
「エンタテインメントコンピューティングシンポジウム (EC2017)」2017年 9月

チーズ学習：遺伝的アルゴリズムを用いたStarcraft初期
オーダー創造

ミラー ミッチェル1,a) アランニャ クラウス1,b)

概要：本研究では、進化的計算を用いた確率論的ゲームのためのコントローラの最適化を探究する。具体的
には、提案コントローラは StarCraft：Brood Warの早期攻撃戦略（タイミングプッシュ）を最適化する。
StarCraftコントローラを作成するため、C++の APIである BWAPIを使用する。C++のコントローラ
は R言語で実装した遺伝的アルゴリズムと通信し、ビルドオーダーを受け取り、ゲームのスコアを報告す
る。R言語の遺伝的アルゴリズムは潜在的なソリューションを生成し、そのソリューションを評価し、過
去のソリューションの成功に基づいて新しいソリューションを生成する。実験データを使用して、ゲーム
内のさまざまな要素を評価し、StarCraftのデフォルトの AIとのゲームに勝ち抜く最良の解決策を作り出
すのに、各要素がどれだけの効果をもたらしたかを確認した。これらの要素をランダムコントローラと比
較し、どの要素がどれぐらい最適なタイムプッシュを達成できるかを説明する。

Learning to Cheese: Using Genetic Algorithms to Generate Build
Orders in StarCraft

Mitchell Miller1,a) Claus Aranha1,b)

Abstract: The purpose of this research is to explore optimizing a controller for a complex, stochastic game
using evolutionary computation. Specifically, we use a Genetic Algorithm to optimize the early attack strat-
egy (timing push) of an AI that plays StarCraft: Brood War. First, we built a simple AI and its build order
interpreter in C++ using BWAPI, an API allowing for the easy creation of bots that play StarCraft. The
C++ controller code communicates with the actual Genetic Algorithm, written in R, to receive a build order
and report the scores of each game it played for evaluation. The R script orchestrates the Genetic Algorithm,
generating potential solutions, evaluating those solutions, then generating new solutions based on the success
of the previous ones. While collecting data, we evaluated different factors from within the game to see how
much of an effect they had in helping create the best solution, one where the AI would win its games against
the default AI of StarCraft. We compare these factors against a complete random search as the control, and
discuss which factors contributed, more or less, to achieving well-timed pushes and build orders.

1. Introduction

Video games are complex. The methods used to win

can be vast and varying. StarCraft, a real time strat-

egy game, pits two players against each other where they

gather resources, build structures and train units, in the

effort to destroy their opponent’s base. Such a stochastic

1 筑波大学情報科学類
Tsukuba University, College of Information Sciences

a) mitchkm12@gmail.com
b) caranha@cs.tsukuba.ac.jp

problem like trying to win a StarCraft match is difficult

to optimize. How do you devise and optimize a controller

that knows how to win? We decided to learn how to pro-

gram a StarCraft bot, and use evolutionary computation

to teach my bot how to win.

By teaching our StarCraft bot to win, we discovered just

how complex the relationship between parameters and the

outcome of our genetic algorithm was.

c⃝ 2017 Information Processing Society of Japan 318



表 1 ビルドオーダーのコマンド

Table 1 Build Order Instructions

Instruction Description Integer Value

Train SCV A unit that collects resources and builds buildings 0

Train Marine A basic offensive unit used to attack 1

Build Supply Depot Building that increases the maximum units a player can have 2

Build Barracks Building that allows the player to train marines 3

Send Marines Sends idle marines to attack the enemy 4

2. Related Works

Using video games as a platform for the research of arti-

ficial intelligence has recently attracted a lot of attention.

In this trend, many AI in games competitions, such as

CIG [4] have provided an space to explore different ap-

proaches to this idea. Togelius et al. [5] have recently

used multi objective evolutionary algorithms for generat-

ing a general starcraft agent. In this work, we focus only

on the initial moves of the game. The usage of games as a

playground for artificial intelligence is vast, and a lot has

been learned from it.

3. Experiment

3.1 StarCraft Bot (C++)

To be able to teach a StarCraft bot, we first wrote a bot

for StarCraft using BWAPI, a C++ API for StarCraft:

Brood War [2]. With this API, we set up a StarCraft bot

which executes build orders. A build order(BO) is a list

of actions done by the Starcraft player, our bot, in a spe-

cific order. Playing as the Terran race, the bot executes

build orders made up of just 5 commands, represented

numerically according to Table 1.

With this, the bot had the basic building blocks to ex-

ecute early attack strategies by sending offensive units

(marines) to attack its opponent quickly. The bot’s

code also managed mining resources and assigning units

to build buildings outside of the build order to minimize

repetitive instructions being included in the build order.

The StarCraft bot’s code was compiled into a dll file and

placed in the game’s directory. Using Chaoslauncher,

StarCraft was launched with BWAPI and the dll file was

found and run when a match started [3].

1 4 4 0 3 4 1 4 4 0 2 3 4 0 2 0 0 4 4 2 2 3 4 0 4 3 1 0 2

1 0 1 3 0 4 4 1 3 0 4 1 2 1. . .

図 1 ビルドオーダーの例

Fig. 1 Example Build Order

3.2 Genetic Algorithm (R)

An R script was used to create the genetic algorithm

that optimizes the bot’s build order. Using sockets, the

R script send a build order to the bot and, after the match

was done, the bot sends the results of the match back. Af-

ter that the game was reset, and the bot waited to receive

the next build order for the next match. The score results

(Table 2) were used to evaluate the success of a build or-

der and used to calculate its fitness. The R package‘GA’

was used as a base point to create the genetic algorithm

for this experiment. Since build orders can vary in length,

some of the package’s default functions were changed to

support lists of differing size.

表 2 ゲームクライアント出力の例

Table 2 Example of metrics output by the StarCraft client

Metric Name Value Metric Name Value

Win 0 Building Score 800

Total Minerals 2321 Kill Score 200

Total Gas 0 Razing Score 150

Custom Score 0 Elapsed Time 652

Unit Score 1100

3.3 Search Algorithm Differences

Three different versions of the R script algorithm were

used in this experiment. One algorithm was a complete

random search used as a control against two genetic algo-

rithm searches. The two genetic algorithms differed only

by their crossover function. The genetic algorithms will

be referred to as algorithm A and algorithm B. The dif-

ferences between all three can be seen in Table 3.

Almost everything was held the same for the two genetic

algorithms except their crossover function. Algorithm B

does a single point crossover with only a 0.5 probability.

The other half of the time, it swaps the front halves of

the parent build orders with the opposite parents back

half in an effort to get more differing build orders. All

algorithms build orders were evaluated with the fitness

function in Table 3. The scores used should indicate how

c⃝ 2017 Information Processing Society of Japan 319



表 3 アルゴリズム A と B の詳細

Table 3 Breakdown of the differences of each algorithm

Algorithm Random Search Genetic Algorithm A Genetic Algorithm B

Generated Build Orders 900 900 900

Generations NA 18 18

Population Size NA 50 50

Selection Method NA Tournament (K=5) Tournament (K=5)

Crossover Method NA Single Point Half the time Single Point + Half the time swap front and back

Mutation NA None None

Fitness Function (Build Score + Unit Score + Razing Score + Kill Score) / Elapsed Time

many units and buildings our bot constructed as well as

how many enemy units and buildings it attacked. To pro-

mote attacking quickly those four scores were divided by

the elapsed time of the match. Tournament selection was

used with a selection pool of five because it was a tenth

of the population.

3.4 Simulating Matches

Five matches were simulated per build order to reduce

the effect of the default enemy bot’s random strategies.

The scores from 5 games were averaged and then used to

determine the fitness of a build order. The opponent al-

ways played the race, Protoss, while our bot played the

race, Terran, to eliminate the difference in strategies be-

tween races. Three simulations of 4500 (five times 900

build orders) were run, once for each algorithm. After the

simulations, 900 data points per algorithm were collected.

They contained all the metrics collected from StarCraft,

as seen in Table 2 plus the build order’s fitness score, its

generation for the two genetic algorithms.

4. Results

This boxplot compares the fitness value of all the build

orders from each search. It indicates Algorithm A was

the best at creating build orders with a high fitness. As

expected, the random search was the worse. This makes

sense given that our random search did not base any build

orders on previous build order with high fitness. Ulti-

mately, build orders should win games. Figure 3 compares

the win rate of build orders against their fitness.

Surprisingly, algorithm A did not produce many win-

ning build orders. A correlation between fitness and win

rate could not be shown for algorithm A, even though it

appeared for both algorithm B and the random search.

Totaling the amount of build orders that won at least 1 of

its 5 matches, algorithm B has 123 build orders as com-

pared to algorithm A with only 11.

図 2 三つのアルゴリズムにより作成された回答の適応度

Fig. 2 Distribution of fitness values of all build orders gener-

ated by each of the three algorithms

図 3 三つのアルゴリズムの適応度と勝利率

Fig. 3 Fitness versus the win rate for each algorithm

To compare the two versions of our genetic algorithm

further, figure 4 shows the change in fitness as the algo-

rithm progresses. Looking at the fitness per generation of

each algorithm, A can be seen to converge.

The convergence can also be seen when looking at the

c⃝ 2017 Information Processing Society of Japan 320



図 4 世代ごとの適応度変化

Fig. 4 Fitness values over the generations for algorithms A and

B

図 5 世代ごとの回答長さの比較

Fig. 5 Comparison of BO length per generation between algo-

rithms A and B

build order lengths (Figure 5). Algorithm B maintains a

more spread out population in terms of fitness and build

order length.

Looking at the minerals, resources, produced by each

build order, algorithm A’s population’s average minerals

mined increased greatly, whereas algorithm B’s average

stayed relatively stationary. It helps to look at the game

time, as game length would affect the amount of minerals

acquired (Figure 7).

Algorithm A’s build orders resulted in significantly

longer game times on average. This explains the increased

minerals collected. Algorithm B had a relatively steady

average match time amongst its build orders per genera-

図 6 世代ごとの「リソーススコア」の比較

Fig. 6 “Resources” Score per generation between Algorithm A

and B

図 7 世代ごとの試合時間の比較

Fig. 7 Comparisons of the match time of all build orders per

generation between Algorithm A and B

tion. Since the scores across the generations for algorithm

B seemed to remain the same on average, I graphed the

win rate against a few of the scores.

The pyramid shape observed in Figure 8 indicates how

a very high score doesn’t produce more wins, but spe-

cific scores values indicate a high win rate of a build order.

This looks like there is some other factor influencing wins.

5. Discussion

It is clear that both genetic algorithms produced more

fit build orders, but algorithm A did not successfully cre-

ate a significant amount of build orders that could win

matches. Algorithm B ended up with several times the

c⃝ 2017 Information Processing Society of Japan 321



amount of build orders that won at least a single match.

From this experiment, we can move forward starting with

algorithm B. Changes can be made to the fitness function

and crossover method to increase the win rate further.

Looking closer at the build orders per generation of al-

gorithm A, the fitness, build order length, match length,

and resources collected of the build orders converges. This

indicates that a single point crossover doesn’t change

build orders significantly after ten generation, given the

set population and tournament selection. We believe this

means a build order needs to be manipulated in smaller

pieces rather than chunked into two halves.. For exam-

ple, adding mutation, or multiple points for crossover. It

seems even the change of one instruction, especially at

the beginning of a build order, greatly affects the results

of a match. A quick look at the winning build orders

show they all sent a few marines very early on in a match,

catching the enemy without defenses.

We speculate that by taking the second half of a build

order and placing it first, done in algorithm B, allowed

more initial build order instruction combinations to be

tested which allowed more winning strategies to be found

and improved. It appears algorithm B’s build orders had

well timed attacks, which wasn’t reflected in the chosen

fitness function, nor was winning. Adding win rate to the

fitness function, as well as scaling the other four scores

would be another place to improve our genetic algorithms

generation of winning build orders.

We plotted more scores against the win rate for algo-

rithm B’s build orders to show how most wins hover

図 8 ユニット、リソー、建物スコアと手法 B の勝利率

Fig. 8 Unit Score, Minerals Score, and Building Score against

Algorithm B’s BO win rates

around specific build, unit, total minerals scores. This

further shows there is other data unknown to our genetic

algorithm influencing win rate. As mentioned before, it is

most likely the timing of attack from our StarCraft bot.

Information about how many marines are trained, how

many are sent to attack at a time, and when they are

sent are not known by the genetic algorithm. Algorithm

B doesn’t have any data converging as the generations

pass, but it does appear that its build orders converged to

very similar strategies. This means, as the other data in-

dicates, our genetic algorithm needs to create more diverse

build orders if we want to find many winning strategies.

6. Conclusion

By comparing the algorithms we wrote, many places

within our genetic algorithm arise as places to be tweaked

or further studied. At first, it would seem writing a Star-

Craft bot and genetic algorithm to train it would be the

most difficult portion of our project. On the contrary

interpreting data it into a guide of what parameters to

tweak proved most difficult. Seeing how far reaching a

change in our algorithm, like changing the crossover func-

tion, can be exemplifies the complexity of learning how to

win a match in StarCraft. It is intriguing to explore the

idea of creating versatile solutions that solve an unknown

set of problems. Discovering and improving the ability to

do so, will lead to easier creation of even more complex

AIs controlling NPCs in video games.

参考文献

[1] David Edward Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Boston: Addison-
Wesley. (1989)

[2] Brood War API Team, bwapi–An API for inter-
acting with Starcraft: Broodwar (1.16.1), Online,
https://code.google.com/p/bwapi/

[3] MasterOfChaos, chaoslauncher–open source
third-party launcher for StarCraft, Online,
http://www.teamliquid.net/forum/brood-war/65196-
chaoslauncher-for-1161

[4] Computation Intelligence and Games, Retrieved July
25, 2017, from http://www.cig2017.com/competitions-
cig-2017/

[5] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagel-
bck and G. N. Yannakakis, Multiobjective exploration of
the StarCraft map space, Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games,
Dublin, pp. 265-272. (2010)

c⃝ 2017 Information Processing Society of Japan 322


