
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

The Evolution of Process Hiding Techniques in Malware –
Current Threats and Possible Countermeasures

Sebastian Eresheim1,a) Robert Luh1,b) Sebastian Schrittwieser1,c)

Received: November 26, 2016, Accepted: June 6, 2017

Abstract: Rootkits constitute a significant threat to modern computing and information systems. Since their first
appearance in the early 1990’s they have steadily evolved, adapting to ever-improving security measures. The main
feature rootkits have in common is the ability to hide their malicious presence and activities from the operating system
and its legitimate users. In this paper we systematically analyze process hiding techniques routinely used by rootkit
malware. We summarize the characteristics of different approaches and discuss their advantages and limitations. Fur-
thermore, we assess detection and prevention techniques introduced in operating systems in response to the threat of
hidden malware. The results of our assessments show that defenders still struggle to keep up with rootkit authors.
At the same time we see a shift towards powerful VM-based techniques that will continue to evolve over the coming
years.

Keywords: rootkit, process hiding, malware

1. Introduction

The origins of hiding processes goes back to the early days
of computer science. Outside academics, stealth viruses for MS-
DOS appeared in the early 1990’s and already showed similar
behavior like modern rootkits [55]. The term rootkit has its origin
in the UNIX world, where “root” is the most privileged user on a
system and a root-kit provides an adversary with root privileges.
When rootkits evolved from UNIX to the Windows world, the
name still remained the same although they did not fulfill their
original purpose anymore. Today’s rootkits typically use their
stealth abilities in order to hide various artifacts such as processes,
files, registry keys, drivers, etc. Process hiding is very often the
primary hiding ability of rootkits today, therefore this paper uses
the term rootkit as a synonym for a piece of software that is capa-
ble of hiding processes, although not all rootkits actually have this
ability. For example, one of the very first rootkits for Windows
NT [21], developed by Greg Hoglund, was only about privilege
escalation and evading the Kernel security. Hoglund had a big
impact on the evolution of the rootkit industry. Not only is the
book he co-authored with Jamie Butler [22] a de-facto standard
for rootkit research, he also operated rootkit.com, a popular web-
site within the rootkit community for years.

During the early 2000’s rootkits as well as anti-rootkit and
anti-virus software were entirely focusing on the kernel and the
control of its internal structures. In 2006 Rutkowska et al. [51]
opened a new chapter in rootkit research with her works on
virtualization-based malware. During the evolution of rootkits

1 Josef Ressel Center for Unified Threat Intelligence on Targeted Attacks,
St. Poelten University of Applied Sciences, Austria

a) sebastian.eresheim@fhstp.ac.at
b) robert.luh@fhstp.ac.at
c) sebastian.schrittwieser@fhstp.ac.at

many techniques have appeared with the goal of leaving as little
evidence as possible on the running machine [1], [37], [48]. This
paper surveys past and present process hiding techniques and an-
alyzes their capabilities against modern rootkit countermeasures.

2. Process Hiding Techniques

The execution flow of a Windows API call includes multiple
functions from several DLLs (Dynamic Link Library) in both
user- and kernel-mode. Specifically, the API call that gathers a
list of running processes includes several sub-calls, which lead
down into the depths of the OS, until the process manager is
called. The process manager, who stores all processes and their
associated information, retrieves a list of the running processes
and returns it to the function caller. The list might then be pro-
cessed by all the intermediate steps in between and then handed
all the way up again to the caller of the Windows API.

Several of the process hiding techniques discussed in this pa-
per intercept this API call to retrieve all running processes. This
technique is also known as a hook [44]. They all share the same
characteristics and the same goal: filtering the data the API call
returns. The required steps for this concept look like the follow-
ing:
(1) Take over the execution, either the API call itself or a sub-

call beneath
(2) Jump to a memory region in which a custom program has

been loaded (the steps 4, 5, and 6 are executed by this pro-
gram)

(3) Call the original function that was supposed to be called
(4) When the original API call returns it should give the actual

true list of all running processes
(5) Modify the list in a way that all processes, which should be

hidden, are removed from the list

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Interception points of analyzed process hiding techniques within the
execution sequence of a Windows API call:
1) UI-Hooking, 2) IAT-Hooking, 3) Inline Function Patching (user-
mode), 4) SYSENTER-Hooking, 5) SSDT-Hooking, 6) Inline Func-
tion Patching (kernel-mode), 7) DKOM.

(6) Return the list to the caller
In order to be fully functional, a hook usually requires code

that intercepts the execution and does the actual filtering. This
piece of software is also known as a hook handler and needs to
be loaded into the right memory location (depending on the con-
crete setup/technique) beforehand. Windows API calls can have
multiple interception points which are introduced in the following
sections. Figure 1 shows an overview.

2.1 Static Patching
The basic idea of static patching is rather simple: ‘alter the

code that actually defines the habit you want to change’. This
means that DLL- or EXE-files, which hold the binaries of the
Windows API such as ntdll.dll, ntoskrnl.exe, etc., are replaced
with malicious code [47]. An advanced level on reverse engi-
neering is required to alter official binaries correctly without de-
stroying necessary routines and data structures, especially when
it comes to kernel binaries. Therefore this is one of the techniques
with the highest required level of technical knowledge.
Detection – Since Windows 2000 Microsoft includes a system
called Windows File Protection [13], which protects critical sys-
tem files from being modified by static patching. Windows File
Protection was superseded through Windows Resource Protection
in Windows Vista. Additional third party tools, like Tripwire [30],
also detect file corruptions by comparing hash values.

2.2 UI-Hooking
UI-Hooking *1 interferes with the window manager of Win-

dows. The main idea behind this method is to change what a
program displays, in contrast to what the program logic holds on
information. This means a task manager program still holds the
correct list of running processes of the system. The application
just simply displays something different to the user. One example
of this technique exploits a characteristic of the window class.
Every element in a window is a subclass of the window class
and therefore has a window procedure. The idea is to overwrite
the default window procedure of a window element (for exam-
ple a ListView) with a custom one, that filters predefined names
of processes. For example, a ListView would iterate through its
rows and filter them, if they contain certain values. The element
that is hooked is the handler of the queued message WM PAINT,
which usually indicates that the receiving window should repaint
its content. Instead of repainting the full content, certain val-
ues will be left out by the hooked handler. The hook uses the
SetClassLong function, which is able to set the window proce-
dure for a window class, in order to install its message handler
and is injected into processes by using a Windows system hook
(SetWindowsHookEx). The main advantage of this technique is
that it does not attack the OS itself. Unlike other process hiding
techniques, no call tables or other system structures are altered.
Instead the application is the focus of the attack, which makes it
harder to detect.
Detection – UI-Hooking itself is relatively easy to apply, be-
cause window procedures and window messages are a fundamen-
tal concept of the Windows UI. However, UI-Hooking is highly
dependent on the application that needs to be hooked, which is
why the developer of an UI-Hooker needs to know the application
he wants to hook beforehand. Programs with no UI, or simply a
UI that is not suitable for the attack are not affected, because it
affects only the UI-Layer and not the program-logic-layer. This
means that on a system were UI-Hooking is applied, command
line tolls like tasklist still show the correct list of running pro-
cesses. Besides the already mentioned disadvantages, attaching
an additional window message handler affects all instances of the
window class probably leading to unwanted side effects in other
processes with list views. Furthermore this technique only ap-
plies to applications that use the Win32 API. Applications which
use WinRT, like Universal Windows Platform (UWP) Apps, are
not affected anymore.

2.3 Import Address Table-Hooking
Every executable that uses the PE file format [40] and calls

at some point a function that does not reside within itself,
has an Import Address Table (IAT). The purpose of this ta-
ble is to tell the running program where to find this func-
tion in memory during run-time. The IAT is an array of IM-
AGE IMPORT DESCRIPTOR-structures. Each element of the
array holds the name of the DLL it stands for, a time-stamp and a
pointer to an array of IMAGE THUNK DATA-structures. Before
the application is launched these pointer sized structures contain

*1 https://www.codeproject.com/articles/23686/kitkat-the-lazy-poor-man-
s-rootkit

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 2 Setup of an IAT-Hook.

the address of the name of the to-be-imported function. When
the executable is loaded the loader overwrites the pointer with
the address of the actual function.

The idea of IAT-Hooking is to change one of these addresses to
point to an injected, custom function [16]. This allows the inter-
cepting function to apply modifications to the parameters passed
to the original function or the results returned by it. In most
cases this function will call the original procedure, that was sup-
posed to be called, and then intercept the data it returns [6], [15].
This setup is displayed in Fig. 2. As injection method SetWin-

dowsHookEx is not sufficient for this technique, because it is re-
stricted to only hook functions that possess a message queue. Al-
ternatively there are different code injection methods to inject the
hook handler into the target process. A very popular one was first
introduced by Jeffrey Richter [43] and is based upon CreateRe-

moteThread and a custom DLL-file. It includes the following
steps:
(1) Acquire space in the target process
(2) Write the name of the DLL-file to the just acquired space
(3) Get address of the Windows API LoadLibrary in memory
(4) Call CreateRemoteThread with the address of LoadLibrary

and the address of the written DLL-name
CreateRemoteThread then creates a new thread in the target

process and starts execution with LoadLibrary, which loads the
attacker’s custom library. The hook can either be done directly
in the DllMain-Function, or the library sets up an inter-process
communication channel and waits for any further commands.

A second way of injecting code into a target process is done
with the WriteProcessMemory function [34]. The main steps be-
hind this one are:
(1) Read the import address table of the target process
(2) Copy the hook handler to a buffer and patch it with the orig-

inal import address
(3) Write the hook handler from the buffer to the .text section of

the target process using WriteProcessMemory

(4) Update the import address using WriteProcessMemory

This second approach is less noisy than the CreateRe-

moteThread method, because it creates less artifacts (a sep-
arate DLL) and uses less calls to suspicious API-functions
(VirtualAllocEx, CreateRemoteThread, OpenProcess with PRO-
CESS CREATE THREAD) than the first one. Compared to other
process hiding techniques, IAT-Hooking itself is a simple tech-
nique, because the knowledge base for this method relies on the
functionality of the loader.

A unique feature of IAT-Hooking is that it can be aimed at
a single target process. On the other hand, if it is necessary to
hook all running processes, this method comes with a pretty high

cost. Every code injection bears the risk of corrupting the run-
ning process and crash it. Therefore, the more processes need to
be injected, the higher is the risk that one crashes and the user get
suspicious. A restriction of this method happened with a feature
that was introduced with Windows Vista and is called session 0

isolation [13]. Since then services do not run in the same session
as user applications anymore, but instead in session 0 where they
are isolated from other sessions. Processes running in this ses-
sion cannot be accessed for code injection and thus services are
not prone to IAT-Hooking.
Detection – One detection strategy against IAT-Hooking is to
look for the exchanged address in the table which as a very dif-
ferent value than the others. This is because the address of the
hook handler resides at a very different memory location than the
rest of the imported functions. The process of detecting such an
anomaly in memory addresses is also easy to automate: if the ad-
dress in the IAT falls not within the range of the given DLL then
the function is hooked.

2.4 Inline Function Patching
Inline Function Patching evolved from IAT-Hooking and is a

more subtle approach. One major drawback of IAT-Hooking is
that it can be easily tested if the pointer within the IAT points
to the memory area of the DLL or not. Inline function patching
moves the hook from the IAT right into the function that should
be hooked. By using this approach the address within the IAT still
stays valid and points to an area within the space of the DLL-file.

The most popular inline function patching method is Detours, a
library created by Microsoft Research for the Windows OS [24].
Detours takes the first 5 bytes of a function and replaces them
with an unconditional jump instruction. This instruction jumps to
a function called the detour function and is the one which inter-
cepts the data passing to and coming from the target function. In
order to intercept the data, the target function needs to be called,
but because the first few bytes of the target function have already
been replaced, it cannot be called without further actions. So
before this can be done, the original first 5 bytes need to be exe-
cuted to create the stack frame of the target function. Therefore
they have been saved beforehand in a function called the trampo-
line function. After the trampoline function has been executed, it
jumps to the target function + 5 bytes, in order to avoid to jump
into the detour function again. The target function then executes
as usual and returns to the detour function. After this procedure,
the list of processes is already available and the detour function is
able to modify and return it to the source function. Detours, origi-
nally provided by Microsoft as a library, is very popular and used
in various different projects such as Ref. [29]. Figure 3 depicts

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 3 Execution sequence of a Detours setup.

the execution sequence of a Detours setup.
Debugger aided Hooking, as used by Gomez et al. [18], is

an alternative approach for inline function patching. It uses the
breakpoints of a debugger to break within the code and lets the
debugger take over the execution. These single-byte breakpoint
instructions are shorter than the 5-byte jump instructions, which
makes it easier to intercept the execution in the middle of a func-
tion.

Single Instruction Hooking (SIH) [4] takes this approach to the
next level. It also makes use of debugger breakpoints, but un-
like Debugger aided Hooking it does not need a second process
to continue the execution after the breakpoint is hit. It is able to
do so, because breakpoints usually generate a certain kind of ex-
ception when execution hits them. These exceptions are caught
in user-mode by KiUserExceptionDispatcher and are then man-
aged by the corresponding exception handler. SIH hooks this
KiUserExceptionDispatcher (by any of the previous methods)
and jumps to a custom handler if an exception was raised that
corresponds to a breakpoint within the original image.

Inline function patching disguises hooks a little further than
just pointing to some arbitrary code area already in a call table. It
is less likely from being detected than IAT-Hooking unless some-
one is explicitly looking for it. Although it disguises hooks fur-
ther, it does not masquerade their characteristics. It has to leave
the path of known/trusted code at some point and execute arbi-
trary code that has been injected.
Detection – Detours can be spotted by examining the first few
bytes of each imported function. If they contain an uncondi-
tional jump, then Detours has been installed. However, the jump-
instruction can also be placed a little later in the function, making
detection more difficult. The major drawback of Debugger aided

Hooking is its need for a separate debugger process. While Single
Instruction Hooking can overcome this drawback, it still leaves
the path of trusted execution and jumps to an arbitrary code area.
While Detours works in kernel-mode as well, the properties of
Debugger aided Hooking and SIH make them inappropriate for
being useful within the kernel.

2.5 SYSENTER-Hooking
SYSENTER-Hooking is a kernel-mode technique. This means

the hook handler needs to be injected into the kernel and not into
another process. Unnoticed code injection requires kernel ex-

ploits, or certain vulnerabilities in third party drivers. The legit
way to get executable code into the kernel is to deploy a driver.
Microsoft has put a decent amount of effort into drivers meeting
certain criteria [3], which is why it is quite hard to get a non-
conform driver into the kernel of later versions of Windows. The
SYSENTER instruction on modern systems is the only transition
from user-mode to kernel-mode. After the processor is switched
from execution ring 3 to ring 0, three registers define where the
processor carries on with the execution:
• IA32 SYSENTER CS - defines the code segment in which

the execution continues
• IA32 SYSENTER EIP - defines the instruction which con-

tinues (usually the first instruction of KiSystemService)
• IA32 SYSENTER ESP - defines the stack for the kernel ex-

ecution
These registers can be read and modified with the rdmsr-

and wrmsr-instructions [14], [20], which are privileged instruc-
tions and need to be executed from kernel-mode. If an at-
tacker places the address of any arbitrary function in the
IA32 SYSENTER EIP-register it is called for every native API
call. This comes with the cost of high responsibility, because ev-
ery single native API call executes the attacker’s code. If the call
to the kernel is not dispatched appropriately afterwards or it takes
too long, then the whole system might start getting unresponsive,
freezes, or even crashes. Only brief and easy tasks should there-
fore be executed in such hook handlers [27]. With a single hook
all of the system’s native API calls can be monitored and modified
at one’s leisure. The advantage here is that there is no need for
multiple hooks or multiple code functions if multiple API calls
are hooked. In practice though the responsibility and the amount
of possible unforeseen events is why this technique is probably
not widely used.
Detection – SYSENTER-hooking modifies data that should
never be modified. Therefore it is possible to test if it is present
or not. If the address in the IA32 SYSENTER EIP register is not
the one of the function which is responsible for dispatching sys-
tem calls in the current OS version, then something is very likely
wrong. On the other hand, all it needs to fix a compromised sys-
tem is to restore the address of this function back into the register
again.

2.6 SSDT-Hooking
After a SYSENTER-instruction the execution usually contin-

ues with the system service dispatcher (KiSystemService) [54] in
kernel-mode. Native API functions can not be called separately,
therefore the system service dispatcher does it depending on the
service number a user-mode process provides. Similar to the
IAT in user-mode, KiSystemService works with a call table that
contains the addresses of the functions to be executed, which
is called System Service Descriptor Table (SSDT). Again, just
like in user-mode, this address can be modified and therefore be
hooked [2], [8], [31]. In the case of NtQuerySystemInformation

the hook handler receives all requests for a complete process list
and is able to filter the outcome for all user-mode processes. A
single hook is therefore sufficient to trick all processes system
wide. Inline function patches do apply to this method too, in

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 4 EPROCESS-structures with a hidden process.

some extent, although this depends on the applied patch-method.
SSDT-hooking is global. It affects all processes alike because if

a process demands a certain information from the kernel, the call
ends at some point at the system service dispatcher. Therefore,
SSDT-Hooking is more efficient than for example IAT-Hooking
when all processes of the system should be affected by the hook.
The severity of a crash, on the other hand, is more devastating
than in user-mode. One of the first projects using this technique
was the NTRegmon by Russinovich and Cogswell [12], which
monitors all registry activity on a system. It also shows that
SSDT-Hooking can be used with a non-malicious intent, for ex-
ample many antivirus and malware detection systems [19] depend
on this technique too.
Detection – This technique is similar to its counterpart in the
user-mode, consequently it can also be detected in a similar way.
The range of the correct binary can be retrieved and then checked
if the address in the SSDT lies within that range. If an inline
hook has been applied, a check of the first few bytes of a native
API function indicates if an unconditional jump has been inserted.
Moreover technologies like the Kernel Patch Protection [35] pre-
vent kernel-mode code and -objects from unauthorized modifica-
tion.

2.7 Direct Kernel Object Manipulation
Direct Kernel Object Manipulation, or short DKOM, is the art

of directly modifying data structures in the kernel without crash-
ing the system. It follows the principle of ‘hiding without hook-
ing’ [28]. The difference to other techniques operating within the
boundaries of the kernel is that it does not intercept the flow of the
execution at some point. Instead it directly modifies the objects
and data structures that hold that information.

The internal data structure for storing process information is
the EPROCESS-structure [49]. Besides scheduling-related infor-
mation like pointers to thread-structures, it also holds data that is
relevant for the user. System calls like NtQuerySystemInforma-

tion gather process-specific information from this memory struc-
ture. For managing purposes, every EPROCESS-structure has
two pointers to the next- and previous EPROCESS-structure, the
so called forward- and backward link (FLINK/BLINK). Each of
them points to the FLINK of the next/previous structure. These
pointers connect the structures and line them up to a doubly-
linked ring (the BLINK of the first element points to the last one,

the FLINK of the last element points to the first one). A list of
running processes is then built by iterating through the ring and
collecting the necessary information.

As seen in Fig. 4, the basic concept of DKOM is to take one
EPROCESS structure and unlink it from the ring [7], [9]. This
means that the FLINK of the previous structure points to the
structure after the to-be-hidden one and the BLINK of the next
structure points to the one before it. If the process manager starts
at one element and iterates through the ring, it would not pass
by the unlinked process and therefore not have it in its list. This
unlinked process is then hidden.

Scheduling is not affected, since it does not work with pro-
cesses but is based on threads. This is why the process is still
executed although it is not visible anymore.
Detection – An effective way for identification of these hidden
processes is using thread information. Each thread’s internal
structure includes a pointer to its corresponding EPROCESS-
structure. A hooked SwapContext function (hooked with in-
line function patching for example) can then compare if the
KTHREAD-structure of the to-be-swapped-in thread is linked to
an EPROCESS-block that is appropriately linked to the doubly-
linked ring. If not, then the process was hidden on purpose.

2.8 Virtualization Based Rootkits
Virtualization based Rootkits (VMBRs) put the host OS into a

virtual machine. This makes it a guest OS without noticing it and
the VMBR takes its place as a host OS. Therefore processes that
are created by the VMBR (the new host OS) and not the guest OS
cannot be traced.

There exist two ways of developing and deploying a VMBR.
The first proof of concept for such a rootkit came from Microsoft
Research in cooperation with the University of Michigan and was
called SubVirt [32]. It was published in 2006, a time when hard-
ware virtualization was not yet available and the researchers fo-
cused on the software equivalent. SubVirt used a kernel module to
register a LastChanceShutdownNotification event handler. Once
it is executed, the kernel module copies the VMBR into the active
partition of the disk, which causes the system to load the rootkit
at the next startup. This setup requires at least administrator priv-
ileges on the system during its installation. After the VMBR is
started, it loads the target OS in a VM and an attacker OS in a
separate one. The attacker OS can then run different kinds of

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Table 1 Overview on process hiding techniques.

Version with built in preventives Countermeasures
Process hiding technique Windows

version
32 bit 64 bit Hash-based

integrity checks
In-the-box cross-
view analysis

Out-of-the-box
cross-view analysis

Timing
analysis

Static patching Windows 2k ✓ ✓ ✓
UI-Hooking Windows 7 ✓ ✓ ✓ ✓
IAT-Hooking ✓ ✓
Inline Function Patching ✓ ✓
SYSENTER-Hooking Windows XP ✓ ✓
SSDT-Hooking Windows XP ✓ ✓
DKOM Windows XP ✓ ✓
VMBR ✓

malicious services.
SubVirt was shortly followed by Blue Pill [51]. Blue Pill is

based on AMDs first generation of hardware assisted virtualiza-
tion, which allows hypervisors to remove a lot of the software
overhead and form a thin layer between the hardware and the
VMs. Blue Pill uses the Secure Virtual Machine (SVM) tech-
nology that was introduced with hardware assisted virtualization.
Its core is the vmrun instruction which starts a new guest VM and
takes the address of a 4 KB page as a parameter [14]. This page is
the virtual machine control block (VMCB) and sets a few param-
eters for the newly created VM. Besides different configurations
the VMCB also holds the address of the first instruction that is ex-
ecuted within the guest OS. Blue Pill creates such a VMCB and
sets the pointer of the first guest OS instruction to the instruction
after the call of Blue Pill (which usually would have been exe-
cuted in the host OS). This way it creates a smooth transition
from the host OS to a guest OS for the target.

Vitriol [60] is an equivalent of Blue Pill for the Intel VT-x tech-
nology. Vitriol and Blue Pill only differ on processor specific in-
structions. They are both capable of migrating the host OS into a
virtualized guest OS on the fly.
Detection – Every other introduced hiding technique, the hidden
process is still in the virtual memory of the system and the infor-
mation can be extracted by using the right strategy. The hidden
process of a VMBR runs in another VM than the user interacts
with, thus the user is not able to find this hidden process. This is
why the detection of VMBRs focuses entirely on whether the OS
the user interacts with is running in a VM or not. If so, the hidden
processes can still not be accessed from within the guest OS. To
be able to find out what exactly was executed in a hidden way, a
dump of the physical memory is necessary.

Software based VMBRs have non-virtualizable instructions in
the x86 architecture (such as SIDT and SGDT) which show inac-
curacies and allow the detection of a privileged state. But also the
emulation of peripheral devices has its limitations. Therefore a lot
of emulated network, SCSI and video cards look very different to
real devices.

Hardware VMBRs on the other hand are not prone to discrep-
ancies of peripheral devices due to device pass through where
real devices are passed forward to guest systems and allow them
to use them directly. But even they are affected by timing dis-
crepancies, where certain instructions need a different amount of
time depending whether they are executed in a VM or natively.
For example a race between two threads executing just NOP in-
structions and the virtualization-sensitive CPUID instruction will

show a higher ratio on virtualized environments than on physical
ones [17]. Additionally, Kyte et al. [33] have shown that it is pos-
sible to detect hardware virtual machines based on timing attacks,
because of their overhead on context switches between VMs and
the code the hypervisor executes.

3. Countermeasures

Over the years various countermeasure-types and -systems
have been introduced to the community to cope with rootkits and
hidden processes. Table 1 shows an overview. Integrity check-
ing tools were one of the first available tools to verify the purity
of a system, by checking current hash values of important system
files against known good values. Tripwire [30] is, as already men-
tioned, one of them. Since Windows Vista Microsoft protects its
critical system files with Windows Resource Protection [13] from
unwanted modifications. This does not prevent hooks and mod-
ifications during run-time. Probably the most popular approach
to cope with run-time modifications is cross-view analysis. For
this analysis concept two views of the same data are compared
against each other and if any discrepancies occur, a hidden arti-
fact has been discovered. For example a list of all running pro-
cesses is gathered in user-mode as well as in kernel-mode. If
the list does not contain the same elements, then it is most likely
that it has been modified somewhere in between. This approach
is implemented by multiple tools like Strider Ghostbuster [57],
RootkitRevealer [11] and many more [36].

In 2005 concerns were raised [50], because running tools with
an in-the-box cross-view approach on a corrupted machine, might
still not be able to detect all hidden artifacts successfully. Since
then various virtual machine based systems have been introduced
and many of them share the same characteristics. They run the
corrupted system within a virtual machine and create a view
within guest OS of the VM and another one in the hypervisor-
layer. This is also why they are called out-of-the-box systems.
KernelGuard [42] and VmDetector [58] are two cross-view detec-
tion systems using the QEMU hypervisor. Though both of them
are implemented to detect hidden artifacts on Linux as a guest OS,
their basic principle is also applicable to Windows. On the other
hand Lycosid [26] is a typical out-of-the-box cross-view system
that operates on a Xen hypervisor. Additionally VmWatcher [25]
is able to operate on both hypervisors and is able to use its detec-
tion functionality on Windows as well as on Linux distributions.
XenKIMONO [41] also performs a cross-view analysis but uses
the older in-the-box approach, while it also performs integrity
checks of certain kernel structures. It uses the Xen hypervisor

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

only in order to make sure that predefined processes are not killed
by any malicious programs (e.g., make sure an anti-virus software
keeps operating).

A different approach to prevent process hiding from happening
is to already act at an earlier stage. HookMap [59], which is also
using a hypervisor, focuses on not even letting code, belonging
to a rootkit, run. To do so kernel level rootkits usually hook a
part within the kernel, either a certain data structure (like SSDT-
Hooking) or on an instruction basis (e.g., Inline Function Patch-
ing). For the first part tripwire-like techniques can be applied, but
in order to make sure that no instruction gets misused, HookMap
tracks and monitors all jmp- and cmp-instructions and checks
whether the corresponding memory address relates to the oper-
ation that should be executed. SecVisor [52] and NICKLE [45]
even take on a step before and prevent the injection of malicious
code into the kernel. SecVisor focuses on the code execution
and makes sure only user-approved code is executed. NICKLE
uses an additional memory area called ‘shadow memory’. Com-
bined with real-time kernel code authentication the system veri-
fies that no injected code is executed. On top of these two systems
PoKeR [46] is able to profile the further execution and empowers
an analyst with information on the malicious behavior. Finally
another very different approach to ensure kernel integrity takes
Copilot [39]. The system uses a second (co-)processor to verify
the integrity of the instructions executed by the main processor.
Instead of taking one step out-of-the-box in a software manner,
Copilot relocates the approach to the hardware level.

4. Discussion

Although trying to prevent rootkits from accessing the kernel
in the first place seems preferable over detecting it afterwards, it
is not sufficient to simply prevent kernel code injections. Rootk-
its which are based on return-oriented programming (ROP) are
capable of hiding processes without introducing any new code to
the system as demonstrated in Refs. [23] and [56], which leaves
SecVisor and NICKLE vulnerable against these kinds of attacks.

Another major drawback of many of the previously mentioned
detection solutions is the systems overhead and its impact on per-
formance. While some of them were already built with perfor-
mance in mind, others still happen to have a negative influence.
While this might be negligible on servers and desktop comput-
ers using state-of-the-art hardware, mobile devices, like smart
phones, tablets, etc., still lack the capabilities of these high end
computers. Mobile devices have in recent years, become a more
and more attractive target for rootkits [5], as they even offer new
and unique possibilities for rootkits, like spying on conversations
via GSM or compromising GPS data. A few first, hypervisor-
based, mobile detection systems have already been introduced to
the community: XNPro [38] enforces an executable-space pro-
tection (memory is not writable and executable at the same time)
for the mobile device, which is not default on Android systems,
RootGuard [53] matches the origin of privileged instructions to
predefined policies and therefore secures rooted Android devices
from Malware and OSP [10] aims to provide isolated computing
environments for security critical code in an efficient and secure
manner for mobile devices. All three of them are either designed

to improve the system security of Android devices or have only
been tested on them. Since Windows 10 shares the same kernel
over all devices and the fact that there have already emerged ker-
nel rootkits for other platforms, a conclusion suggests, that Win-
dows 10 for Mobile is not invulnerable to kernel rootkits either,
although more research on this topic is required to bring a definite
answer to this question.

Besides desktop computers, notebooks and mobile devices
Windows 10 was released for another special type of devices,
which are the ones of the internet-of-things (IoT). Again, because
of the shared kernel, these devices might be vulnerable to ker-
nel rootkits and process hiding, but unlike mobile devices, these
probably will not have the power to run out-of-the-box cross-view
detection systems anytime soon. IoT devices are usually at the
low-cost end of the price scale, thus a copilot-similar approach,
where every IoT device has its own second processor that ver-
ifies the integrity of the execution of the main one, might be a
rather cost-effective solution. But even if this approach detects
the corruption of the kernel, or hidden processes, it would still
leave the end user with a corrupted device. New approaches with
preventing a corruption rather than detecting it would be prefer-
able. Therefore a certain amount of research is still required to
secure IoT devices from kernel mode rootkits and process hiding.

5. Conclusion

In this paper, we presented a systematic summary of past and
current process hiding techniques based on their implementa-
tions for the Windows operating system. These methods include
static patching, user- and kernel-mode hooks in multiple locations
across the call-stack of an API call, live patches, direct kernel ob-
ject manipulation, and virtual machine based rootkits. VMBRs
are of particular relevance for modern, VM-based infrastructures
as they act even outside of the operating system itself.

While many of the surveyed techniques are primarily used by
rootkits to hide their activities from the system, some of them are
also utilized by security and malware detection software. Coun-
termeasures range from static integrity analysis and digitally sign-
ing of executables, to kernel code injection prevention mecha-
nisms and out-of-the-box cross-view analysis. While most of
these countermeasures where designed for desktop operating sys-
tems, they fail to address the needs of mobile or IoT devices.
In the future, it will be necessary to take a closer look at kernel
mode rootkits and process hiding in the mobile and IoT versions
of Windows 10. Furthermore, new approaches are necessary to
verify the integrity of the kernel of IoT devices.

Acknowledgments The financial support by the Austrian
Federal Ministry of Science, Research and Economy and the Na-
tional Foundation for Research, Technology and Development is
gratefully acknowledged.

References

[1] Alexander, J.S., Dean, T. and Knight, S.: Spy vs. spy: Counter-
intelligence methods for backtracking malicious intrusions, Proc.
2011 Conference of the Center for Advanced Studies on Collabora-
tive Research, pp.1–14, IBM Corp. (2011).

[2] Alzaidi, M., Alasiri, A., Lindskog, D., Zavarsky, P., Ruhl, R. and
Alassmi, S.: The study of SSDT Hook through a comparative anal-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

ysis between live response and memory image, Information Systems
Security Department, Concordia University College of Alberta, Un-
published Master Thesis (2011).

[3] Baxter, J.: Driver Signing changes in Windows 10 (2015).
[4] Berdajs, J. and Bosnić, Z.: Extending applications using an advanced

approach to DLL injection and API hooking, Software: Practice and
Experience, Vol.40, No.7, pp.567–584 (2010).

[5] Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V. and Iftode, L.:
Rootkits on smart phones: attacks, implications and opportunities,
Proc. 11th Workshop on Mobile Computing Systems & Applications,
pp.49–54, ACM (2010).

[6] Bozagaç, C.D.: Ghostware and rootkit detection techniques for Win-
dows, PhD Thesis, Bilkent University (2006).

[7] Butler, J. and Hoglund, G.: VICE–catch the hookers, Black Hat USA,
Vol.61, pp.17–35 (2004).

[8] Butler, J. and Sparks, S.: Windows rootkits of 2005, part two, Security
Focus (2005).

[9] Butler, J., Undercoffer, J.L. and Pinkston, J.: Hidden processes: The
implication for intrusion detection, Information Assurance Workshop,
2003. IEEE Systems, Man and Cybernetics Society, IEEE, pp.116–121
(2003).

[10] Cho, Y., Shin, J., Kwon, D., Ham, M., Kim, Y. and Paek, Y.:
Hardware-assisted on-demand hypervisor activation for efficient se-
curity critical code execution on mobile devices, 2016 USENIX An-
nual Technical Conference (USENIX ATC 16), USENIX Association,
pp.565–578 (2016).

[11] Cogswell, B. and Russinovich, M.: Rootkitrevealer v1. 71, Rootkit
detection tool by Microsoft (2006).

[12] Cogswell, R. and Russinovich, M.: Windows NT System-Call Hook-
ing, Dr. Dobb’s Journal, Vol.261 (1997).

[13] Conover, M.: Analysis of the Windows Vista security model (2006).
[14] AMD: AMD64 architecture programmer’s manual volume 2: System

programming (2016).
[15] Erdelyi, G.: Hide’n’seek? anatomy of stealth malware, Proc. 2004

Black Hat Europe, pp.147–167 (2004).
[16] Father, H.: Hooking Windows API-Technics of hooking API functions

on Windows, CodeBreakers J., Vol.1, No.2 (2004).
[17] Garfinkel, T., Adams, K., Warfield, A. and Franklin, J.: Compatibility

Is Not Transparency: VMM Detection Myths and Realities, HotOS
(2007).

[18] Gomez, D.: Intelligent Debugging for Vulnerability Analysis and Ex-
ploit Development, available from 〈https://www.defcon.org/images/
defcon-15/dc15-presentations/dc-15-gomez.pdf〉.

[19] Grégio, A.R., Fernandes Filho, D.S., Afonso, V.M., Santos, R.D., Jino,
M. and de Geus, P.L.: Behavioral analysis of malicious code through
network traffic and system call monitoring, SPIE Defense, Security,
and Sensing, Int’l Society for Optics and Photonics (2011).

[20] Guide, P.: Intel R© 64 and IA-32 Architectures Software Developer’s
Manual (2016).

[21] Hoglund, G.: A real NT Rootkit, patching the NT Kernel, Phrack
Magazine, Vol.9, No.55, pp.55–65 (1999).

[22] Hoglund, G. and Butler, J.: Rootkits: Subverting the Windows kernel,
Addison-Wesley Professional (2006).

[23] Hund, R., Holz, T. and Freiling, F.C.: Return-Oriented Rootkits: By-
passing Kernel Code Integrity Protection Mechanisms, USENIX Secu-
rity Symposium, pp.383–398 (2009).

[24] Hunt, G. and Brubacher, D.: Detours: Binary Interception of Win32
Functions, 3rd USENIX Windows NT Symposium (1999).

[25] Jiang, X., Wang, X. and Xu, D.: Stealthy malware detection
through vmm-based out-of-the-box semantic view reconstruction,
Proc. 14th ACM Conference on Computer and Communications Se-
curity, pp.128–138, ACM (2007).

[26] Jones, S.T., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.: VMM-
based hidden process detection and identification using Lycosid, Proc.
4th ACM SIGPLAN/SIGOPS Int. Conference on Virtual Execution En-
vironments, pp.91–100, ACM (2008).

[27] Kapoor, A. and Sallam, A.: Rootkits Part 2: A Technical Primer,
McAfee (2007).

[28] Kasslin, K., Ståhlberg, M., Larvala, S. and Tikkanen, A.: Hide’n seek
revisited–full stealth is back, Proc. 15th Virus Bulletin Int’l Confer-
ence (2005).

[29] Ki, Y., Kim, E. and Kim, H.K.: A novel approach to detect malware
based on API call sequence analysis, Int’l Journal of Distributed Sen-
sor Networks, Vol.2015, p.4 (2015).

[30] Kim, G.H. and Spafford, E.H.: The design and implementation of trip-
wire: A file system integrity checker, Proc. 2nd ACM Conference on
Computer and Communications Security, pp.18–29 (1994).

[31] Kim, S., Park, J., Lee, K., You, I. and Yim, K.: A brief survey on
rootkit techniques in malicious codes, Journal of Internet Services and
Information Security, Vol.3, No.4, pp.134–147 (2012).

[32] King, S.T. and Chen, P.M.: SubVirt: Implementing malware with vir-

tual machines, 2006 IEEE Symposium on Security and Privacy, pp.14–
327, IEEE (2006).

[33] Kyte, I., Zavarsky, P., Lindskog, D. and Ruhl, R.: Enhanced side-
channel analysis method to detect hardware virtualization based rootk-
its, 2012 World Congress on Internet Security (WorldCIS), pp.192–
201, IEEE (2012).

[34] Leitch, J.: IAT Hooking Revisited (2011), available from
〈https://github.com/m0n0ph1/IAT-Hooking-Revisited〉.

[35] Lobo, D., Watters, P., Wu, X.-W. and Sun, L.: Windows rootkits: At-
tacks and countermeasures, Cybercrime and Trustworthy Computing
Workshop (CTC), 2010 Second, pp.69–78, IEEE (2010).

[36] Molina, D., Zimmerman, M., Roberts, G., Eaddie, M. and Peterson,
G.: Timely rootkit detection during live response, IFIP Int’l Confer-
ence on Digital Forensics, pp.139–148, Springer (2008).

[37] Nerenberg, D.D.: A study of rootkit stealth techniques and associated
detection methods, Technical report, DTIC Document (2007).

[38] Nordholz, J., Vetter, J., Peter, M., Junker-Petschick, M. and
Danisevskis, J.: Xnpro: low-impact hypervisor-based execution pre-
vention on arm, Proc. 5th Int’l Workshop on Trustworthy Embedded
Devices, pp.55–64, ACM (2015).

[39] Petroni Jr, N.L., Fraser, T., Molina, J. and Arbaugh, W.A.: Copilot-a
Coprocessor-based Kernel Runtime Integrity Monitor, USENIX Secu-
rity Symposium, pp.179–194, San Diego, USA (2004).

[40] Pietrek, M.: Inside windows-an in-depth look into the Win32 portable
executable file format, MSDN magazine, Vol.17, No.2 (2002).

[41] Quynh, N.A. and Takefuji, Y.: Towards a tamper-resistant kernel
rootkit detector, Proc. 2007 ACM Symposium on Applied Computing,
pp.276–283, ACM (2007).

[42] Rhee, J., Riley, R., Xu, D. and Jiang, X.: Defeating dynamic data ker-
nel rootkit attacks via vmm-based guest-transparent monitoring, Int.
Conference on Availability, Reliability and Security, pp.74–81, IEEE
(2009).

[43] Richter, J.: Load your 32 bit dll into another process’s address space
using injlib, Microsoft Systems Journal-US Edition, pp.13–40 (1994).

[44] Ries, C.: Inside windows rootkits, Vol.4736, VigilantMinds Inc
(2006).

[45] Riley, R., Jiang, X. and Xu, D.: Guest-transparent prevention of ker-
nel rootkits with vmm-based memory shadowing, Int’l Workshop on
Recent Advances in Intrusion Detection, pp.1–20, Springer (2008).

[46] Riley, R., Jiang, X. and Xu, D.: Multi-aspect profiling of kernel rootkit
behavior, Proc. 4th ACM European Conference on Computer Systems,
pp.47–60, ACM (2009).

[47] Ring, S. and Cole, E.: Taking a lesson from stealthy rootkits, IEEE
Security & Privacy, Vol.2, No.4, pp.38–45 (2004).

[48] Rudd, E., Rozsa, A., Gunther, M. and Boult, T.: A Survey of
Stealth Malware: Attacks, Mitigation Measures, and Steps Toward
Autonomous Open World Solutions, IEEE Communications Surveys
& Tutorials, Vol.19, No.2, pp.1145–1172 (2016).

[49] Russinovich, M.E., Solomon, D.A. and Ionescu, A.: Windows Inter-
nals, 6th edition, Pearson Education (2012).

[50] Rutkowska, J.: Thoughts about cross-view based rootkit detection, Re-
trieved on January, Vol.14, p.2014 (2005).

[51] Rutkowska, J.: Subverting VistaTM kernel for fun and profit, Black
Hat Briefings (2006).

[52] Seshadri, A., Luk, M., Qu, N. and Perrig, A.: SecVisor: A tiny hyper-
visor to provide lifetime kernel code integrity for commodity OSes,
ACM SIGOPS Operating Systems Review, Vol.41, No.6, pp.335–350,
ACM (2007).

[53] Shao, Y., Luo, X. and Qian, C.: Rootguard: Protecting rooted android
phones, Computer, Vol.47, No.6, pp.32–40 (2014).

[54] Sun, H.-M., Wang, H., Wang, K.-H. and Chen, C.-M.: A native
apis protection mechanism in the kernel mode against malicious code,
IEEE Trans. Comput., Vol.60, No.6, pp.813–823 (2011).

[55] Swimmer, M.: Computer Virus Catalog 1.2: Tequila Virus (1991).
[56] Vogl, S., Pfoh, J., Kittel, T. and Eckert, C.: Persistent Data-only Mal-

ware: Function Hooks without Code, NDSS Symposium (2014).
[57] Wang, Y.-M., Beck, D., Vo, B., Roussev, R. and Verbowski, C.: De-

tecting stealth software with strider ghostbuster, 2005 Int’l Conference
on Dependable Systems and Networks (DSN’05), pp.368–377, IEEE
(2005).

[58] Wang, Y., Hu, C. and Li, B.: Vmdetector: A vmm-based platform
to detect hidden process by multi-view comparison, 2011 IEEE 13th
Int’l Symposium on High-Assurance Systems Engineering (HASE),
pp.307–312, IEEE (2011).

[59] Wang, Z., Jiang, X., Cui, W. and Wang, X.: Countering persistent
kernel rootkits through systematic hook discovery, Int. Workshop on
Recent Advances in Intrusion Detection, pp.21–38, Springer (2008).

[60] Zovi, D.: Hardware virtualization based rootkits, Black Hat USA
(2006).

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Sebastian Eresheim is a research assis-
tant at the Josef Ressel Center for Unified
Threat Intelligence on Targeted Attacks
(JRC TARGET) of St. Poelten University
of Applied Sciences (UAS). He obtained
his B.Sc. in IT Security at the UAS and
is currently studying for his Master’s de-
gree in Information Security. His main re-

search interests lie in systems security and machine learning.

Robert Luh is a researcher at Josef Res-
sel Center for Unified Threat Intelligence
on Targeted Attacks. He obtained his
B.Sc. and master’s degree in IT Secu-
rity/Information Security at St. Poelten
UAS and is currently working towards his
Ph.D. in Cyber Security at De Montfort
University, Leicester, UK. His research

revolves around automated behavioral malware analysis and dig-
ital forensics.

Sebastian Schrittwieser is a professor at
St. Poelten University of Applied Sci-
ences as well as head of the Josef Ressel
Center for Unified Threat Intelligence on
Targeted Attacks. He earned his Ph.D. de-
gree in Computer Science from TU Wien
in 2014. His research interests are in soft-
ware security, code security, digital foren-

sics, and privacy.

c© 2017 Information Processing Society of Japan

