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On Performance Under Hotspots in Hadoop versus
Bigdata Replay Platforms

Marat ZHANIKEEV1,a)

Abstract: The core idea behind Hadoop is to distribute both the data and user software on individual
shards within the cluster. The Bigdata Replay method is drastically different in that it packs user soft-
ware into batches on a single multicore machine and uses circuit emulation to maximize throughout when
bringing data shards for replay. The effect from hotspots, defined as drastically higher access frequency
to a small portion of (popular) data, is different in the two platforms. This paper models the difference
numerically but in a relative form, which makes it possible to compare the two platforms.
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1. Introduction
Before embarking on this journey, it is necessary to ad-

mit that it is truly difficult to measure performance of any
distributed Bigdata processing engine including Hadoop,
as well as to discover and debug its performance bottle-
necks. The processing itself is distributed by design with
control and data traffic among networked nodes following
a non-trivial logic. So, instead of building a comprehen-
sive performance model/map for Hadoop, majority of ex-
isting research stops at contributing a number of workloads
which can be used by system administrators to compare
their own performance to that of others in relative terms
[13].

Part of this difficulty is due to inconsistency in how the
system performs under the same exact workload at differ-
ent times. Wild variations in performance are documented
in academic literature [11]. The reasons for inconsistency
are the same: the system is too complex to capture and
explain all the dynamics in a consistent and reliable man-
ner.

There is also the superlinear effect [8] when the sys-
tem is scaled. Note that that effect itself does not re-
ally exist, but is simply an artifact of various software
and hardware specifics such as fixed buffers, timeouts, etc.
However, when the overall performance of the system is
measured at different scales, it produces a curve which con-
vexes up at the beginning and then follows the saturation
trend further on. Compared with the linear/diagonal line,
this creates a crossing point beyond which performance is
much worse than its linear expectation. The paper in [8]
refers to this area as payback for the super-linear period at
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the head of the curve. Note that portion of analysis data
further in this paper exhibits partially superlinear features
as well.

There is an academic viewpoint at performance. For
example, there is a paper from the original creators of
Hadoop on the limits of its performance [9]. There is also
recent paper that compares MapReduce with the more re-
cent Spark processing engine [7]. The paper pays special
attention to the Resilient Distributed Database (RDD) as
a major contributor to the improved performance of Spark
(over Hadoop) for majority of processing targets. More
importantly, [7] recognizes that many practical targets re-
quire multiple passes on Hadoop because its simple key-
value approach to processing cannot accommodate them
within the single pass. Clearly, multiple passes drastically
increase the completion time for a given task. A broader
discussion of the subject and new solutions can be found
in [1]. Finally, there is research that attempts to optimize
jobs on Hadoop [14].

Following on the RDD argument above [7], there is re-
search that recommends to abandon Hadoop altogether
when increased RAM and storage on a single machine can
accommodate the intended scale of processing [10].

As far as performance bottlenecks are concerned, cur-
rent literature recognizes only CPU, RAM and storage as
having potential to become a bottleneck [7]. Conversely,
network performance is never considered as a poten-
tial bottleneck. In fact, the disinterest towards network
performance is expressed by the creators of Hadoop them-
selves [9], who state that only 30% of traffic is internal to
Hadoop and 70% is open to clients, that is, hinting that
one should no worry about this resource becoming the bot-
tleneck. Network as performance bottleneck is not found
in any of the major recent papers that analyze and improve

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-DBS-165 No.30
Vol.2017-IFAT-128 No.30

2017/9/20



IPSJ SIG Technical Report

Network
(NW)

Bulk 
Storage
(BS)

Shared 
Memory
(SM)

Core Output

Big Data Processing

HPC, Simulators, Modeling

Small
Data

Fig. 1 All possible bottlenecks in bigdata processed regardless of
the method. Incidentally, all the bottlenecks are shared
with HPC methods.

performance on Hadoop and similar systems [7][8][9][10].
Note that network performance is part of Hadoop’s in-

ternal operation, where it is found under the name of
Rack Awareness[12]. The point is that system adminis-
trator assigns an arbitrary rack number to each datanode,
while Hadoop uses this information to discriminate (and
build preferences) between local (in-rack) and remote re-
sources within the cluster.

There is a new method that brings a paradigm shift
along with active role for network performance to bigdata
processing, called the Bigdata Replay method (or sim-
ply Replay method further on) [1]. The core distinction
(from Hadoop) of the Replay method is that processing
code is not distributed but instead runs on a single mul-
ticore Replay Node. Data shards are bulk-transferred to
the Replay Node using emulated circuits [2] where they
are replayed while granting shared access to raw data to
multiple processing jobs (running on the multicore).

This paper raises a novel viewpoint at performance anal-
ysis. First, the focus is mostly on hotspots [5] defined as
drastically higher access frequency on a relatively small
portion of the entire data bulk. This creates highly ir-
regular access patterns [4], where the irregularity problem
has recently been recognized by research community in re-
lation to the topic of bigdata networking. Performance
in this paper is limited to network which is suitable when
comparing Hadoop to Replay methods. However, the anal-
ysis method itself generalizable and can be applied to any
other resource including CPU, RAM and storage as is dis-
cussed in [7].

2. Performance in Hadoop versus Replay
Methods

For the basics on Hadoop versus Replay methods see the
short description above and full details in [1]. This chapter
will focus on performance bottlenecks while comparing the
two methods to each other.

Performance bottlenecks in a bigdata processing systems
are described in Fig.1. For now, let us disregard the sim-
ilarity between bigdata processing and High Performance
Computing (HPC) and focus on the bigdata direction in
the figure, which is left-to-right. The network is the nar-
rowest bottleneck, followed by bulk storage (disks, HDD,
SSD), then RAM (shared memory). Cores on multicore are
not fully part of the model as they have little effect on the
overall performance below the limits set by the preceding

bottlenecks.
So, the key questions here is: while network is the nar-

rowest bottleneck in Fig.1, why is it not part of perfor-
mance analysis in academic literature on the subject? Re-
fer to [7][8][9][10] to see the evidence supporting this argu-
ment.

There are two reasons why network is not traditionally
considered to be a bottleneck. First, bottlenecks in CPU,
RAM or storage are reached first on Hadoop simply be-
cause majority of time is spent on datanode where the job
performs local calculations while networking happens only
once at the end [7]. Secondly, performance analysis of the
entire system would incorporate network performance but
is difficult in practice due to the high complexity of the
system.

Nevertheless, some attempts to incorporate network per-
formance into analysis have been made. For example, [10]
offers circumstantial proof that network bottleneck is im-
portant by removing the networking itself (single machine,
no distribution) and showing that the system performs bet-
ter without it. Moreover, network performance is part of
the reason behind the superlinear effect [8], specifically the
payback part of the curve.

The primitive argument made by the Replay method is
the same as in [10], which is that the system’s overall per-
formance can be improved if a coarser unit of distribution
is used. The method itself in [10] is the coarsest possible
form which is to remove distribution completely.

Replay method [1] uses a cruder unit of processing. In
Hadoop, the unit is source code running on each shard,
per client. Under the Replay method, the source code is
running on multicore and shares access to a shard with
other jobs. This paper will not delve into details on job
packing and its optimization but [1] and more recently [4]
can offer the necessary details on the subject.

The Replay method is stronger in irregular environments
as well. Jobs in batches work in the same data, using the
same region of shared memory, is a stabilizing factor, com-
pared to the jitter introduced by distribution over the net-
work. However, even under the Replay method, jobs have
some jitter and experience skew in processing time over
time, which is resolved using dynamic job re-packing [4].

The analysis in this paper focuses on the weakest link in
Fig.1 which is network performance. Incidentally, it is
the easiest way to compare the two methods. In Hadoop,
in-job traffic (Reduce phase of the MapReduce, for exam-
ple) depends on network performance. In Replay, the bulk
transfer of the shard itself is limited by the bottleneck.
The focus of analysis in this paper is on hotspots, which
are defined as some shards accessed disproportionally more
frequently than others. Since jobs in the Replay method
are packed by the respective data shard, performance dy-
namics of the method are expected to be different.
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Fig. 2 Rack Awareness feature in Hadoop versus its irrelevance
when modeling the system from the viewpoint of a client.

3. Rack Awareness and Performance
Bottlenecks

Repeating an earlier statement, Hadoop incorporates
network performance in form of the Rack Awareness fea-
ture [12] which is part of the majority of its internal func-
tionality. For example, the first replica of a newly added
data is placed in-rack (using Hadoop terminology [12]).
When processing data, the job selects shards on in-rack
datanodes as much as possible, unless they too crowded
by other jobs. Note that this functionality directly relates
to the concept of hotspots in the intended analysis. The
downside to the Rack Awareness feature on Hadoop is that
it can only be configured manually, which hints that au-
tomatic assignment background monitoring of networking
performance is not offered by the system. The alternative
would be to build and maintain a logical graph based on
network distance (expressed in delay, throughput, etc.) –
see [3] for more pointers on network distance.

The lower part of Fig.2 shows how Hadoop views the sys-
tem using the Rack Awareness feature. Since in Hadoop
all nodes (including clients) are expected to be part of a
rack, the system assumes that each client (the source of
data, in this case) has a number of datanodes which are
much closer to it (in terms of network performance) than
the rest of datanodes. Note that, some clients can be con-
nected to core switch, in which case their rack affiliation
is ambiguous.

The upper part of Fig.2 shows that rack awareness is
irrelevant as far as performance bottleneck is concerned.
Regardless of rack affiliation, there is always the closest
switch. Even in-rack datanodes are on the other side of
the in-rack switch (unless special connectivity is used),
although network performance on connections to them
should be relatively better. By comparison, other datan-
odes are behind another additional network hop which are
switches in other racks in the cluster. The core switch
in Fig.2 can also easily become the bottleneck unless a
multidimensional interconnect is used by the cluster.
However, even with a multidimensional interconnect, there
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Fig. 3 Modeling used for performance optimization in this paper.

is always an upper cap on capacity simply because all-to-
all connectivity across racks is infeasible in practice. See
more on interconnect capacity optimization in [3].

Fig.3 simplifies the view and focuses on performance
analysis. The client is connected to the outside world
through the bottleneck, which is the network switch in this
case, but can be other resources (CPU, RAM, storage).
The bottleneck (even network) is not a single resource but
is an aggregate of multiple unit resources, which are phys-
ical lines in the specific case of Fig.3.

The contention specifics behind Fig.3 are as follows.
Contrary to the traditional viewpoint on contention [8]
which views it as a continuous function/curve, this pa-
per assumes that contention is of the type of the load-to-
response curve in [6]. Up to a given point it is assumed
that that system is contention-free. However, past a given
threshold, contention intensifies sharply followed by dras-
tic impairment in performance. Note that this feature is
commonly observed in majority of congested systems to-
day such as Content Delivery Networks (CDN), resource
virtualization [6], etc.

Also note that such a viewpoint allows us to use the
curve as a binary (congested or not) threshold in analysis
further in this paper.

4. Basics of Hotspot-y Workload Gener-
ation

This paper models irregularity using the hotspot distri-
bution. Details about the generation of a hotspot distribu-
tion can be found in [5] – the paper applies it to generation
of realistic synthetic workloads. The hotspots themselves
represent popularity or, more academically speaking, ac-
cess frequency of a given data shard. This section explains
the general concept and the method used to apply the
hotspot curves in analysis.

The hotspot model is based on four sets of numbers re-
ferred to as normal, population, hot and flash. In reality,
there are only three sets as hot and flash describe the same
items at two different stages in their lifespans. The sets
can be used to describe a wide range of heterogeneous phe-
nomena occurring in nature.

In complex modeling, the process is modeled in time, al-
lowing items to grow from hot to flash gradually – the case
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of Flash Crowd, viral, and other similar events. However,
for the purposes of modeling in this paper, the simplified
version from [5] is applied, meaning that only the static
sets are used without any time dynamics between them.

Yet, even in the simplified sets-only form, distributions
are difficult to judge. It is helpful to classify distribu-
tions based on their curvature. The following classification
method is applied in this paper for the first time. First,
imagine the log values of the sets plotted in decreasing or-
der of value. Given the nature of the distribution, hotspots
– there are normally only a few of them – would be plotted
at the head of the distribution and then the curve would
drop for the rest of values. Note that the drop would be
experienced even on the log scale. Here, the only way to
classify such a distribution is to judge the size of its head.

So, classification in this paper uses the following ranges
for classification, all in log scale:
• if values at 80% and further into the list are 0.15 or

above, then Class A is assigned;
• if values at 60% and further into the list are 0.6 or

above, then Class B is assigned;
• if values at 40% and further into the list are 1.3 or

above, then Class C is assigned;
• if values at 30% and further into the list are 1.8 or

above, then Class D is assigned;
• if no class is assigned by this point, the Class E is

assigned.
The class assignment above is fine-tuned to the distri-

butions used for analysis further in this paper. The tuning
was done in such a way that each class would get a roughly
equal share of distributions, which were otherwise spread
over a reasonably large parameter space. As another sim-
plification, each hotspot distribution is converted into two
separate curves by combining popular + hot and popular
+ flash set, each classified and used separately. Only 100
values were generated for each distribution, but this is suf-
ficient as values during simulation are selected randomly
from the list, which means that relatively low values are
selected much more frequently than the large items. Oth-
erwise, the same process as in [5] is used, where there are 2-
3 other parameters such as variance, number of hot items,
variance across hot items, etc.

Fig.4 shows several curves from the dataset, all marked
in accordance with its calculated class. We can see that
the classification is successful by assigning a higher let-
ter to curves with a relatively higher number of hotspots.
Note that the generation process has no maximum value,
but, in order to avoid extremely long processing sessions,
all values exceeding 1000 are curtailed to 1000. The values
(not logs, but the original number behind) are used in sim-
ulation to define a relative difference in access frequency.

5. Analysis Model and Setup
This section puts in numbers the modeling method ex-

plained in Sections 2 and 3 above. Let us set shard size
as S. Immediately, we can distinguish between Hadoop
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Fig. 4 Example distribution each attributed to a class from A to
E. Vertical scale is in log.

and Replay methods by using the ratio of in-job traffic to
shard size itself, denoted as r (expecting a fraction of 1).
Here Hadoop generates rS traffic per shard, while the Re-
play method bulk-transfers the entire shard for replay and
therefore generates traffic volume of S.

Based on the modeling simplification explained in Sec-
tion 3, let us denote contention threshold as C – inciden-
tally the symbol is often used for capacity which, in these
settings, is a nearly identical concept.

Hotspots are treated differently in the two methods. Un-
der Hadoop, each client generates its own separate process-
ing job, which is another way to say that hotspots are disre-
garded. Under the Replay method, client jobs are grouped
in batches based on the requested shard. In fact, taking
the CDN viewpoint and assuming that only top 5-10%
of shards classified as hotspots (in fact, this is the entire
point of the hotspot distribution), it is not too much of a
stretch to require the Replay Node to cache all hot shards
locally. This would mean that bulk transfer for each hot
shard would take place only once. However, this techno-
logical leap is left for future publications on the subject,
while this paper assumes that jobs are packed into batches
based on a fixed time interval (the value 10 is used further
in analysis). This means that shards are unique (have to
be bulk-transferred) not only by their id but also by the
(rounded up) request time.

So, having the list of shard hotness (popularity){
h1, h2, h3, ..., hn

}
and separately the list of shard sizes{

S1, S2, S3, ...., Sn

}
, we can calculate traffic generated by

each method. For Hadoop the traffic volume is

Vhadoop =
∑

i=1..n

rhiSi. (1)

For the Replay method it is:

Vreplay =
∑

i=1..n

Si. (2)

Note that Hadoop normally uses the fixed shard size but
for the sake of argument let us keep the sizes separately in
the generic form. Also note that we cannot right away tell
which traffic volume is larger as it depends on the setting
of r, the class of hotspot distribution, etc.
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Let us perform another minor simplification before go-
ing into the analysis proper. By setting all shard sizes to
S = 1 and setting the value of C as a multiplier of this
unit S, we can define the time till contention performance
metric which is defined as the number of (parallel) jobs it
takes to take the bottleneck over its contention threshold.

This also simplifies comparison between the two meth-
ods. One simply has to replay a hotspot distribution in
simulation and see which method gets to a given C faster,
where faster is indicative of poorer performance, compara-
tively speaking. The replay process is extremely simple, as
the simulation simply picks shards probabilistically from
the selected hotspot distribution. Hot items are selected
proportionally more frequently.

6. Analysis Results
Fig.5 presents the matrix of performance plots for all

combinations of hotspot class, r and C parameters, where
the time till contention metric on the vertical axis of each
plot is the outcome. For hotspot class, values are A through
E, representing gradually increasing class (see Section 4
for details on hotspot classes). The number in legends in
plots is for the given value of r which is randomly selected
from

{
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5

}
in each simula-

tion run. The outcome is aggregated in each plot for a
distinct combination of hotspot class (columns) and value
or r (vertical). Performance itself is shown as the area
covering all the performance outcomes encountered dur-
ing the 100k simulation runs necessary to sufficiency cover
all permutations of parameter values.

The short conclusion from Fig.5 is that the Replay
method wins the performance race. Hadoop surpasses the
Replay method for r ≥ 0.05 (meaning 5% of in-job traffic
volume) but this effect, like the superlinear effect in [8],
is a misreading coming from the fact that hot items gen-
erate too many jobs at once and overshoot the threshold
by a large margin. In the long run (which in the plots is
the larger values for C), this effect is counteracted by the
longer horizon for contention, in which case the Replay
method always shows superior performance.

Fig.5 also shows that performance for the Replay
method has higher scattering of results, which depends
mostly on the class of the hotspot distribution. By com-
parison, scattering under Hadoop decreases with growing
C. Note that even with larger scattering, Hadoop stays
strictly below the Replay area (on the log scale).

7. Conclusions
This paper is takes a rare viewpoint at performance

of bigdata processors by focusing on performance under
hotspots. Granted Hadoop is indifferent to them as each
job gets its own independent set of resources (regardless
of shard popularity), there are other methods which can
benefit from taking shard popularity into consideration.
The specific other method discussed in this paper is the
Bigdata Replay method which replays shards in a space

shared by multiple parallel jobs.
The outcome of this paper, in a manner of speaking,

contradicts intuition. On one hand, assuming that in-job
traffic (Reduce stage in MapReduce) is very small com-
pared to the total shard volume, one can expect Hadoop
to have better performance by default. However, analysis
results show that having multiple jobs work on the same
data in parallel offers performance improvement sufficient
to make the Replay method more efficient, by comparison.
Note that in analysis in this paper, jobs were packed with
the ration of 10-per-shard (temporal packing), yet even
with the ratio of in-job traffic set to 0.0001 of total shard
volume, the Replay method outperformed Hadoop.

There is more room for performance improvement on the
part of the Replay Method. Popular (hot) shards can be
cached locally which would further decrease bulk traffic.
Future publications will pursue this among other poten-
tial values for performance improvement under the Replay
method.
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Fig. 5 Relative comparison of performance between Hadoop and Replay methods. Legend
on each plot shows its hotspot class and r setting. Both horizontal and vertical
scales are (roughly) in log scale, which means that the linear trends in plots are, in
fact, hyper-exponential in reality.
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