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Abstract: Single-cell transcriptome can provide information of global gene expression pattern in individual cells, so that 
detailed cell type classification considering cellular heterogeneity becomes more important to analyze complex biological 
system. Here we surveyed 12 clustering methods utilized for single-cell transcriptome analysis. We evaluated the performance of 
each method using published data of 1,830 single-cell transcriptome obtained from SHOGoiN database. Each single-cell 
transcriptome data was labeled by source tissues (adipose tissue, blood, brain, early embryonic tissue, genitalium, muscle, 
pancreas, skin). In the evaluation, we chose two criteria; normalized mutual information (NMI) and the purity. After optimizing 
the parameters by NMI, we calculated the sum of the NMI and the purity. As a result, the combination of the DBSCAN 
algorithm and t-SNE clustering showed the best performance on our data set. 
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1. Introduction     

 Recent single-cell transcrptome techniques provide new 
insights into cellular heterogeneity, which is important in 
various biological contexts, e.g. ontogeny, stress response, and 
physiology [1]. Therefore, detailed cell type classification is 
indispensable to undetstand complex biological system at a cell 
level. Currently, many dimensional reduction techniques and 
clustering methods are used for transcriptome analysis. For 
example, multivariate statistical technique, such as principal 
component analysis (PCA) [2], has often been used for 
transcriptome analysis since the early 2000s [3]. PCA is one of 
the linear methods, which perform a linear mapping of a 
high-dimensional input data to a low-dimensional space, helps 
us to extract important factors originating different cell types 
and to visualize the similarity between samples. Non-metric 
multidimensional scaling (NMDS) has also been used as a 
classical technique [4]. Non-linearity is taken into consideration 
in NMDS. Clustering methods classify the data points based on 
the result of dimensionality reduction. k-means [5] and 
DBSCAN [6, 7], for instance, are well known as classical 
clustering methods. In addition to the classical methods, recent 
techniques, such as t-distributed stochastic neighbor embedding 
(t-SNE) [8] and affinity propagation clustering (AP clustering) 
[9], are drawing attention in many fields including 
bioinformatics. t-SNE is a dimensionality reduction technique 
and has been used well because of its good performance [10]. 
AP clustering is also used for clustering of high-dimensional 
data with the characteristics of unbiased clustering. Besides 
these methods, rare cell type identification (RaceID) is 
specialized for identifying low population cell types [11]. A 
multi-kernel learning method, SIMLR, shows better 
performance for cell type classification than t-SNE and other 
classical methods under certain conditions [12]. 

                                                                    
 †1 Center for iPS Cell Research and Application, Kyoto University 
  
 
 

 In this paper, our aim is to gain insight and information into the 
variety of single-cell transcriptome clustering methods; we have 
evaluated the following twelve clustering methods from the 
viewpoint of single-cell classifications: 
 
1. AP clustering 
2. AP clustering on NMDS 
3. DBSCAN on NMDS 
4. k-means on NMDS 
5. AP clustering on PCA 
6. DBSCAN on PCA 
7. k-means on PCA 
8. RaceID 
9. AP clustering on t-SNE 
10. DBSCAN on t-SNE 
11. k-measns on t-SNE 
12. SIMLR 
 
 We compared the performance of these methods using 1,830 
human single-cell transcriptome data. These data can be 
obtained from the SHOGoiN (the Human Omics Database for 
the Generation of iPS and Normal Cells) database 
(http://shogoin.stemcellinformatics.org). Our evaluation of 
clustering methods also provides additional insights into 
clustering analysis of single-cell transcriptome data. The result 
indicates the importance of preprocessing step and the necessity 
of a framework or tools, which enable us to compare and 
evaluate the result of clustering by specific criteria. 

2. Methods 

 First, we summarize recent clustering methods and 
dimensionality reduction techniques, and then describe the 
processing of data set and the criteria for evaluation of the 
performance used in this comparison.  
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2.1 Affinity propagation clustering algorithm 
 Affinity propagation clustering [9] is an unbiased clustering 
that runs without setting the number of final clusters. This 
method has been used in many fields, e.g. image analysis [13], 
the vehicle ad hoc networks [14] and gene expression analysis 
[15, 16, 17]. Affinity propagation algorithm takes a similarity 
c(i,j) between data point i and j as input. This algorithm supports 
negative Euclidean distance, or any other function for definition 
of similarity. Each data point i has a self-similarity, s(i,i), which 
influences the number of determined exemplars representing a 
cluster. The value of self-similarity is set by user. Initialized 
data points with a larger self-similarity are more likely to 
become exemplars. To determine clusters and exemplars, data 
points transmit two types of messages, responsibility and 
availability. The responsibility, r(i,j), is transmitted from data 
point i to candidate exemplar data point j and indicates how well 
suited data point j is as exemplar for data point i, The 
availability, a(i,j), is transmitted from candidate exemplar j to i 
responding to responsibility, which indicates that data point j is 
appropriate as exemplar for i based on supporting feedback from 
other data points. The self-responsibility, r(i,i) and 
self-availability, a(i,i) reflect the probability that data point i is 
suitable to an exemplar.  

  , 

 

 

These messages are updated iteratively until the messages 
converge. When the summation of a point’s self-responsibility 
and self-availability becomes positive, that point becomes the 
exemplar. the exemplar of a data point i’s cluster is the data 
point j maximizing the following equation, 

 

2.2 Rare cell type identification (RaceID) 
 RaceID [11] is specialized for single-cell transcriptome 
analysis. This method was developed especially for rare cells. 
The first step of RaceID is gene selection which removes low 
expression genes and low quality samples. Then RaceID 
normalize processed data, and determines clusters by k-means 
clustering using the similarity in expression between samples 
based on Pearson correlation. The number of clusters is 
determined using the gap statistic. After the initial clustering 
step, RaceID detects outlier cells, which do not fit the model 
built up by considering technical and biological noise. The 
algorithm of this part has been used in the classification of rare 
cell populations. 

2.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 
 t-SNE [8] converts each data point from high-dimensional data 
into corresponding point in low-dimensional map where feature 
of the distance between each points in high dimension space is 
maintained. t-SNE has been used as a major visualization and 
clustering method for transcriptome analysis in recent years [10]. 
t-SNE algorithm calculates a similarity score in the original 
high-dimensional space. In t-SNE algorithm, the distance 
between high-dimensional data points is represented by 
conditional probability p j|i,  

 

||xi – xj|| is Euclidean distance between data point xi and xj.  

σ for each data point is chosen so that the perplexity of pj|i has a 
value close to the user defined perplexity. This value influences 
the number of nearest neighbors taken into account when 
building up the embedding in the low-dimensional space. The 
following assumption is introduced to reduce calculation cost, 

 

For the low-dimensional space t-SNE use the t-distribution with 
one degree of freedom as the distribution of the distances to 
counterpart yi and yj to data point xi and xj in low-dimensional 
space,  

 

t-SNE performs dimensional reduction by minimizing the 
Kullback-Leibler divergence between these two distributions qij 

and pij.  

2.4 Single-cell interpretation via multi kernel learning 
(SIMLR) 
 SIMLR [12] is a method utilizing multi-kernel learning for 
single-cell transcriptome. For single-cell transcriptome analysis, 
it is a problem that the diverse statistical characteristics of 
single-cell transcriptome can not be easily expressed by specific 
statistical model. Therefore, SIMIR used multiple kernels 
learning to learn similarity between data points by considering 
multiple statistical models. It takes gene expression information 
as an input matrix and learns a set of cell-to-cell similarities by 
estimating multiple kernels (Gaussian kernels), with taking the 
assumptions that C separable populations exist. The number of 
C is a parameter determined by the user. SIMLR makes the 
similarity matrix be confined to a C block-diagonal structure. 

r(i,k)← s(i,k)− max
k 's.t.k '≠k

{a(i,k ')+ s(i,k ')}

a(i,k)←min{0, r(k,k)+ max{0, r(i ',k)}}
i 's.t.i '∉{i,k}
∑ ,

a(k,k)← max{0, r(i ',k)}.
i 's.t.i '≠k
∑

argmax
j
{a(i, j)+ r(i, j)}.

pj|i =
exp(− || xi − x j ||

2 /2σ i
2 )

exp(− || xi − x j ||
2 /2σ i

2 )
k≠i
∑

,

pij =
pj|i + pi| j
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.

qj|i =
(1+ || yi − yj ||

2 )−1

(1+ || yi − yj ||
2 )−1
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∑

.
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Learned similarities can be used to visualize the cells, reduce the 
dimension of the data, and so on. 

2.5 Data set selection 
 Gene expression data of published 1,830 single-cell 
transcriptome were downloaded from SHOGoiN database 
(http://shogoin.stemcellinformatics.org) as of July 15, 2017 
(adipose tissue: 44 samples, blood: 29 samples, brain: 475 
samples, early embryonic tissue: 165 samples, genitalium: 331 
samples, muscle: 316 samples, pancreas: 64 samples, and skin: 
406 samples).  

2.6 Input data sets. 
 The number of the samples downloaded from SHOGoiN 
database was 1,830. Total mapped fragment counts in gene 
region were normalized as 1,000,000 per sample. Read counts 
were converted to log2 scale after adding 1 to avoid log of 0. 
Furthermore, some genes were removed, which were not 
transcribed in any sample. 59,239 genes were transcribed at 
least once in eight source tissue samples. The gene expression 
matrix was used as input for evaluation of clustering 
performance. 

2.7 Sample label 
 1,830 samples were labeled by 8 different kinds of tissues. 

2.8 Normalized Mutual Information (NMI) 
 We chose NMI as a criterion for clustering evaluation. NMI 
indicates the consistency between the clustering result and the 
true labels of the n cells [19]. Given two clusters U and V on a 
set of data points, NMI is defined as: I(U,V)/max{H(U),H(V)}, 
where I(U,V) is the mutual information between U and V, and 
H(U) and H(V) represents the entropy of the clustering U and V. 
When U has P clusters, and V has Q clusters, the mutual 
information is calculated as the following equation, 

 

where |Up| and |Vq| indicates the cardinality of the p-th cluster 
in U and the q-th cluster in V respectively. The entropy of each 
cluster assignment is calculated by 

 

 

NMI takes on values between 0 and 1, measuring the 
concordance of two clustering results. NMI is affected by the 
accuracy of clustering and subdivision of cluster. The value is 1 
when the labels determined by the clustering result correspond 
with true labels.  
 We calculated NMI using compare function in igraph library 
of R package. 

2.9 Purity 
 We also evaluated clustering results by a purity, which is an 
indicator to measure clustering performance. Label of largest 

subset in each cluster is determined and then the total numbers 
of determined labeled samples are counted in each cluster. The 
summation of the total numbers is divided by the samples 
number N. 

 

The purity is also a value between 0 and 1 and a higher purity 
indicates a better consistency between the labels determined by 
clustering and true labels. 
 We calculated the purity obeying to above equation using 
standard cross table functions of R. 

2.10 Optimal Eps (OptEps) of DBSCAN 
 The optimal value of parameter Eps for DBSCAN was 
calculated obeying to reported method [20]. First, Euclidean 
distance was calculated on each pair of data point in 
two-dimensional space after dimensionality reduction. We used 
dist function of R to calculate distance between each point. 
Furthermore, the distance was converted into a matrix using 
as.matrix function and then three nearest neighbors of each data 
point were extracted. The number of data point pairs were 
plotted along the distance, and we choose the first slope change 
point in the plot as optimal eps value using R package 
changepoint. 

2.11 Affinity propagation clustering 
 We used apcluster function of R to determine the clusters in 
input data points by affinity propagation clustering algorithm. 
Optimal parameters were determined as produced highest NMI 
and highest sum of NMI and the purity by a grid search (The 
searching range of the parameters q and seeds are q = 0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (default 0.5), and seed = 
0, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000). 

2.12 NMDS combination clustering methods (NMDS + AP 
clustering, NMDS + DBSCAN, and NMDS + k-means) 
 We used isoMDS function of R package MASS to convert 
high-dimensional data into a two-dimensional NMDS data. The 
dimensionality reduction data are clustered by affinity 
propagation algorithm. Optimal parameters were determined by 
the highest NMI and the highest sum of NMI and the purity 
using a grid search as explained in AP clustering section. The 
NMDS data were also clustered by DBSCAN method. We used 
dbscan function of R package dbscan. Optimal parameters were 
determined by the highest NMI and the highest sum of NMI and 
the purity  (The searching range of the parameter eps are eps = 
OptEps −（OptEps/2）×0, OptEps – (OptEps/2) × 1, …, OptEps 
+ (OptEps/2) × 8 with a fixed parameter minPts = 1). The 
NMDS data were also clustered by k-means method using 
kmeans function of R. The parameter determining the number of 
final clusters was set to 8. 

2.13 PCA combination clustering methods (PCA + AP 
clustering, PCA + DBSCAN, and PCA + k-means) 
 We used prcomp function of R package to convert 
high-dimensional data into a two-dimensional data defined by 
the principal component 1 and 2. The dimensionality reduction 

I(U,V ) =
|Up Vq |

Nq=1

Q

∑
p=1

P

∑ log
N |Up Vq |
|Up |× |Vq |

,

H (U) = −
|Up |
Np=1

p

∑ log
|Up |
N
,

H (V ) = −
|Vq |
Nq=1

Q

∑ log
|Vq |
N
.

purity(U,V ) = −
maxq |Up Vq |

NP
∑ .
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data were clustered by affinity propagation algorithm. Optimal 
parameters were determined by the same method described in 
NMDS section. The PCA data were also clustered by DBSCAN 
method. Optimal parameters were determined by the same 
method described in NMDS section. The PCA data were also 
clustered by k-means method using kmeans function of R. The 
parameter determining the number of final clusters was set to 8. 

2.14 RaceID 
 We used R script for RaceID algorithm to calculate clusters in 
input data points, and the optimal parameters were determined 
by the highest NMI and the highest sum of NMI and the purity. 
The following are final parameters to choose: 
 
1. Parameters of filterdata function 
A) Selected parameter: downsample = TRUE or FALSE 
B) Fixed parameters: mintotal = 3000 minexpr = 5, 

minnumber = 1, maxexpr = 500,dsn = 1, reseed = 17000 
2. Parameters of clustexp function 
A) Selected parameter: do.gap = TRUE or sat = TURE, 

clustnr = 30 with cln = 0 or clustnr = 8 with cln = 8 
B) Fixed parameters: bootnr = 50, metric = ”pearson”, 

SE.method = ”Tibs2001SEmax”, SE.factor = .25,B.gap = 
50, rseed = 17000, FUNcluster = ”kmedioids”, clustnr = 
30, cln = 0 

3. Parameters of findoutliers function 
ouminc = 5, outlg = 2, probthr = 1e-3, thr=2**-(1:40), 
outdistquant = .95  

4. Parameters of comtsne function 
rseed=15555, sammonmap = FALSE, initial_cmd = TRUE. 

R scripts was downloaded from 
https://github.com/dgrun/RaceID. 

2.15 t-SNE combination clustering methods (t-SNE + AP 
clustering, t-SNE + DBSCAN, and t-SNE + k-means 
 We used Rtsne function of R package Rtsne to convert 
high-dimensional data into a two-dimensional data. The t-SNE 
data were clustered by affinity propagation algorithm. Optimal 
parameters were determined by the same method described in 
AP clustering section. The searching range of parameter 
perplexity is perplexity = 5, 25, 50, …, 150, and the parameter 
pca was fixed with FALSE. The t-SNE data were also clustered 
by DBSCAN method. Optimal parameters were determined by 
the same method described in NMDS section. The t-SNE data 
were also clustered by k-means method using the same 
parameters in NMDS section. 

2.16 SIMLR 
 We used SIMLR function of R package SIMLR to determine 
the clusters in input data points and optimal parameters were 
determined by the highest NMI and the highest sum of NMI and 
the purity (The selected parameters : cores.ration= 0 or 1. The 
parameter c was set to 8 as the number of final clusters)  

3. Results 

3.1 The combination method of DBSCAN and t-SNE 
outperformed in separating eight source tissue derived cells  
   1,830 single-cell transcriptome data from SHOGoiN 
database labeled by source tissue types were utilized to evaluate 
twelve clustering methods. We evaluated the performance of the 
clustering by NMI and the purity. Lower NMI indicates low 
accuracy of clustering boundaries or excessive subdivisions of a 
cluster, and the purity indicates the label diversity level in each 
cluster.  
 For each method, parameters with the highest score of NMI 
were chosen. In the case that multiple parameters result in the 
same NMI score, the parameter with higher purity was taken. 
The sum of NMI and the purity were used as final score for 
evaluation of clustering performance. Results showed that 
t-SNE + DBSCAN performed best among all the methods (NMI 
+ purity = 1.65) (Table 1). Among the methods that require the 
pre-set cluster number, the combination method of t-SNE + 
k-means showed the best performance (NMI + purity = 1.55). 

3.2 Visualization of the cells in featured space 
 All the methods except AP clustering can visualize the feature 
of high-dimensional gene expression data as two-dimensional 
plots (Fig. 1). Although PCA and NMDS successfully clustered 
cells from adipocyte tissue and skin, they found difficulty in 
clustering cells from the other tissues (Fig. 1 a, b). On the other 
hand, RaceID, which is based on t-SNE at visualization, showed 
the better clustering compared with t-SNE to be influenced by 
the selection step of genes (Fig. 1 d, e) and the scatterplot 
indicated that RaceID has potential to separate eight source 
tissue cells. With regards to SIMLR, separation of cells from 
different source tissues was successful while the dispersion was 
larger than other methods (Fig. 1 c). For AP clustering, the 
results were only shown by heatmap (Fig. 2). It was noteworthy 
that AP clustering showed an advantage in subtypes clustering 
with high purity (0.89, Table 1).  

4. Discussion 

 We compared twelve clustering methods. The results showed 
that t-SNE performed well in clustering large scale tissue types. 
It is reasonable result due to the recent popularity of t-SNE. As 
for AP clustering algorithm and RaceID in clustering large scale 
tissue types, AP clustering algorithm (the number of cluster = 
28) and RaceID (the number of cluster = 41) might be 
underestimated (Table 1) because each source tissue may 
contain more cell types. Therefore, detailed investigations are 
necessary in the future. Besides, the t-SNE based plot of RaceID 
indicates that gene selection step should be important for 
appropriate clustering (Fig. 1). In the field of cell classifications, 
gene selection methods become more important to clearly 
separate various cell types at single-cell level. Gene selection 
and normalization of RaceID showed better performance for a 
large scale of data sets (Table 1, Fig. 1). However, the idea of 
selection by RaceID is not perfect, thus recent clustering 
methods at gene level [21][22] may be worth considering for 
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further improvement. The multi-kernel learning of SIMLR also 
showed better performance in clustering a large scale of data 
sets (Table 1). The performance of any algorithm might be 
changed by requirement of setting parameters. Therefore, there 
is still room for improvement. Machine learning methods using 
the combination of multiple statistical models would become 
stronger in the future and accordingly prediction methods to 
approximate cluster numbers could be required based on 
biological feasibility. From our results, it is also indicated 
strongly that a framework or tools to compare the clustering 
results by specific criteria be required for sophisticated 
single-cell transcriptome analysis. 
 
Table 1 Clustering results of each method using optimal 

parameters. The first column shows clustering method 
and the second column indicates highest NMI when 
optimal parameters were searched. The third column 
indicates highest purity when optimal parameters were 
searched. The fourth column indicates the sum of NMI 
and the purity. The fifth column indicates the minimum 
number of clusters within parameter sets of same NMI 
and the purity. Asterisk indicates the method with setting 
parameter of final cluster number. 

 
Method 
(Clustering methods) 

NMI  Purity 
 

NMI 
+ 

purity 

The 
number 
of 
clusters 

AP clustering 0.66 0.89 1.54 28 
NMDS + AP clustering 0.52 0.72 1.24 10 
NMDS + DBSCAN 0.50 0.50 1.00 7 
NMDS + k-means * 0.54 0.72 1.26 8 
PCA + AP clustering 0.52 0.72 1.24 10 
PCA + DBSCAN 0.50 0.50 1.00 7 
PCA + k-means * 0.54 0.71 1.25 8 
RaceID 0.70 0.88 1.58 41 
SIMLR* 0.69 0.80 1.49 8 
t-SNE + AP clustering 0.75 0.88 1.63 10 
t-SNE + DBSCAN 0.75 0.90 1.65 10 
t-SNE + k-means * 0.71 0.84 1.55 8 
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Figure 1 Visualization by dimensionality reduction. (a) Plot by 

principal component 1 and 2 of PCA (b) Plot calculated 
by NMDS (c) t-SNE based plot calculated by SIMLR 
using learned cell-to-cell similarity, (d) Plot of tSNE (e) 
t-SNE based plot calculated by RaceID. These colors 
indicate source tissue. 

 
 
 
 
 
 
 
 
 
 

 
Figure 2 Heatmap with the clustering result of AP clustering. The 

heatmap is separated into two parts. The upper panel is 
expression levels of all utilized genes (59,239 genes). 
The lower panel is expression levels of genes (5,924 
genes), which showed high variance across all cells, are 
shown. The clustering result is indicated by border lines 
of clusters (*1) and source tissue of each cell are 
indicated by different colors (*2) 
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