Item type |
SIG Technical Reports(1) |
公開日 |
2017-09-11 |
タイトル |
|
|
タイトル |
深層学習を用いた電子カルテ医療情報の多角的解析 |
タイトル |
|
|
言語 |
en |
|
タイトル |
Analysis of electronic heath record using Deep Learning |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
機械学習・深層学習 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
熊本大学大学院自然科学研究科情報電気電子工学専攻 |
著者所属 |
|
|
|
熊本大学大学院自然科学研究科情報電気電子工学専攻 |
著者所属 |
|
|
|
京都大学大学院医学研究科医療経済学分野 |
著者所属 |
|
|
|
京都大学大学院医学研究科医療経済学分野 |
著者所属 |
|
|
|
京都大学大学院医学研究科医療経済学分野 |
著者所属 |
|
|
|
熊本大学大学院自然科学研究科情報電気電子工学専攻 |
著者所属(英) |
|
|
|
en |
|
|
Department of Computer Science and Electrical Engineering Graduate School of Science and Technology Kumamoto University |
著者所属(英) |
|
|
|
en |
|
|
Department of Computer Science and Electrical Engineering Graduate School of Science and Technology Kumamoto University |
著者所属(英) |
|
|
|
en |
|
|
Department of Healthcare Economics and Quality Management Graduate School of Medicine Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
Department of Healthcare Economics and Quality Management Graduate School of Medicine Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
Department of Healthcare Economics and Quality Management Graduate School of Medicine Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
Department of Computer Science and Electrical Engineering Graduate School of Science and Technology Kumamoto University |
著者名 |
衛藤, 亮太
松原, 靖子
山下, 和人
國澤, 進
今中, 雄一
櫻井, 保志
|
著者名(英) |
Ryota, Eto
Yasuko, Matsubara
Kazuto, Yamashita
Susumu, Kunisawa
Yuichi, Imanaka
Yasushi, Sakurai
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
本研究では,電子カルテ医療情報を多角的に解析するための深層学習を用いた医療情報分類モデルについて述べる.提案手法は,利用者が受診した医療機関や診断された疾患および手術方法などの多次元情報を含む電子カルテ医療情報が与えられたときに,その医療情報から分類に有用な特徴を発見し,利用者の予後を表す転帰情報の分類を行う.実データを用いた実験では,提案手法が多次元医療情報の中から分類に有用な情報を共起影響を加味した上で特定することを確認し,既存の分類モデルとの比較を行い提案手法の精度が向上をしていることを示した. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In this paper, we describe a medical information classification model using deep learning to analysis electronic health record (EHR). In the proposed method, when EHR including multi dimensional information such as users's disease and surgery method is given, from the medical information, special medical information necessary for the classification are found and the outcome information of the user is classified. In experiments using EHR data, we confirmed that the proposed method specifies useful information for classification from multi dimensional medical information, compared with existing classification model, and showed high accuracy of the proposed method |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10112482 |
書誌情報 |
研究報告データベースシステム(DBS)
巻 2017-DBS-165,
号 8,
p. 1-6,
発行日 2017-09-11
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-871X |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |