. There are few 
ethical constraints. In the future, toxicity prediction by iPS cells 
will be carried out instead of ES cells. 
  We are also considering using public datasets. The National 
Institutes of Health provides screening results for thousands of 
compounds with cancer cell line NCI-60 [10]. Many gene 
expression level datasets by screening tests are also published in 
Connectivity Map [11] and LINCS [12]. By using these data, we 
will continue to improve our toxicity prediction systems. 
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Table 1. Frequency of maximum value among three weights 

�  NT 
 

GC 
 

NGC 
�  PCR BN QSAR 

 
PCR BN QSAR 

 
PCR BN QSAR 

Valproic acid 0 39 0 
 

0 40 11 
 

20 0 0 
Cyclopamine 0 39 0 

 
0 49 2 

 
20 0 0 

Phenytoin 0 39 0 
 

0 46 5 
 

20 0 0 
Benzo [a] anthracene 0 39 0 

 
0 50 1 

 
20 0 0 

3-Methylcholanthrene 0 39 0 
 

0 50 1 
 

20 0 0 
Methylmercury 0 39 0 

 
0 46 5 

 
20 0 0 

Acrylamide 0 39 0 
 

0 50 1 
 

20 0 0 
Benzo [a] pyrene 0 39 0 

 
0 50 1 

 
20 0 0 

Diethylnitrosamine 0 39 0 
 

0 0 51 
 

20 0 0 
Diethylstilbestrol 0 39 0 

 
0 22 29 

 
20 0 0 

4-hydroxy PCB107 0 39 0 
 

0 46 5 
 

20 0 0 
2,5-hexanedione 0 39 0 

 
0 46 5 

 
20 0 0 

Warfarin 0 39 0 
 

0 16 35 
 

20 0 0 
Thalidomide 0 39 0 

 
0 46 5 

 
20 0 0 

TCDD 0 39 0 
 

0 49 2 
 

20 0 0 
Lithocholic acid 0 39 0 

 
0 51 0 

 
20 0 0 

Thioacetamide 0 39 0 
 

0 46 5 
 

20 0 0 
Butylated hydroxyanisole 0 39 0 

 
0 50 1 

 
20 0 0 

Methapyrilene hydrochloride 0 39 0 
 

0 46 5 
 

20 0 0 
Phenobarbital 0 39 0 

 
0 51 0 

 
20 0 0 

Rate (%) 0.0  100.0  0.0  
 

0.0  83.3  16.7  
 

100.0  0.0  0.0  
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